' Aalto University

Nyman, Thomas; Dessouky, Ghada; Zeitouni, Shaza; Lehikoinen, Aaro; Paverd, Andrew;
Asokan, N.; Sadeghi, Ahmad-Reza

HardScope: Hardening Embedded Systems Against Data-Oriented Attacks

Published in:
Proceedings of the 56th Annual Design Automation Conference 2019, DAC 2019

DOI:
10.1145/3316781.3317836

Published: 02/06/2019

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:

Nyman, T., Dessouky, G., Zeitouni, S., Lehikoinen, A., Paverd, A., Asokan, N., & Sadeghi, A.-R. (2019).
HardScope: Hardening Embedded Systems Against Data-Oriented Attacks. In Proceedings of the 56th Annual
Design Automation Conference 2019, DAC 2019 Article 63 (Proceedings - Design Automation Conference).
ACM. https://doi.org/10.1145/3316781.3317836

This material is protected by colpyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by ?/ou for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other tuhse: Elgctronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

https://doi.org/10.1145/3316781.3317836
https://doi.org/10.1145/3316781.3317836

HardScope: Hardening Embedded Systems Against
Data-Oriented Attacks

Ghada Dessouky
Technische Universitat
Darmstadt, Germany

Thomas Nyman
Aalto University, Finland
thomas.nyman@aalto.fi

Aaro Lehikoinen
Aalto University, Finland
aaro.j.lehikoinen@aalto.fi

Shaza Zeitouni
Technische Universitat
Darmstadt, Germany

{ghada.dessouky,shaza.zeitouni}@trust.tu-darmstadt.de

Andrew Paverd
Aalto University, Finland
andrew.paverd@ieee.org

Abstract

Memory-unsafe programming languages like C and C++ leave many
(embedded) systems vulnerable to attacks like control-flow hijack-
ing. However, defenses against control-flow attacks, such as (fine-
grained) randomization or control-flow integrity are ineffective
against data-oriented attacks and more expressive Data-oriented
Programming (DOP) attacks that bypass state-of-the-art defenses.
We propose run-time scope enforcement (RSE), a novel approach
that efficiently mitigates all currently known DOP attacks by enforc-
ing compile-time memory safety constraints like variable visibility
rules at run-time. We present Hardscope, a proof-of-concept imple-
mentation of hardware-assisted RSE for RISC-V, and show it has a
low performance overhead of 3.2% for embedded benchmarks.

1 Introduction

Data-oriented attacks can influence program behavior without
the need to modify control-flow data. Instead, they corrupt vari-
ables used by the program’s decision making, or leak sensitive
information from program memory. Such attacks are called non-
control-data attacks [7]. Non-control-data attacks have been shown
to allow attackers to forge user credentials, change security criti-
cal configuration parameters, bypass security checks, and escalate
privileges. Recent work shows that it is even possible to generalize
data-oriented attacks to construct full-blown malicious attacks with
Turing-complete expressiveness, called Data-Oriented Programming
(DOP) [15]. Such attacks are executed by carefully corrupting only
non-control data over time to chain together sequences of opera-
tions on attacker-controlled input. DOP provides similar capabili-
ties to attackers as return-oriented programming [26], but without
breaking the victim program’s control-flow integrity. This, com-
bined with the ability for DOP to reuse virtually any data, makes
preventing DOP attacks a significant and open challenge.
Existing defenses against control-flow attacks cannot prevent
data-oriented attacks. Some defenses against non-control-data at-
tacks (e.g., [5, 24]) protect individual pieces of (security-critical)
data. Hu et al. [15] discuss various existing schemes that could

© 2019. Copyright held by the owner/author(s). This is the author’s version of the work.
It is posted here for your personal use. Not for redistribution. The definitive Version of
Record was published in The 56th Annual Design Automation Conference 2019 (DAC
’19), June 2-6, 2019, Las Vegas, NV, USA, https://doi.org/10.1145/3316781.3317836

An extended version of the work available [22].

