
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Ofodile, Ikechukwu; Ehrpais, Hendrik; Slavinskis, Andris; Anbarjafari, Gholamreza
Stabilised LQR control and optimised spin rate control for nanosatellites

Published in:
Proceedings of 9th International Conference on Recent Advances in Space Technologies, RAST 2019

DOI:
10.1109/RAST.2019.8767850

Published: 01/06/2019

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Ofodile, I., Ehrpais, H., Slavinskis, A., & Anbarjafari, G. (2019). Stabilised LQR control and optimised spin rate
control for nanosatellites. In S. Menekay, O. Cetin, & O. Alparslan (Eds.), Proceedings of 9th International
Conference on Recent Advances in Space Technologies, RAST 2019 (pp. 715-722). Article 8767850 IEEE.
https://doi.org/10.1109/RAST.2019.8767850

https://doi.org/10.1109/RAST.2019.8767850
https://doi.org/10.1109/RAST.2019.8767850


Stabilised LQR Control and Optimised Spin Rate
Control for Nanosatellites

Ikechukwu Ofodile
Tartu Observatory and iCV Lab

University of Tartu, Estonia
i.ofodile@ut.ee

Hendrik Ehrpais
Tartu Observatory and Institute of Physics

University of Tartu, Estonia
hendrik.ehrpais@ut.ee

Andris Slavinskis
Space Technology Department, Tartu Observatory

University of Tartu, Estonia
andris.slavinskis@ut.ee

School of Electrical Engineering
Aalto University, Finland

Gholamreza Anbarjafari
iCV Lab, Institute of Technology

University of Tartu
Tartu, Estonia

shb@ut.ee

Abstract—This paper presents the design and study of cross
product control, Linear–Quadratic Regulator (LQR) optimal
control and high spin rate control algorithms for ESTCube-2/3
missions. The three-unit CubeSat is required to spin up in order
to centrifugally deploy a 300-m long tether for a plasma brake
deorbiting experiment. The algorithm is designed to spin up the
satellite to one rotation per second which is achieved in 40 orbits.
The LQR optimal controller is designed based on closed-loop step
response with controllability and stability analysis to meet the
pointing requirements of less than 0.1◦ for the Earth observation
camera and the high-speed communication system. The LQR is
based on linearised satellite dynamics with an actuator model.
The preliminary simulation results show that the controllers
fulfil the requirements set by payloads. While ESTCube-1 used
only electromagnetic coils for high spin rate control, ESTCube-2
will make the use of electromagnetic coils, reaction wheels and
cold gas thrusters to demonstrate technologies for a deep-space
mission ESTCube-3. The attitude control algorithms will be
demonstrated in low Earth orbit on ESTCube-2 as a stepping
stone for ESTCube-3 which is planned to be launched to lunar
orbit where magnetic control is not available.

Index Terms—ESTCube-2, attitude control, spin control, con-
trol system analysis, feedback linearization, nonlinear systems,

I. INTRODUCTION

Several works have aimed to provide solutions to varying
attitude determination and control design problems using
nanosatellites and microsatellites. These satellites are therefore
equipped with reliable attitude control systems for several
operational modes and while performing these tasks must
maintain stability with disturbance effects on the satellites.
ESTCube-2 is the second satellite developed in the Estonian
Student Satellite Programme. The programme had previously
developed and launched ESTCube-1 which is a one-unit
CubeSat with the main objective to perform the first in-
orbit electric solar wind sail (E-sail) experiment [1], [2].
The ESTCube-1 Attitude Determination and Control System
(ADCS) was able to perform the required satellite spin up

for the tether deployment experiment. However, the tether was
not deployed due to payload malfunction [3]. ESTCube-1 used
three magnetorquers as actuators which produced the magnetic
moment of up to 0.1 A·m2; therefore, relying only on magnetic
attitude control. The initially implemented high-rate spin con-
troller [4] had to be redesigned due to the residual magnetic
moment which was larger than expected. Modifications were
made by developing a coil-correction function that changes the
coil output and counter the residual moment [5]. ESTCube-2 is
developed to improve upon and expand the previous mission.

