' Aalto University

Verma, Vikas; Lamb, Alex; Beckham, Christopher; Najafi, Amir; Mitliagkas, loannis; Lopez-
Paz, David; Bengio, Yoshua

Manifold Mixup: Better Representations by Interpolating Hidden States

Published in:
Proceedings of the 36th International Conference on Machine Learning

Published: 01/01/2019

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:

Verma, V., Lamb, A., Beckham, C., Najafi, A., Mitliagkas, I., Lopez-Paz, D., & Bengio, Y. (2019). Manifold Mixup:
Better Representations by Interpolating Hidden States. In Proceedings of the 36th International Conference on
Machine Learning (Proceedings of Machine Learning Research; Vol. 97). IMLR.
http://proceedings.mlr.press/v97/vermal9a.html

This material is protected by colpyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by ?/ou for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other tuhse: Elgctronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.


http://proceedings.mlr.press/v97/verma19a.html

Manifold Mixup: Better Representations by Interpolating Hidden States
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Abstract

Deep neural networks excel at learning the train-
ing data, but often provide incorrect and confident
predictions when evaluated on slightly different
test examples. This includes distribution shifts,
outliers, and adversarial examples. To address
these issues, we propose Manifold Mixup, a sim-
ple regularizer that encourages neural networks to
predict less confidently on interpolations of hid-
den representations. Manifold Mixup leverages se-
mantic interpolations as additional training signal,
obtaining neural networks with smoother decision
boundaries at multiple levels of representation. As
a result, neural networks trained with Manifold
Mixup learn flatter class-representations, that is,
with fewer directions of variance. We prove the-
ory on why this flattening happens under ideal
conditions, validate it empirically on practical sit-
uations, and connect it to the previous works on
information theory and generalization. In spite
of incurring no significant computation and be-
ing implemented in a few lines of code, Manifold
Mixup improves strong baselines in supervised
learning, robustness to single-step adversarial at-
tacks, and test log-likelihood.

1. Introduction

Deep neural networks are the backbone of state-of-the-art
systems for computer vision, speech recognition, and lan-
guage translation (LeCun et al. [2015). However, these
systems perform well only when evaluated on instances
very similar to those from the training set. When evaluated
on slightly different distributions, neural networks often pro-
vide incorrect predictions with strikingly high confidence.
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This is a worrying prospect, since deep learning systems
are being deployed in settings where data may be subject to
distributional shifts. Adversarial examples (Szegedy et al.,
2014) are one such failure case: deep neural networks with
nearly perfect performance provide incorrect predictions
with very high confidence when evaluated on perturbations
imperceptible to the human eye. Adversarial examples are a
serious hazard when deploying machine learning systems
in security-sensitive applications. More generally, deep
learning systems quickly degrade in performance as the dis-
tributions of training and testing data differ slightly from
each other (Ben-David et al.| 2010).

In this paper, we realize several troubling properties con-
cerning the hidden representations and decision boundaries
of state-of-the-art neural networks. First, we observe that
the decision boundary is often sharp and close to the data.
Second, we observe that the vast majority of the hidden
representation space corresponds to high confidence predic-
tions, both on and off of the data manifold.

Motivated by these intuitions we propose Manifold Mixup
(Section 2, a simple regularizer that addresses several of
these flaws by training neural networks on linear combina-
tions of hidden representations of training examples. Pre-
vious work, including the study of analogies through word
embeddings (e.g. king — man + woman ~ queen), has
shown that interpolations are an effective way of combining
factors (Mikolov et al.l 2013). Since high-level representa-
tions are often low-dimensional and useful to linear classi-
fiers, linear interpolations of hidden representations should
explore meaningful regions of the feature space effectively.
To use combinations of hidden representations of data as
novel training signal, we also perform the same linear inter-
polation in the associated pair of one-hot labels, leading to
mixed examples with soft targets.