N. Asokan
Aalto University, Finland
asokan@acm.org

Ahmad-Reza Sadeghi
Technische Universitat
Darmstadt, Germany
ahmad.sadeghi@trust.tu-darmstadt.de

reduce the number of DOP attacks, including memory safety, data-
flow integrity, fine-grained data-plane randomization, and hard-
ware/software fault isolation. However, they explain that existing
approaches are either too coarse grained, or result in prohibitively
high performance overheads. Without viable alternatives, and be-
cause effective defenses against control-flow attacks are already
being deployed, DOP is likely to become the next appealing attack
technique for run-time exploitation.
Goals and Contributions. We propose a new efficient defense
against data-oriented attacks that effectively prevents all currently
known DOP attacks. It can also be configured to prevent control-
flow hijacking. The intuition behind our approach is simple: In block
structured languages every variable has a lexical scope, denoting
the block(s) of source code in which the variable is visible. All cor-
rect compilers enforce variable scope at compile-time by checking
these variable visibility rules. All currently known DOP attacks,
and many data-oriented attacks in general, violate variable scope
rules at run-time, since there is no equivalent enforcement. Conse-
quently, mechanisms for variable scope enforcement at run-time
can significantly reduce the exposure to data-oriented attacks.

In this paper, we define the notion of Run-time Scope Enforce-
ment (RSE) that provides fine-grained compartmentalization of data
memory within programs. We then describe HardScope, a hardware-
assisted RSE scheme. HardScope differs from existing defenses in
the following important ways: a) it provides complete meditation
of all variables accesses, b) it is efficient, incurring only a small
performance overhead for embedded benchmarks, and c) it enables
context-specific policies. This means that the same piece of code can
be granted access to different memory locations depending on the
context in which the code is executed. Our main contributions are:
e Run-time Scope Enforcement: A novel approach for fine-grained

context-specific memory isolation within programs (Sec-

tion 3) to defeat data-oriented attacks.

e HardScope: An open-source proof-of-concept implementation of
hardware-assisted RSE on the RISC-V architecture that demon-
strates efficient memory compartmentalization (Section 4).

o Compiler support and APIs: Compiler support for protecting
static and automatic variables at run-time (Section 4.3) with-
out requiring any developer input, and a programmer’s API
(Section 4.4) that allows developers to annotate dynamic alloca-
tions to complement the automated instrumentation.

https://doi.org/10.1145/3316781.3317836

o Evaluation: Analysis of RSE security guarantees (Section 5.1), and
evaluation of HardScope’s hardware area overhead and minimal
performance impact (Section 5.2).

2 Adversary Model & Challenges

Adversary Model. We consider a powerful adversary who has full
control over the data memory of the target program. This models
buffer overflows and other memory corruption vulnerabilities (e.g.,
an externally controlled format string!) that could corrupt any data
memory. However, the adversary cannot modify program code
(WeX protection). Our adversary model is standard for run-time
attacks and consistent with Hu et al’s DOP attacks [15].
Challenges. Our goal is to prevent the above adversary from
mounting DOP attacks. Since DOP attacks (similar to many other
data-oriented attacks) require the adversary to modify and access
data in unintended ways at run-time, these attacks can be prevented
by a run-time enforcement mechanism that prevents any data ac-
cess that would not be permitted during a compile-time check by a
correct compiler. Designing a solution to meet this goal requires
addressing the following significant challenges:

Run-time enforcement: enforcing variable scopes at run-
time requires information which is usually only available at
compile-time.

Multi-granularity enforcement: the enforcement mechanism
must be configurable for any granularity of protection do-
main (subject) and protected region (object).

Context-specific enforcement: enforcing different permissions
on each invocation of the same subject (e.g., each function),
to minimize the attack surface following the principle of
least privilege.

Complete mediation: protection domains cannot be allowed
to increase their permissions accidentally or maliciously, and
all memory accesses must be checked with only minimal
performance impact and memory overhead.

3 Design Overview

The high-level idea of HardScope is to extend the compiler to
emit compile-time information about the visibility of variables, and
to extend the underlying hardware to use this compiler-supplied
information to dynamically create and update a set of memory
access rules against which all memory accesses are checked.
Run-time enforcement. Machine code produced from languages
such as C and C++ does not include information available to the
compiler about variables and code blocks (). RSE needs this
information to assign in-memory variables to specific execution
contexts. To bridge this gap between compile-time lexical scope and
run-time execution context, we modified the compiler to instru-
ment the program code with special instructions that record which
variables may be used by each code block. HardScope introduces
an instruction set extension for this purpose (Section 4).