ESTCube-2 is a three-unit CubeSat ≈10×10×30 cm in size
and has a mass of ≈4 kg. The satellite’s main mission is to
test the plasma brake which is technology similar to the E-
sail [6], [7]. The E-sail utilizes charged particles in the solar
wind plasma to propel the spacecraft by using conductive
tethers via the Coulomb drag. The same can be applied in the
Low Earth Orbit’s (LEO’s) plasma environment to generate
a significant amount of Coulomb drag. In addition to the
plasma break payload, the satellite is equipped with Earth
observation cameras, a high speed communications system, an
anti-corrosion experiment, and a science-grade magnetometer.
The satellite uses reaction wheels and cold-gas propulsion as
well as magnetorquers to complement as actuators and unload
reaction wheels. The ADCS of ESTCube-2 is developed for
interplanetary environment outside the Earth’s magnetosphere
which is required for ESTCube-3 to test the E-sail in an
authentic solar-wind environment.

The ADCS is required to spin the satellite up to 360 deg·s−1
with an alignment accuracy of less than 3◦ which produce
the angular momentum for centrifugal deployment of a tether.
The ADCS will also fulfill precise satellite pointing of less
than 0.1◦ in order to operate the Earth observation and high
speed communication payloads. It must be able to stabilize and
maintain attitude control in the presence of disturbance torques
on the satellite. The disturbance torques in LEO includes the
magnetic torque, gravity-gradient torque, atmospheric drag and



solar radiation pressure. The ADCS is designed to tolerate
varying disturbance torques within and beyond LEO.

Varying attitude control objectives and problems have been
analyzed in several works and literature of specific nanosatel-
lite missions. While earlier works and designs were based
on Euler angles spacecraft model, the quaternion model has
recently been widely studied [8]–[11]. These works show that
the quaternion model has a remarkable advantage over the use
of Euler angles. Lyapunov-based functions have been used to
design varying attitude control laws [12]–[14]. This, however,
may not efficiently globally stabilize a nonlinear system. The
use of the quaternion model with linearized dynamics is
proven to be controllable and globally stabilizes the non-
linear satellite model [15]. A Proportional-Derivative (PD)
like control law also can be used to attain a certain attitude
control precision as it is known to asymptotically stabilize the
system with application of control torques in three linearly
independent directions [16].

The Linear–Quadratic Regulator (LQR) control problem for
various applications has been implemented with works relating
to CubeSat attitude control [9], [17], [18]. For ESTCube-2,
we are studying the LQR feedback gain control methods and
presenting results with magnetic attitude control and reaction
wheels. We show that the weight matrices are analytically se-
lected based on closed loop step response and that eigenvalues
guaranty stability. The LQR optimal control methods presented
in this paper can be directly applied to both magnetically and
non-magnetically actuated satellites given the actuation model.
A process to validate controller gains is also described based
on ESTCube-2 parameters and control requirements.

The satellite spin control problem has been studied and
implemented on satellites based on a controller approach on
spin rate and precession [19]–[21]. A fault-tolerant magnetic
spin stabilizing controller was developed for JC2Sat-FF [22].
The implementation of this controller for high spin rate
was studied for ESTCube-1, and based on flight results, we
redesign the control strategy and its implementation not only
to reduce the effect of precession and to minimize nutation but
also to ensure a stabilized spin up and obtain optimal control
gains to be used in calculations.

This paper is organized as follows. Section II presents the
ESTCube-2 Attitude determination and control system design
and structure. Section III discusses the satellites mathematical
models and linearized models. Section IV describes the design
of the attitude control algorithms specific for the ESTCube-2
mission. Section V presents simulation results and analysis of
various controller performances. Section VI summarizes the
work done on controller design and comparisons.