To start off with the right intuitions, Figure [I]illustrates the
impact of Manifold Mixup on a simple two-dimensional
classification task with small data. In this example, vanilla
training of a deep neural network leads to an irregular deci-
sion boundary (Figure[Tp), and a complex arrangement of
hidden representations (Figure[T[d). Moreover, every point in
both the raw (Figure[Th) and hidden (Figure[I{d) data repre-
sentations is assigned a prediction with very high confidence.
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Figure 1: An experiment on a network trained on the 2D spiral dataset with a 2D bottleneck hidden state in the middle of
the network. Manifold mixup has three effects on learning when compared to vanilla training. First, it smoothens decision
boundaries (from a. to b.). Second, it improves the arrangement of hidden representations and encourages broader regions of
low-confidence predictions (from d. to e.). Black dots are the hidden representation of the inputs sampled uniformly from
the range of the input space. Third, it flattens the representations (c. at layer 1, f. at layer 3). Figure 2] shows that these
effects are not accomplished by other well-studied regularizers (input mixup, weight decay, dropout, batch normalization,

and adding noise to the hidden representations).

This includes points (depicted in black) that correspond to
inputs from off of the data manifold! In contrast, training
the same deep neural network with Manifold Mixup leads
to a smoother decision boundary (Figure[Ip) and a simpler
(linear) arrangement of hidden representations (Figure [Tk).
In sum, the representations obtained by Manifold Mixup
have two desirable properties: the class-representations are
flattened into a minimal amount of directions of variation,
and all points in-between these flat representations, most
unobserved during training and off the data manifold, are
assigned low-confidence predictions. This example conveys
the central message of this paper:

Manifold mixup improves the hidden representations and
decision boundaries of neural networks at multiple layers.

More specifically, Manifold Mixup improves generalization
in deep neural networks because it:

e Leads to smoother decision boundaries that are fur-
ther away from the training data, at multiple levels

of representation. Smoothness and margin are well-

established factors of generalization (Bartlett & Shawe;
[taylor, [T998}; [Lee et al| [1995).

e Leverages interpolations in deeper hidden layers,

which capture higher level information (Zeiler & Fer
2013) to provide additional training signal.

o Flattens the class-representations, reducing their num-
ber of directions with significant variance (Section[3).
This can be seen as a form of compression, which is
linked to generalization by a well-established theory
(Tishby & Zaslavskyl, 2015}, [Shwartz-Ziv & Tishbyl,

Throughout a wide variety of experiments, we demonstrate
four substantial benefits of Manifold Mixup:

e Better generalization than other competitive regular-
izers (such as Cutout, Mixup, AdaMix, and Dropout)

(Section[5).
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Figure 2: The same experimental setup as Figure but using a variety of competitive regularizers. This shows that the
effect of concentrating the hidden states for each class and providing a broad region of low confidence between the regions
is not accomplished by the other regularizers (although input space mixup does produce regions of low confidence, it does
not flatten the class-specific state distribution). Noise refers to gaussian noise in the input layer, dropout refers to dropout
of 50% in all layers except the bottleneck itself (due to its low dimensionality), and batch normalization refers to batch

normalization in all layers.

e Improved log-likelihood on test samples (Section [5.1).

e Increased performance at predicting data subject to
novel deformations (Section[5.2)).

e Improved robustness to single-step adversarial attacks.
This is evidence Manifold Mixup pushes the decision
boundary away from the data in some directions (Sec-
tion[5.3). This is not to be confused with full adversar-
ial robustness, which is defined in terms of moving the
decision boundary away from the data in all directions.