The compile-time components and behavior of HardScope are
illustrated in Figure 1. An unmodified source code program (@) is
fed to the compiler (®), which checks (as usual) that all variable ac-
cesses are correctly scoped. Our new RSE Plug-in (@) in the compiler

1CWE-134: Use of Externally-Controlled Format String
https://cwe.mitre.org/data/definitions/134.html

adds HardScope instructions (@) at particular locations in the bi-
nary (e.g., at the start of functions). This results in a fully-functional
program binary, instrumented with HardScope instructions that
the HardScope hardware uses to create a set of rules against which
all memory accesses can be checked at run-time.
Multi-granularity enforcement. We chose function-level com-
partmentalization as the granularity of isolation, since this is suf-
ficient to mitigate all currently known DOP attacks (Section 5.1).
However, RSE can also be implemented at other granularities (Sec-
tion 4), without changes to the new HardScope hardware ()
Context-specific enforcement. Consider the program (@) in Fig-
ure 1: function C receives two pointers and copies data from the
first pointer to the second. It can be called from either function A
or function B (call graph shown in Figure 2). In benign execution,
variables x and y are only used in a privileged execution path, where
access control checks prevent misuse (e.g., x could be a secret key).
Function B contains an exploitable vulnerability allowing the at-
tacker to control the pointers passed to function C. Since function C
can be used to copy arbitrary data between two attacker-controlled
pointers, this constitutes a DOP gadget. The attacker could use
this to bypass the access control checks on variables x and y by
accessing them through the unprivileged execution path.

HardScope prevents this by providing context-specific enforce-
ment, in which different memory access rules can be associated
with each active instance of a function (). To achieve this, the
HardScope hardware creates memory access rules dynamically
for each individual function invocation, and stores these in a data
structure called the Storage Region Stack (SRS). The SRS is kept in
hardware-isolated protected memory; only HardScope instructions
can add or remove SRS entries. Each SRS entry defines an area of
memory (e.g., the location of a variable) that may be accessed. The
SRS is organized into frames; each frame contains all the entries for
a particular execution context. The topmost SRS frame corresponds
to the active execution context. On each memory access, e.g., load
or store, HardScope validates that the memory address matches an
entry in the topmost SRS frame.

Specifically, HardScope prevents the attack in Figure 2 as follows:
The SRS for function A (®) includes variables x and y, and the SRS
for function B (®) includes variables i and j (Figure 2). To allow
function C to access certain variables, the calling function must use
a special instruction (Figure 1 @) to delegate access to a variable to
function C: e.g., function A must delegate access to x and y. For valid
delegation, the calling function must already have access to the
delegated variables. Even though the attacker can still manipulate
the pointers in function B, this function does not have access to x
and y (no corresponding SRS entries) and hence it cannot delegate
access to these variables to function C.

4 Implementation

We developed a proof-of-concept hardware implementation of
HardScope and integrated it into the open-source RISC-V Pulpino
core.? HardScope extends the RISC-V instruction set with seven
new SRS management instructions, as shown in Table 1. We aug-
mented the GCC compiler to incorporate a proof-of-concept RSE

Zhttp://www.pulp-platform.org/

https://cwe.mitre.org/data/definitions/134.html
http://www.pulp-platform.org/

| (e)

xecutable
o | Source Code Program
® privileged { function @

setup SRS frame

call copy(ptr,, ptr,)

} setup delegates
unprivileged { [.]
call copy(ptr;, ptry) I function
— setup SRS frame

} Instruction

Instruction

setup delegates

CALL function(C)

function (©
setup SRS frame
6 Instruction

Compiler Instruction

RETURN

: RSE_ Data
Plug-in

new instructions added by instr. engine

| HI

memory corruption vulnerability

Figure 1: Compile-phase design of HardScope. Run-time
memory accesses via pointers ptry, ptry are limited to vari-
ables x and y, while ptr;, ptr; are limited to i and j.

plug-in and a modified RISC-V backend to automatically instru-
ment C programs with the relevant HardScope instructions. These
protect static and automatic variables at run-time without requiring
any changes to program code. We also developed a HardScope Pro-
grammer’s API (Section 4.4) that allows developers to annotate
dynamic allocations to complement the automated instrumentation.
HardScope itself is architecture-agnostic; our choice of RISC-V and
Pulpino is due to the open-source nature of the ISA and the RTL
implementation, thus enabling us to prototype our solution.

4.1 Instructions

The sbent and sbxit instructions are used to mark the begin-
ning and end of each execution context. HardScope uses these
instructions to track when HardScope is first enabled and when
the execution context changes, and thus when new enforcement
rules should be loaded in the SRS. sbent pushes a new frame on
top of the SRS, whilst sbxit pops the topmost SRS frame. Program
execution starts with an empty SRS and HardScope enforcement
is initially disabled. HardScope is enabled by the first sbent, and
remains enabled until a matching sbxit empties the stack.