II. ESTCUBE-2 ATTITUDE DETERMINATION AND
CONTROL SYSTEM DESIGN

A detailed system design of the ESTCube-2 ADCS is
presented in [23]. The ADCS estimates the attitude by fusing
measurements of various sensors – star tracker, gyroscopes,
magnetometers, Sun sensors and accelerometers. Sun sensors
aim to achieve subpixel accuracy based on linear CMOS

image sensor that has 1×1024 pixels. The magnetometers and
gyroscopic sensors are based on COTS MEMS sensors. The
star tracker, developed in house, is FPGA-based. It is used
to obtain a very accurate and precise attitude in combination
with other sensors to ensure 0.0125◦ accuracy.

ESTCube-2 uses three magnetorquers with a magnetic mo-
ment of 0.5 A·m−2, three reaction wheels for fine attitude
control with momentum storage of 1.5 mN·m·s and a cold-gas
propulsion system with four thrust nozzles in the same −z axis
direction with the nominal thrust of 1 mN. Due to the small
momentum storage of the reaction wheels, the magnetorquers
will be used to prevent saturation by unloading the wheels.

In this study, the satellite is modelled with a mass of 4 kg
and moments of inertia about x, y and z axes – 0.0333 kg·m2,
0.0333 kg·m2 and 0.0067 kg·m2, respectively.

III. SATELLITE MODELING

Quaternion-based attitude model is used for ESTCube-2 [24,
p. 511]. It has several advantages over the Euler rotations:
The quaternion attitude representation does not depend on
rotation sequence and does not have a singularity point for
any attitude. In this preliminary study, we have modeled
the following disturbance torques: gravitational, radiation and
aerodynamic [25, p. 232–263].

A. Kinematic Equations

The kinematic equations describing the orientation of the
satellite can be represented in quaternions by the differential
equations given in [24, Ch. 16].

q̇v = −1

2
ω × qv +

1

2
q0ω (1)

q̇0 = −1

2
ωT qv (2)

where quaternion q = q0 + qv consists of Euler symmetric
parameters and represents the orientation, and ω is an angular
velocity vector. The kinematics equation of motion using
reduced quaternion representation is given in Equation 3 [15,
Eq. 57]. q̇1q̇2

q̇3

 =
1

2

 q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

ω1

ω2

ω3

 (3)

where q1, q2, q3 are vector components of qv .

B. Dynamic Model

In modeling the dynamics of the satellite, Newton–Euler
formulation is used and describes the angular momentum in
relation to applied torques.

Jω̇i = Td + Tc − Ω(ωi)Jωi (4)

where
• J is inertia matrix

J =

 Jx −Jxy −Jxz
−Jyx Jy −Jyz
−Jzx −Jzy Jz

 (5)



• Jω̇i is the rate of angular momentum ḣ in inertial
reference frame

• Ω(ωi) is the skew symmetric representation of the angular
velocity in inertial reference frame.

Ω(ωi) =

 0 −ω1 −ω2

ω1 0 ω3

ω2 −ω3 0

 (6)

• Td is the sum of disturbance torques acting on the satellite
• Tc is the applied control input torque.

The varying torques acting on the satellite changes with re-
spect to the selection of actuator for specific attitude operation.

In order to design the controller for precise satellite point-
ing, the satellite model is described with respect to nadir
pointing of the satellite with reaction wheels.

Jω̇i = Td + Tc − Ω(ωi)(Jωi +H) (7)

where H = [h1 h2 h3]T is the angular momentum of the
wheel. For this, the attitude is represented by body frame
rotation relative to the orbit frame (LVLH). By application
of the transformation matrix AB

o , the angular velocity of the
satellite in inertial reference frame is given as

ωi = ω +AB
o ωo = ω + ωB

o (8)

where ω is described as the angular velocity in the body
frame with respect to the orbit frame. Based on the derivative
of ωi, and assuming that ω̇o is small and negligible, Equation 7
can be re-written as

Jω̇i = Td + Tc − Ω(ω + ωB
o )(J(ω + ωB

o ) +H) (9)