2. Manifold Mixup

Consider training a deep neural network f(z) = fx(gr(z)),
where gj, denotes the part of the neural network mapping
the input data to the hidden representation at layer &, and f
denotes the part mapping such hidden representation to the
output f(x). Training f using Manifold Mixup is performed
in five steps. First, we select a random layer % from a set of
eligible layers S in the neural network. This set may include
the input layer go(z). Second, we process two random data
minibatches (z,y) and (', y’) as usual, until reaching layer
k. This provides us with two intermediate minibatches
(gx(x),y) and (gx(x’),y’). Third, we perform Input Mixup
on these intermediate minibatches. This

produces the mixed minibatch:

(gka ?j) = (MiX)\ (gk ($)7 9k (xl))a Mix (y) y/))a

where Mixy(a,b) = XA -a+ (1 — \) - b. Here, (y,y’) are
one-hot labels, and the mixing coefficient A ~ Beta(c, a)
as proposed in mixup (Zhang et al [2018)). For instance,

a = 1.0 is equivalent to sampling A ~ U (0, 1). Fourth, we
continue the forward pass in the network from layer £ until
the output using the mixed minibatch (g, 7). Fifth, this
output is used to compute the loss value and gradients that
update the parameters of the neural network.

Mathematically, Manifold Mixup minimizes:

L(f)= E E E E 1
(f) (z,y)~P (z',y')~P A~Beta(a,a) k~S M

O(fr(Mixy (g (2), ge (")), Mixx(y, y')).

Some implementation considerations. We backpropagate
gradients through the entire computational graph, includ-
ing those layers before the mixup layer & (Section[5.1]and
appendix Section [B|explore this issue in more detail). In
the case where S = {0}, Manifold Mixup reduces to the
original mixup algorithm of Zhang et al.|(2018). While one
could try to reduce the variance of the gradient updates by
sampling a random (k, \) per example, we opted for the
simpler alternative of sampling a single (k, \) per minibatch,
which in practice gives the same performance. As in Input
Mixup, we use a single minibatch to compute the mixed
minibatch. We do so by mixing the minibatch with copy of
itself with shuffled rows.

3. Manifold Mixup Flattens Representations

We turn to the study of how Manifold Mixup impacts the
hidden representations of a deep neural network. At a high
level, Manifold Mixup flattens the class-specific representa-
tions. More specifically, this flattening reduces the number
of directions with significant variance (akin to reducing their
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Figure 3: We show a simple case with two classes (interpolations depicted as grey lines) illustrating why Manifold Mixup
learns flatter representations. The interpolation between A1 and B2 in the left panel soft-labels the black dot as 50% red and
50% blue, regardless of being very close to a blue point. In the middle panel a different interpolation between A2 and B1
soft-labels the same point as 95% blue and 5% red. However, since Manifold Mixup learns the hidden representations, the
pressure to predict consistent soft-labels at interpolated points causes the states to become flattened (right panel).

number of principal components).

In the sequel, we first prove a theory (Section [3.1) that char-
acterizes this behavior precisely under idealized conditions.
Second, we show that this flattening also happens in practice,
by performing the SVD of class-specific representations
of neural networks trained on real datasets (Section [3.2).
Finally, we discuss why the flattening of class-specific rep-
resentations is a desirable property (Section[3.3)).

3.1. Theory

We start by characterizing how the representations of a
neural network are changed by Manifold Mixup, under a
simplifying set of assumptions. More concretely, we will
show that if one performs mixup in a sufficiently deep hid-
den layer in a neural network, then the loss can be driven to
zero if the dimensionality of that hidden layer dim (#) is
greater than the number of classes d. As a consequence of
this, the resulting representations for that class will fall onto
a subspace of dimension dim (%) —d + 1.

A more intuitive and less formal version of this argument is
given in Figure [3]and Appendix

To this end, assume that X and H denote the input and
representation spaces, respectively. We denote the label-set
by Yandlet Z =X x ). LetG C H?X denote the set of
functions realizable by the neural network, from the input
to the representation. Similarly, let 7 C Y™ be the set
of all functions realizable by the neural network, from the
representation to the output.