The sradd and srdda instructions create an SRS entry in the
current (topmost) SRS frame. HardScope uses these instructions to
determine the bounds of memory areas that the current execution
context is allowed to access. The two operands set the base and
limit address of the storage region respectively. An optional offset is
added to to either the limit (sradd) or base (srdda) register operand.

The srdel instruction removes the specified number of SRS
entries from the current SRS frame (last in first out). It allows

®
B, v
OG0

y y
(5]

(a) delegation permitted (b) delegation disallowed

o——» privileged control-flow path
e ---» unprivileged control-flow path

—:-—» corrupted pointer
memory corruption vulnerability

Figure 2: Run-time design of HardScope showing the call
graph of program in Figure 1. In (a), access to variables x
and y is successfully delegated from A to C. In (b), function B
should not have access to x and y, but a memory corruption
vulnerability in B is used to corrupt ptr; and ptr; to point to x
and y instead of i and j. HardScope prevents B from accessing
or delegating x and y.

the program to drop unneeded memory access privileges without
changing execution context.

The srdlg and srdsub instructions delegate an SRS entry from
the currently executing function either to an invoked callee function
or to the caller when the current function returns. HardScope uses
these instructions to derive SRS entries for data flows which are not
known at compile-time, such as context-specific accesses (Section 3).
The operands specify an address to determine which memory
address to delegate. The resulting memory address is compared
with the current SRS entries and if a match is found, the most recent
matching entry is copied to the next execution context entered. If
the delegation is followed by a sbent, the delegated entry is added
to the newly created SRS frame. If the delegation is followed by a
sbxit, the delegated entry is added to the caller’s SRS frame.

The srdsub instruction is used to delegate a new SRS entry that
is a subset of an existing SRS entry. It takes the same operands
as sradd. If the new subdivided memory region is a subset of an
existing SRS entry in the current SRS frame, a new SRS entry is
created for a sub-region using the new base and limit.

If no matching entry is found in the SRS when srdlg or srdsub
execute, no entry is delegated. This prevents the use of srdsub
to elevate the access rights of the next execution context beyond
the rights of the current, but allows the delegation instructions
to be applied to pointers which are not dereferenced directly in
the current context. These include null-pointers and intentionally
created out-of-scope pointers (e.g., via the use of pointer arithmetic)
that are passed to callees for which they are in scope (e.g., accessor
functions that receive opaque pointers as arguments).

Table 1: HardScope Instructions. Mnemonic is used to refer to
the instruction elsewhere in the paper. Name is the full name of the
instructions. Operands lists valid combinations of operands: rn is
a register, imm is an immediate value, and imm(rn) is a register to
which an immediate offset is added. Cycles indicates the number of
cycles consumed at execute stage.

Mnemonic Name Operands Cycles
sbent scope block enter n/a 1(+N)
sbxit scope block exit n/a 1(+N)

r1, imm(r2) 1
imm(r1), r2 1
imm(r1)

sradd storage region add
srdda storage region dda (reverse add)

srdel storage region delete mm 1(+1)
srdlg storage region delegate 12:0‘1) 1(+1)

srdsub storage region delegate sub-region r1, imm(r2) 1(+1)

4.2 Hardware Implementation

We modified the instruction decoding stage of the processor pipeline
to interpret the new instructions (Section 4.1). After decoding, the
appropriate control signals are sent to the HardScope unit, which
realizes the execute stage of the new instructions. Figure 3 shows
the main components of the HardScope unit: the SRS controller
(@), dedicated memory to hold the SRS (), and three register
banks (®, @, ®). The active bank (®) holds the entries in the SRS
frame for the current execution context enabling each memory
access to be compared against all active entries efficiently. The spare
bank (@) holds entries delegated via srdlg and srdsub before a
HardScope context switch occurs. It allows delegated entries for
the next execution context to be accumulated ahead of time. When
a HardScope context switch occurs, the spare bank becomes the
active bank (and vice versa), thus activating the delegated entries.
The third bank (@) is used as a cache to hold a copy of the topmost
frame of the SRS. This reduces the latency when the topmost SRS
frame is transferred between the stack memory and the spare bank.