C. Linearized Satellite Model

In order to design the LQR optimal controller, the non-linear
satellite equations have to be linearized. The linearization of
the satellite attitude equations can be obtained by linearizing
the equations about an equilibrium or stationary point. The
attitude equilibrium point is set as q0 = 1 and q1, q2, q3 = 0 for
the linearization based on a first order Taylor expansion [15,
Sec. 3.2.2]. For this, Equation 3 can be represented as a
function g of q and wi and its partial derivative given as

q̇v =
∂g

∂q
(q) +

∂g

∂ωi
(ωi) (10)

with a change around equilibrium point eq, where at equi-
librium ωi = 0.

q̇ − ˙qeq =
∂g

∂q
(q − qeq) +

∂g

∂ωi
(ωi − ωieq) (11)

With respect to the above expression, Equation 3 is therefore
expressed as

q̇1q̇2
q̇3

 =

0 0 0 1
2 (q0) 0 0

0 0 0 0 1
2 (q0) 0

0 0 0 0 0 1
2 (q0)



q1
q2
q3
ω1

ω2

ω3

 (12)

Therefore with approximation of Equation 4 (Jω̇i ≈ Tc)
with negligible disturbance torque and q0 = 1 at equilibrium,
the state space model where u = Tc can be obtained.

ẋ = Ax+Bu (13)

A =

[
03

1
2 (I3)

03 03

]
, x =

[
qv
ωi

]
, B =

[
03
J−1

]
(14)

The linearized model for nadir pointing of ESTCube-2 with
reaction wheels can be obtained from Equation 9 with the
angular momentum of the wheel small and neglected in the
approximation and for simplicity written as Jω̇i = Td + Tc +
f(ω, ωB

o ). With the orbit rate of the satellite ωo = 2π/To, the
model in state space form with gravity gradient disturbance
torque is given as described in [15].

[
q̇v
ω̇i

]
=


0 0 0 0.5 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.5
f41 0 0 0 0 f46
0 f52 0 0 0 0
0 0 f63 f64 0 0


[
qv
ωi

]
+ (15)


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 (Tc) (16)

where

f41 = 8(Jz − Jy)ω2
o − 2ωo

f46 = (−Jx − Jz + Jy)ωo

f52 = 6(Jz − Jx)ω2
o

f63 = 2(Jx −−Jy)ω2
o − 2ωo

f64 = −f46

(17)

The linearized model with magnetorquers is similar, how-
ever the control torque used is generated by the magnetic coil
as

Tc = m× b (18)

where m is the magnetic dipole moment from the electromag-
netic coils, and b is an approximation of the magnetic field [24,
Ap. H] and is expressed based on the magnetic dipole moment
as

b =

b1(t)
b2(t)
b3(t)

 =
µf

a3

 cosω0t sin θ
− cos θ

2 sinω0t sin θ

 (19)



By assuming and approximating the inclination of the
satellite orbit and magnetic equator θ = 0, the quaternion
linear time-invariant model is reduced and given by [26].

[
q̇v
ω̇i

]
=


0 0 0 0.5 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.5
f41 0 0 0 0 f46
0 f52 0 0 0 0
0 0 f63 f64 0 0


[
qv
ωi

]

+


0 0 0
0 0 0
0 0 0
0 0 −b2/Jx
0 0 0

−b2/Jz 0 0


m1

m2

m3


(20)

where
f41 = 8

(Jz − Jy)

Jx
ω2
o

f46 =
(−Jx − Jz + Jy)

Jx
ωo

f52 = 6
(Jz − Jx)

Jy
ω2
o

f63 = 2
(Jx − Jy)

Jz
ω2
o

f64 =
(Jx + Jz − Jy)

Jz
ωo

(21)

IV. ATTITUDE CONTROL ALGORITHMS

The design of attitude control algorithms for ESTCube-2
is based on the quaternion model of the satellite and its
linearized models. The desired satellite quaternion for the
control algorithms are expressed as error quaternions with
measured quaternion values as in Equation 22

qe =


qd0 qd1 −qd2 −qd3
−qd1 qd0 qd3 −qd2
qd2 −qd3 qd0 −qd1
qd3 qd2 qd1 qd0



q0
q1
q2
q3

 (22)

The quaternion error qe satisfies the unit quaternion con-
straint. Where qd is the desired satellite attitude.