We are interested in the solution of the following problem
in some asymptotic regimes:

J(P)= inf )

= E

9EG,FEF (2,y),(2',y'),A

£(f (Mixx(g(z), g(2))), Mix(y, ))-
More specifically, let Pp be the empirical distribution de-

fined by a dataset D = {(z;,y;)}" ;. Then, let f* € F
and g* € G be the minimizers of () for P = Pp. Assume

the number of layers are asymptotically increased, which
results in G — H*Y, F — Y*, with H{ being a vector
space. These is a direct consequence of the universal ap-
proximation theorem (Cybenko} [1989), which states that
the mappings realizable by large neural networks are dense
in the set of all continuous bounded functions. Under this
setting, the objective (2) can be rewritten as:

n

1
ha b €H 11 (n—1) ; {1}161]:

1#]

J(Pp) = 3)

/0 L(f Mixx (hi, hj)), Mixa (i, y;5)) p()\)d)\} ,

where h; = g(x;). We now propose our main theorem,
which establishes sufficient conditions for Manifold Mixup
to achieve zero training error.

Theorem 1. Let H be a space with dimension dim (), and
let d € N to represent the number of classes in a dataset D.
Ifdim (H) > d—1, then J(Pp) = 0 and the corresponding
minimizer f* is a linear function from H to R

Proof. First, we observe that the following statement is true
if dim (H) > d—1:

JA H e RIMFOXd b e RE:ATH 4 b1) = Iz04,

where ;4 and 1, denote the d-dimensional identity matrix
and all-one vector, respectively. In fact, bl; is a rank-one
matrix, while the rank of identity matrix is d. Therefore,
AT H only needs to be rank d — 1.

Let f*(h) = ATh +bforall h € H. Let g*(x;) = H, .
be the (;-th column of H, where ¢; € {1, ..., d} stands for
the class-index of the example x;. These choices minimize
our objective to zero, since:

£(f*(Mixx (g™ (), 9% (5))), Mixa(yi, y5)) =
O(ATMixy (He, ;, He, ) + b, Mixa(yic,, ¥jc,) =
L(u,u) = 0.

The result follows from AT He, . +b =y, ¢, foralli. O
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Furthermore, if dim (#) > d — 1, then data points in the
representation space H have some degrees of freedom to
move independently.

Corollary 1. Consider the setting in Theorem |I| with
dim (H) > d — 1. Let g* € G minimize @) under P = Pp.
Then, the representations of the training points g* (x;) fall
on a (dim (H) — d + 1)-dimensional subspace.

Proof. From the proof of Theorem ATH = Igyq —b1).
The r.h.s. of this expression is a rank-(d — 1) matrix for
a properly chosen b. Thus, A can have a null-space of
dimension dim (H) — d + 1. This way, one can assign
g*(z;) = He, . + e;, where H, . is defined as in the proof
of Theorem [I] and e; are arbitrary vectors in the null-space
of A, foralli =1,...,n. O

This result implies that if the Manifold Mixup loss is min-
imized, then the representation of each class lies on a sub-
space of dimension dim () — d + 1. In the extreme case
where dim (#) = d — 1, each class representation will col-
lapse to a single point, meaning that hidden representations
would not change in any direction, for each class-conditional
manifold. In the more general case with larger dim (#), the
majority of directions in H-space will contain zero variance
in the class-conditional manifold.

3.2. Empirical Investigation of Flattening

We now show that the “flattening” theory that we have
just developed also holds in practice, for real neural net-
works networks trained on real data. To this end, we
trained a collection of fully-connected neural networks on
the MNIST dataset using multiple regularizers, including
Manifold Mixup. When using Manifold Mixup, we mixed
representations at a single, fixed hidden layer per network.
After training, we performed the Singular Value Decompo-
sition (SVD) of the hidden representations of each network,
and analyzed their spectrum decay.