When executing sbent, the controller activates the spare bank
and transfers the contents of the currently active bank to the cache
(®) in a single cycle. The bank that held the previously active frame
becomes the spare, and can be used for subsequent delegations.
The entries in the cache must be stored for future use, and are
transferred to the SRS in protected memory (@) over at most N sub-
sequent cycles, where N is the maximum number of entries in the
cache. During this time, the CPU continues to execute subsequent
instructions normally until a new HardScope context switch occurs.
Only if a HardScope context switch occurs before the cache has
been emptied does the processor stall until the transfer is complete.

When executing sbxit, the controller copies the SRS frame from
the cache into the spare bank (@) while retaining delegated entries
(i-e., activating the entries that are already in the spare bank). The
SRS frame in the previously active bank is no longer needed and is
discarded. This executes in a single cycle. The cache, which now
holds an out-of-date copy of the active frame, is updated with the
topmost SRS frame from the protected memory (®), which takes at
most N cycles, where N is the number of entries in the topmost SRS
frame in memory. This does not stall the processor unless another

copy to spare

SRS in 1 H
protected © Cache © Active bank @ Spare bank
memory |copy to cache,

....... Lo S
_______________ copy to cache
copy to SRS
o EEm
: sradd

Enable/Data for sbent

——— Enable/Data for sradd, srdda -
-~ Enable/Data for sbxit

Enable/Data for srdlg, srdsub -

Figure 3: HardScope hardware architecture.

sbxit is encountered before the cache is fully populated, in which
case the CPU stalls until the next frame is available. However, if
an sbent is encountered before the cache is fully populated, the
partial cache is discarded and replaced with the contents of the
active bank, without stalling.

The sradd and srdda instructions always operate on the active
bank. When executing srdsub, the controller checks the active
bank for an entry containing the given memory region and, if found,
adds the new sub-entry to the spare bank. Similarly, in srdlg, the
controller checks for the matching entry in the active bank and,
if found, copies the entry to the spare bank (@®). The srdlg and
srdsub instructions require an additional cycle only if followed
immediately by a sbent or sbxit.

Integrating HardScope into the processor pipeline also required
modifying the memory access stage to intercept all memory access
requests to the load/store unit. At each load or store instruction,
the requested memory address and the number of requested bytes
(one byte, half-word (two bytes), or word (four bytes)) are inter-
cepted and forwarded to the SRS controller, which compares it
against all entries in the active bank. The registers in each bank are
wired to comparators such that all entries in the bank are checked
in parallel. If a match is found, i.e. the requested address range is
a subset of any of the active entries, then the memory access is
granted by the processor’s load/store unit, otherwise a hardware
fault exception is raised. We design and integrate HardScope to the
processor pipeline such that no additional clock cycle latency is
incurred to the baseline load and store instructions.

4.3 Software Instrumentation

Our RSE GCC plug-in and the modified RISC-V backend currently
supports automatic instrumentation of C programs at function gran-
ularity to protect the 1) call stack frame including local variables,
return address and other return state information, 2) arguments
passed on the stack, 3) heap objects, and 4) global and static vari-
ables. The beginning of each distinct execution context is marked
by inserting a single sbent instruction at the function call site just
before the jump instruction. The end of an execution context is
marked by inserting an sbxit instruction just before the return
in the callee function. In Section 5 we show that function-level
isolation is sufficient to mitigate all currently known DOP attacks.

However, RSE can also be implemented at other granularities, with-
out changes to the HardScope instructions, by inserting sbent and
sbxit instructions around the instructions that comprise a distinct
execution context.

4.4 HardScope Programmer’s API

Deeply Nested Pointers. The HardScope Programmer’s API en-
ables the handling of code that uses deeply nested pointers e.g.,
traversing linked lists. This type of code is a challenge for auto-
mated instrumentation because e.g., passing the head of a linked list
to a function that iterates through the list would require delegation
of an SRS entry for each element of the list. Since the number of SRS
entries (per frame) is constrained by the HardScope hardware (see
Section 4.2), this leads to suboptimal use of HardScope hardware
resources and an increased cost in HardScope context switches
due to more frequent stalls at run-time. Instead, we propose a pro-
gramming pattern using the HardScope Programmer’s API where
one sradd instruction is added before the dereference of member
pointers to linked member elements, and one srdel is added after
the dereference. This enables effective yet secure traversal of linked
lists and other data structures containing nested pointers.

Heap object allocation. We implemented a wrapper on top of
the C standard library malloc() function that creates SRS entries
for heap allocations, and delegates these to the caller. Other li-
brary functions can be similarly wrapped to allow HardScope-
instrumented code to be linked against uninstrumented libraries.