A. B-dot Controller

The B-dot is derived by observing a decrease in the rota-
tional energy during detumbling. This means that the scalar
product of the angular velocity and the control torque must be
negative

ωT
i · τ < 0 (23)

where τ is represented as the control torque delivered by
magnetic actuator and is expressed as

τ = m×B (24)

where m is the commanded magnetic dipole moment and
B is the geomagnetic field vector. A seemingly accurate
model of the geomagnetic field for LEO circular orbit such

Fig. 1: LQR controller design algorithm.

as International Geomagnetic Reference Field (IGRF) is being
used as the model for the simulation.

In order to decrease the kinetic energy of the spacecraft
the control torque τ has to be proportional to −ω and based
on the above inequality, the magnetic moment needs to be
perpendicular to ω × B as no torque will be produced if
it were parallel. We can therefore complete the solution by
implementing a scalar gain k

m = −k · (ωi ×B) (25)

where k is a positive gain. The change in magnetic field vector
is assumed to be mainly as a result of rotation of the satellite

Ḃ ≈ (ωi ×B) (26)

therefore we can obtain a simple control law based on

m = −kḂ (27)

B. Proportional-Derivative (PD)

The PD controller designed for the model is implemented
for both magnetic attitude control and with reaction wheels.
The control torque vector derived is given as

Tc =
[
kωωi + kqqe

]
(28)

The PD magnetic control law is defined with respect to the
Earth’s magnetic field B

m = kω(ωi ×B) + kq(qe ×B) (29)

where m is the commanded magnetic moment of the magne-
torquers.



C. Cross Product Law

Due to the limitation of the angular momentum of the
reaction wheel used on ESTCube-2 at 1.5 mN·m·s, the full
controllability of the satellite for attitude maneuvers requires
that the wheels are desaturated. Several approaches for wheel
desaturation and unloading have been discussed to solve this
[27]–[29]. Here a simple cross product law based on the PD
control is implemented to perform the pointing of the satellite
by constantly verifying the angular momentum of the wheel
as a feedback and enabling the magnetorquer in the algorithm
when the wheel gets saturated.

m = − k

(‖B‖)2
[B × he] (30)

m is the magnetorquer dipole moment vector in SBRF and he
is the angular momentum error of the wheels.

D. Linear–Quadratic Regulator (LQR)

The LQR control technique is designed mainly for attitude
stabilization during pointing. The design will be implemented
based on the linearized satellite model in Section III-C. The
design aims to find a cost function and minimize this cost
function. The design based on state space quaternion approach
begins with a basic feedback control of u = −Kx expressed
further in Equation 31 where K is the gain matrix obtained
to minimize the linear–quadratic cost Function 32

u = −R−1BTPx (31)

J =

∫ ∞
0

[xTQx+ uTRu]dt (32)

where x is a vector of system states, A is the system state
matrix, B is the input matrix, Q and R are known as the state
weight matrix and control input weight matrix respectively
and P is a symmetric positive semi-definite solution of the
algebraic Riccati equation given below

0 = PA+ATP +Q− PBR−1BP (33)

The algebraic Riccati equation is only solvable if the input
matrices A and B are controllable. The controllability of A
and B aims to satisfy the controllability property of

Co =
[
B|AB|A2B| · · · |An−1B

]
(34)

where n is the dimension of A and the system is therefore
controllable if and only if Co has a full rank, rank(Co) = n.
The controllability of the designed system is determined by
using MATLAB controllability function ctrb. Figure 1 shows
the design process for the LQR optimal control.

By adjusting the values of the Q and R matrices, a
comparison can be made to the step response performance
to attain the desired result. Using MATLAB, the feedback
gain K can be obtained using the lqr function given as:
[K,P,E] = lqr(A,B,Q,R). P is obtained as a solution
to the algebraic Riccati equation given in Equation 33 and
E is the closed loop eigen values |A − BK| which must
guarantee stability. The values of Q and R can be investigated

by applying a step input for steady state response of the
system to the angular velocity and by evaluating responses,
an optimal controller gain can be derived. Figure 2 shows the
step response to the angular velocity with Q and R matrices
as I6 and I3 respectively.