More specifically, we computed the largest singular value
per class, as well as the sum of the all other singular values.
We computed these statistics at the first hidden layer for all
networks and regularizers. For the largest singular value,
we obtained: 51.73 (baseline), 33.76 (weight decay), 28.83
(dropout), 33.46 (input mixup), and 31.65 (manifold mixup).
For the sum of all the other singular values, we obtained:
78.67 (baseline), 73.36 (weight decay), 77.47 (dropout),
66.89 (input mixup), and 40.98 (manifold mixup). There-
fore, weight decay, dropout, and input mixup all reduce the
largest singular value, but only Manifold Mixup achieves a
reduction of the sum of the all other singular values (e.g. flat-
tening). For more details regarding this experiment, consult

Appendix [G|

3.3. Why is Flattening Representations Desirable?

We have presented evidence to conclude that Manifold
Mixup leads to flatter class-specific representations, and that
such flattening is not accomplished by other regularizers.

But why is this flattening desirable? First, it means that the
hidden representations computed from our data occupy a
much smaller volume. Thus, a randomly sampled hidden
representation within the convex hull spanned by the data
in this space is more likely to have a classification score
with lower confidence (higher entropy). Second, compres-
sion has been linked to generalization in the information
theory literature (Tishby & Zaslavsky, 2015; [Shwartz-Ziv &
Tishbyl 2017).

4. Related Work

Regularization is a major area of research in machine learn-
ing. Manifold Mixup is a generalization of Input Mixup,
the idea of building random interpolations between training
examples and perform the same interpolation for their labels
(Zhang et al., 2018}; Tokozume et al., 2018).

Intriguingly, our experiments show that Manifold Mixup
changes the representations associated to the layers before
and after the mixing operation, and that this effect is crucial
to achieve good results (Section[5.1] Appendix[G). This sug-
gests that Manifold Mixup may work for different reasons
than Input Mixup.

Another line of research closely related to Manifold Mixup
involves regularizing deep networks by perturbing their hid-
den representations. These methods include dropout (Hinton
et al.,[2012)), batch normalization (Ioffe & Szegedyl 2015)),
and the information bottleneck (Alemi et al.,2017). Notably,
(Hinton et al.| 2012)) and (loffe & Szegedy, [2015) demon-
strated that regularizers that work well in the input space
can also be applied to the hidden layers of a deep network,
often to further improve results. We believe that Manifold
Mixup is a complimentary form of regularization.

/hao & Chol(2018) explored improving adversarial robust-
ness by classifying points using a function of the nearest
neighbors in a fixed feature space. This involves applying
mixup between each set of nearest neighbor examples in that
feature space. The similarity between (Zhao & Chol 2018)
and Manifold Mixup is that both consider linear interpola-
tions of hidden representations with the same interpolation
applied to their labels. However, an important difference
is that Manifold Mixup backpropagates gradients through
the earlier parts of the network (the layers before the point
where mixup is applied), unlike (Zhao & Chol|2018). In Sec-
tion 3] we explain how this discrepancy significantly affects
the learning process.

AdaMix (Guo et al.,[2018al) is another related method which
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attempts to learn better mixing distributions to avoid overlap.
AdaMix performs interpolations only on the input space,
reporting that their method degrades significantly when ap-
plied to hidden layers. Thus, AdaMix may likely work for
different reasons than Manifold Mixup, and perhaps the two
are complementary. AgrLearn (Guo et al., 2018b) adds
an information bottleneck layer to the output of deep neu-
ral networks. AgrLearn leads to substantial improvements,
achieving 2.45% test error on CIFAR-10 when combined
with Input Mixup (Zhang et al., [2018). As AgrLearn is
complimentary to Input Mixup, it may be also complimen-
tary to Manifold Mixup. |Wang et al.| (2018)) proposed an
interpolation exclusively in the output space, does not back-
propagate through the interpolation procedure, and has a
very different framing in terms of the Euler-Lagrange equa-
tion (Equation 2) where the cost is based on unlabeled data
(and the pseudolabels at those points) and the labeled data
provide constraints.

5. Experiments

We now turn to the empirical evaluation of Manifold Mixup.
We will study its regularization properties in supervised
learning (Section , as well as how it affects the robust-
ness of neural networks to novel input deformations (Sec-
tion[5.2), and adversarial examples (Section[5.3).