5 Evaluation

HardScope meets the stated challenges (Section 2) as follows:
Run-time enforcement. The RSE GCC Plug-in infers and
emits the necessary HardScope instructions to manage the SRS for
stack and global data, as well as dynamic allocations that follow
a well-defined pattern. The HardScope Programmer’s API allows
handling code that is not automatically instrumentable, e.g., uses
deeply nested pointers.

Multi-granularity enforcement. HardScope can enforce
policies with either coarser or finer granularity of execution con-
texts with the appropriate instrumentation (). For instance,
HardScope can isolate the function prologue and epilogue from the
function body, and protect return addresses on the stack from mem-
ory errors in the function body to prevent control-flow hijacking.
Context-specific enforcement. In HardScope, the active
SRS entries can differ between different invocations of the same
subject, depending on which entries have been delegated to this
subject (e.g., variables passed to a function by its caller or callee).
Complete mediation. HardScope hardware checks every
memory access against the active set of SRS entries; accesses with-
out matching entries will fail. Therefore only compiler-admissible
memory accesses are allowed.

Instructions that create rules at run-time could potentially be
used as confused deputies. In a confused deputy attack, the attacker
attempts to subvert the RSE property by misusing existing Hard-
Scope instructions at run-time to create unintended rules. Our de-
sign ensures that no such instructions are available to the attacker.
Rules for static allocations (stack and global variables) are encoded

directly into the instructions. Since these cannot be modified at
run-time, they cannot be used as confused deputies.

Instructions that create rules that are determined at run-time
are found within memory allocators, e.g., malloc(), or code that
deals with deeply nested pointers, e.g., iterators annotated using
the HardScope Programmer’s APL It is reasonable to assume that
memory allocators are trusted (or at least that allocations are not
influencable by the attacker). We recommend that manually an-
notated code is vetted for allocators that create rules at run-time.
Furthermore, an attacker can only initiate a confused deputy attack
if he already controls some part of the code, which is very difficult
since every memory access in the instrumented program is checked
by the HardScope hardware.

5.1 Security Evaluation

We replicated the DOP attack by Hu et al. [15] and ported the code
to Pulpino to evaluate the effectiveness of HardScope. Although
it was not possible to port the complete victim ProFTPD server
to our FPGA testbed, we focussed on the vulnerable sreplace()
function [15]. All enforcement rules in our experiments are derived
without any developer annotations — the GCC intermediate represen-
tation contains all information necessary for compile-time instru-
mentation, including: stack-frame sizes, global variable accesses,
function calls, parameters, and return values. Function-granularity
isolation is sufficient to prevent the attack.

We verified experimentally four ways in which RSE prevents
this DOP attack: 1) it prevents the initial memory violation in
sreplace() as it enforces the indended bounds of input and out-
put buffers when operated on by an unsafe string copy operation
(strncpy () with incorrect buffer length), 2) it prevents the attack
from keeping internal state in unused areas of the program’s data
section, 3) it denies access to global variables which are accessed by
the attack out of their normal context, 4) it denies access to static
variables which should only be accessible by code wihin the same
compilation unit. We discuss each of these in detail in the extended
version of this article [22]. Any one of these would be sufficient to
stop the attack, and thus the existence of four distinct mitigations
demonstrates the effectiveness of RSE’s layered defense strategy.

5.2 Performance and Area Evaluation

Performance overhead. We ran CoreMark?, a standard perfor-
mance benchmark for embedded systems, with varying iteration
counts on a HardScope-augmented Pulpino synthesized on a Xilinx
Zynq-7020 ZedBoard. We observed an average overall performance
overhead of 3.2% compared to the execution of unmodified Core-
Mark on the unmodified Pulpino SoC. All instrumentation in Core-
Mark was automatically generated by our extended GCC compiler
resulting in the binary size increasing by 11%. The number of en-
tries required per SRS frame varied throughout execution between
1 and 23. The overall maximum SRS size was 71 entries in 11 frames,
resulting in a memory overhead of 573 bytes (64 bits per entry + 4
bits per frame to record the number of entries).

Area and memory utilization. The area utilization depends pri-
marily on the size of active, spare and cache banks (i.e., the number

3http://www.eembc.org/coremark/faq.php

http://www.eembc.org/coremark/faq.php

of entries per frame). All three banks are mapped to logic to guar-
antee single-cycle access parallel checking of all frame entries. The
area utilization increases linearly as the number of entries con-
figured per frame increases (for a fixed number of frames), since
more entries must be checked in parallel. For a protected memory
size of 8 entries X 16 frames, HardScope utilizes 4,572 LUTs, 1, 760
registers, and one 36 kB block RAM (RAMB36). For a 32 entries X
16 frames configuration (required for the CoreMark performance
evaluation above), HardScope utilizes 30, 520 LUTs, 6, 362 registers,
and one 36 kB block RAM (RAMB36).