Fig. 2: Steady-state closed-loop LQR step response.

E. Angular Rate Spin Control

The spin up control algorithm fulfills the mission require-
ment of spinning the satellite to achieve an angular velocity of
360 deg·s−1 to provide angular momentum for the centrifugal
tether deployment for the plasma break experiment. The spin
motion control of the satellite is based on three important con-
trol factors that should be considered: spin control, precession
control and nutation control [30]. For this preliminary study,
the controller uses only magnetorquers. The control algorithm
in Equations 35 and 36 is designed for spin control and is
based on a Lyapunov stability function which reduces the
effect of precession and minimises nutation [22].

A = B × (h̃+ k1h̃x

1
0
0

+ k2Pω) (35)

m = sat

[
− k

(‖B‖)2
A

]
(36)

where B is the Earth’s magnetic field vector in Satellite
Body Reference Frame (SBRF), h̃ is the satellite angular
momentum error in SBRF, h̃x is the angular momentum error
around the satellite’s x axis, P is the selection matrix for the
y and z axes, ω is the angular velocity vector in SBRF, m is
the magnetorquer dipole moment vector in SBRF and k, k1, k2
are control law gains. More details of a controller for a similar
mission, ESTCube-1, are provided in [4].

In obtaining preliminary results for the optimal performance
of the controller, the following points are noted:
• The B-dot algorithm described in Section IV-A for de-

tumbling of the satellite should first be used to reduce
the angular momentum of the satellite in order to improve
the performance of the spin up algorithm.

• For the iterative loop in running the controller, the
initial desired angular velocity should be approximately
45 deg·s−1 to ensure stability along the spin axis.



• The value of the control gains should be set as:
k2 > 1, k1 < 1, k >> k1 to augment the nutation
damping process and avoid uncontrolled spinning of the
satellite about the transverse axis.

V. SIMULATION RESULTS AND DISCUSSIONS

The attitude control algorithms are designed and tested with
their performance evaluated using a custom-built attitude sim-
ulator in MATLAB and Simulink. The simulation environment
includes the following features:
• Basic spacecraft dynamics based on the Euler equations;
• Environmental disturbances;
• Realistic actuator and sensor models.

A. B-dot

Figure 3 shows the result of the simulation of the B-dot
controller with a controller gain of 12×104. Initial inspection
of the controller shows that it performs as expected but
becomes very slow on converging at steady state. The response
shown is based on setting the frequency to 100 Hz. The initial
angular rate was set at 17 deg·s−1 in the z-axis.

Fig. 3: Detubmling with B-dot controller.

B. Cross Product law

The cross product control law is implemented with torque
commands from both reaction wheels and magnetorquers. The
initial angular velocity of the satellite was set at 13.5 deg·s−1
in the x-axis. As seen in Figure 4, the angular velocity of
the satellite attenuates to 0◦ in about 1000 s. The attitude
of the satellite attempts to attain nadir pointing stabilization
mode in about 4000 s. The reaction wheels angular momentum
saturates to 1.5 mN·m·s in about 100 s, as seen in Figure 4. The
magnetorquers are then activated and delivers torque which
also desaturates the wheels and regulates performance for the
satellite pointing mode.

TABLE I: Spin rate simulation parameters.

Parameter Value

Initial Angular Velocity
[
0 0 0

]T deg·s−1

k 15000
k1 0.01

Desired Angular Velocity, deg·s−1 k2 Gain
40 100
97 1000

155 1000
195 1000
252 5000
298 5000
360 5000

C. Linear–Quadratic Regulator

The LQR optimal control was designed and simulated for
attitude control with magnetorquers and reaction wheels. The
initial values for the Q and R matrices were selected by
finding the optimal step response performance of the controller
with varying weight matrices. For further simplification of the
design process, the weight matrices Q and R are selected to
be diagonal with the number of states and number of actuator
control as the lengths Q and R respectively.