6 Related Work

Various software-only and hardware-assisted memory safety tech-
nologies have been proposed and/or deployed (e.g., [2-6, 8, 11, 13,
17-19, 24, 25]). We discuss approaches that aim to mitigate data-
oriented attacks in detail in the extended version of this article [22].

Software-only defenses (e.g. DFI [6] and SoftBound [20]) can
offer strong security guarantees, but their usefulness is limited
by high performance overhead, and by requiring changes to the
system software architecture. Consequently, the granularity of en-
forcement of deployed defenses are often relaxed in favor of im-
proved performance. Memory-safe dialects of C (e.g., CCured [21],
Cyclone [16], and Checked C [12]) retrofit C with compile- and/or
run-time checks that prevent memory errors from occuring. How-
ever, such dialects only benefit programs which are modified to
make use of enhanced language features, also incur considerable
run-time overhead [16, 21], or preclude certain C features [12].

Hardware-assisted defenses (e.g., BIMA [19], HDFI [27], and
CHERI [28]) promise to drastically improve the performance over-
head compared to software-based defenses. However, recent ad-
vances in attacks against bounds-checking approaches [14] sug-
gest that low-fat pointer schemes which enforce allocation bounds
rather than object bounds, such as BIMA [19] are exploitable. On
the other hand approaches that track object bounds in separate
storage, e.g., Intel MPX [23], HardBound [11], are not faster nor
more memory effient than sofware-based approaches. Hardware-
assisted tagged memory allow efficient enforcement of memoru
access policies, but unlike HardScope only support a small number
of simultaneour protection domains (e.g. two domains in HDFI [27]).
CHERI [28] is a hardware-assisted capability model that can support
various protection models, but requires program re-engineering.

Run-time attestation schemes [1, 9, 10, 29] can only detect, but
not prevent, control-flow and non-control-data attacks.

Although HardScope shares many of the same goals as the above
schemes, it differs in several fundamental aspects. Compared to
software-based schemes (e.g., DFI [6] and SoftBound [20]), Hard-
Scope has significantly lower overhead, does not require whole-
program static analysis, and can enforce context-specific policies
for individual function invocations. HardScope RSE policies can be
instantiated for a large class of programs without additional input
from developers (cf., YARRA [24]), or software re-engineering (cf.,
CHERI). HardScope reduces the metadata needed at execution time
to the rules for active execution contexts. Active rules are cached
in on-chip memory, to enable access checks with no overhead.

7 Conclusion

By implementing and evaluating HardScope, we demonstrated that
RSE is an effective approach to protect against data-oriented attacks.
HardScope can also enforce memory isolation at coarser or finer
granularity, to enable different memory protection strategies.

We provide 1) our enhanced GCC compiler; 2) instrumented
binaries of our test programs; and 3) a RISC-V simulator with
support for HardScope instructions at https://goo.gl/TAjLxy.

Acknowledgments

This work was supported by the German Science Foundation CRC
1119 CROSSING projects S2 and P3, the German Federal Ministry
of Education and Research (BMBF) within CRISP, the EU’s Hori-
zon 2020 research and innovation program under grant nr. 643964
(SUPERCLOUD), Business Finland under grant nr. 3881/31/2016
(CloSer), Academy of Finland under grant nr. 309994 (SELIoT), and
the Intel Collaborative Research Institute for Collaborative Au-
tonomous & Resilient Systems (ICRI-CARS).

References

—

1] Tigist Abera et al. 2016. C-FLAT: Control-Flow Attestation for Embedded Systems
Software. In Proc. ACM CCS ’16. 743-754.
[2] Periklis Akritidis et al. 2008. Preventing Memory Error Exploits with WIT. In
Proc. IEEE S&P "08. 263-2717.
[3] Sandeep Bhatkar and R. Sekar. 2008. Data Space Randomization. In Proc. DIMWA
’08. 1-22.
[4] Cristian Cadar et al. 2008. Data Randomization. Technical Report MSR-TR-2008-
120. Microsoft Research.
[5] Miguel Castro et al. 2009. Fast Byte-granularity Software Fault Isolation. In Proc.
ACM SOSP ’09. 45-58.
[6] Miguel Castro, Manuel Costa, and Tim Harris. 2006. Securing Software by
Enforcing Data-flow Integrity. In Proc. USENIX OSDI "06. 147-160.
[7] Shuo Chen et al. 2005. Non-control-data Attacks Are Realistic Threats. In Proc.
USENIX Security "05. 12-12.
[8] Long Cheng, Ke Tian, and Danfeng (Daphne) Yao. 2017. Orpheus: Enforcing
Cyber-Physical Execution Semantics to Defend Against Data-Oriented Attacks.
In Proc. ACM ACSAC ’17. 315-326.
[9] Ghada Dessouky et al. 2017. LO-FAT: Low-Overhead Control Flow ATtestation
in Hardware. In Proc. ACM/EDAC/IEEE DAC ’17. 24:1-24:6.
[10] GhadaDessouky et al. 2018. LiteHAX: Lightweight Hardware-assisted Attestation
of Program Execution. In ICCAD ’18.
[11] Joe Devietti et al. 2008. Hardbound: Architectural Support for Spatial Safety of
the C Programming Language. In Proc. ACM ASPLOS *08. 103-114.
Archibald Samuel Elliott et al. 2018. Checked C: Making C Safe by Extension. In
Proc. IEEE SecDev ’18. 53-60.
Ulfar Erlingsson et al. 2006. XFI: Software Guards for System Address Spaces. In
Proc. USENIX OSDI "06. 75-88.
Ronald Gil, Hamed Okhravi, and Howard E. Shrobe. 2018. There’s a Hole in the
Bottom of the C: On the Effectiveness of Allocation Protection. In Proc. IEEE
SecDev °18. 102-109.
[15] Hong Hu et al. 2016. Data-Oriented Programming: On the Expressiveness of
Non-control Data Attacks. In Proc. IEEE S&P °16. 969-986.
[16] Trevor Jim et al. 2002. Cyclone: A Safe Dialect of C. In Proc. USENIX ATC "02.
275-288.
Dmitrii Kuvaiskii et al. 2017. SGXBOUNDS: Memory Safety for Shielded Execu-
tion. In Proc. ACM EuroSys °17. 205-221.
Volodymyr Kuznetsov et al. 2014. Code-pointer Integrity. In Proc. USENIX OSDI
’14. 147-163.
[19] Albert Kwon et al. 2013. Low-fat Pointers: Compact Encoding and Efficient
Gate-level Implementation of Fat Pointers for Spatial Safety and Capability-based
Security. In Proc. ACM CCS ’13. 721-732.
Santosh Nagarakatte et al. 2009. SoftBound: Highly Compatible and Complete
Spatial Memory Safety for C. In Proc. ACM PLDI "09. 245-258.
George C. Necula, Scott McPeak, and Westley Weimer. 2002. CCured: Type-safe
Retrofitting of Legacy Code. In Proc. ACM POPL ’02. 128-139.
Thomas Nyman et al. 2017. HardScope: Thwarting DOP with Hardware-assisted
Run-time Scope Enforcement. https://arxiv.org/abs/1705.10295
Oleksii Oleksenko et al. 2017. Intel MPX Explained: An Empirical Study of Intel
MPX and Software-based Bounds Checking Approaches. https://arxiv.org/abs/
1702.00719.

==
)

=
it

=
=

oy
&

™
=

[21

[22

[23

https://goo.gl/TAjLxy
https://arxiv.org/abs/1705.10295
https://arxiv.org/abs/1702.00719
https://arxiv.org/abs/1702.00719

[24] C.Schlesinger et al. 2011. Modular Protections against Non-control Data Attacks. [27] C. Song et al. 2016. HDFI: Hardware-Assisted Data-Flow Isolation. In Proc. IEEE

In Proc. IEEE CSF °11. 131-145. S&P ’16.1-17.

[25] Konstantin Serebryany et al. 2012. AddressSanitizer: A Fast Address Sanity [28] Jonathan Woodruff et al. 2014. The CHERI Capability Model: Revisiting RISC in
Checker. In USENIX ATC °12. 309-318. an Age of Risk. In Proc. IEEE ISCA °14. 457-468.

[26] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return- [29] Shaza Zeitouni et al. 2017. ATRIUM: Runtime Attestation Resilient Under Memory
into-libc Without Function Calls (on the x86). In Proc. ACM CCS *07. 552-561. Attacks.. In ICCAD ’17.