Q = I6[Q1, Q2, Q3, Q4, Q5, Q6]

R = I3[R1, R2, R3]
(37)

Figure 5 shows the LQR controller performance with re-
action wheel, when the Q and R matrices were selected as
Q = I6[1, 1, 1, 1, 1, 1] and R = I3[1, 1, 1]. The result of the
closed loop eigenvalues were observed to ensure stability and
the controller gain K obtained. The result shows that the
controller achieves about 0 deg·s−1 angular velocity settling
time in 100 s on all axes. Further results show the controller
performs disturbance rejection with varying disturbances.

Figures 6 shows results of the LQR controller with mag-
netorquers. The angular velocity of the satellite is seen to
attain rest at 0 deg·s−1 in all axes in about 1500 s. The
controller gain was calculated with Q and R matrices se-
lected as Q = I6[140, 140, 140, 140, 140, 140] and R =
I3[2480, 2480, 2480].

D. Angular Rate Spin Control

The spin control result is presented in Figure 7 with the
desired ultimate angular rate set to 360 deg·s−1 in the x-axis.
As described in Section IV-E, the controller gains were set as
shown in Table I. The result shows the desired angular rate
which is performed in several phases is achieved in about 40
orbits as enumerated in Table I. The angular rate then stabilizes
at 360 deg·s−1 for a few more orbits.



Fig. 4: Unloading reaction wheels with cross product control law and magnetorquers.

Fig. 5: Attitude control with LQR and reaction wheels.

VI. CONCLUSIONS AND FUTURE WORK

The result of the study reflected various preliminary per-
formance characteristics for the controllers for attitude ma-
neuvers. The cross product law efficiently performed the
unloading of saturated reaction wheels in order to propagate
precise satellite pointing and attain stability. The angular rate
spin control needs to be implemented as indicated in the
setup as the spin up of the x-axis is known to disturb the
transverse axis if the requirements of the spin rate are not
adhered to. The design of LQR optimal controller for use
with the reaction wheels and magnetorquers was shown to
work well even with the gravity-gradient disturbance torque.

Fig. 6: Attitude control with LQR and magnetorquers.

Fig. 7: Angular rate spin up control performance.



However, the response with magnetorquers is less desirable
in comparison with reaction wheels. In comparison with the
PD-like control laws, LQR optimal control gave better results
to stabilize the system even when realistic disturbances were
added.

To attain a more efficient performance, controllers making
use of the magnetorquers as actuators would be optimized in
terms controller gain and testing of time varying gain approach
for the final satellite design.

In the future, a more realistic model of the satellite will be
used and disturbance analysis will be presented. This includes
a more accurate inertia tensor, the misalignment between
torquers, satellite body frame and the principal inertia axes.
In addition, detailed analysis will be provided regarding the
placement and the properties of the torquers, how that affects
attitude control, as well as additional details on spin control
laws and their performance with reaction wheels and thrusters.
The saturation of reaction wheels during control maneuvers
and stabilisation due to disturbance torques will be analysed.
We will also consider other approaches for linearisation:
Instead of analytically linearising the equations around one
specific target, the system could be numerically linearised
at each time step. Such an approach might provide a more
optimal way to control the satellite. Alternatively, non-linear
control or the linearised nadir-pointing spacecraft model can
be used [15, Sec. 3.3.2].
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[23] I. Ofodile, J. Kütt, M. K. Nigol, J. Kivastik, A. Parelo, E. Ilbis,
H. Ehrpais, and A. Slavinskis, “ESTCube-2 attitude determination and
control: Step towards interplanetary CubeSats,” in IEEE Aerospace
Conference, 2019.

[24] J. R. Wertz, Ed., Spacecraft Attitude Determination and Control.
Kluwer Academic Publishers, 1978.

[25] P. C. Hughes, Spacecraft Attitude Dynamics. Dover Publications, 2004.
[26] Y. Yang, “Controllability of spacecraft using only magnetic torques,”

IEEE Transactions on Aerospace and Electronic Systems, vol. 52, no. 2,
pp. 954–961, 2016.
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