5.1. Generalization on Supervised Learning

We train a variety of residual networks (He et al., |[2016)
using different regularizers: no regularization, AdaMix, In-
put Mixup, and Manifold Mixup. We follow the training
procedure of (Zhang et al.|, |2018)), which is to use SGD with
momentum, a weight decay of 10~%, and a step-wise learn-
ing rate decay. Please refer to Appendix [C]for further details
(including the values of the hyperparameter o). We show
results for the CIFAR-10 (Table[Ta), CIFAR-100 (Table[Tb),
SVHN (Table [2)), and TinyImageNET (Table [3) datasets.
Manifold Mixup outperforms vanilla training, AdaMix, and
Input Mixup across datasets and model architectures. Fur-
thermore, Manifold Mixup leads to models with significantly
better Negative Log-Likelihood (NLL) on the test data. In
the case of CIFAR-10, Manifold Mixup models achieve as
high as 50% relative improvement of test NLL.

As a complimentary experiment to better understand why
Manifold Mixup works, we zeroed gradient updates immedi-
ately after the layer where mixup is applied. On the dataset
CIFAR-10 and using a PreActResNet18, this led to a 4.33%
test error, which is worse than our results for Input Mixup
and Manifold Mixup, yet better than the baseline. Because
Manifold Mixup select the mixing layer at random, each
layer is still being trained even when zeroing gradients,
although it will receive less updates. This demonstrates
that Manifold Mixup improves performance by updating the

layers both before and after the mixing operation.

We also compared Manifold Mixup against other strong
regularizers. For each regularizer, we selected the best
hyper-parameters using a validation set. Then, training a
PreActResNet50 on CIFAR-10 for 600 epochs led to the
following test errors (%): no regularization (4.96 &+ 0.19),
Dropout (5.09 £ 0.09), Cutout (Devries & Taylor, [2017))
(4.77 £ 0.38), Mixup (4.25 £ 0.11), and Manifold Mixup
(3.77 + 0.18). (Note that the results in Table [T for PreAc-
tResNet were run for 1200 epochs, and therefore are not
directly comparable to the numbers in this paragraph.)

To provide further evidence about the quality of representa-
tions learned with Manifold Mixup, we applied a k-nearest
neighbour classifier on top of the features extracted from a
PreActResNet18 trained on CIFAR-10. We achieved test
errors of 6.09% (vanilla training), 5.54% (Input Mixup), and
5.16% (Manifold Mixup).

Finally, we considered a synthetic dataset where the data
generating process is a known function of disentangled fac-
tors of variation, and mixed in this space factors. As shown
in Appendix [A] this led to significant improvements in per-
formance. This suggests that mixing in the correct level of
representation has a positive impact on the decision bound-
ary. However, our purpose here is not to make any claim
about when do deep networks learn representations corre-
sponding to disentangled factors of variation.

Finally, Table[]and Table[6|show the sensitivity of Manifold
Mixup to the hyper-parameter « and the set of eligible layers
S. (These results are based on training a PreActResNet18
for 2000 epochs, so these numbers are not exactly compara-
ble to the ones in Table[I]) This shows that Manifold Mixup
is robust with respect to choice of hyper-parameters, with
improvements for many choices.

5.2. Generalization to Novel Deformations

To further evaluate the quality of representations learned
with Manifold Mixup, we train PreActResNet34 models
on the normal CIFAR-100 training split, but test them on
novel (not seen during training) deformations of the test
split. These deformations include random rotations, random
shearings, and different rescalings. Better representations
should generalize to a larger variety of deformations. Ta-
ble [5] shows that networks trained using Manifold Mixup
are the most able to classify test instances subject to novel
deformations, which suggests the learning of better repre-
sentations. For more results see Appendix [C] Table[9]

5.3. Robustness to Adversarial Examples

Adpversarial robustness is related to the position of the deci-
sion boundary relative to the data. Because Manifold Mixup
only considers some directions around data points (those
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Table 1: Classification errors on (a) CIFAR-10 and (b) CIFAR-100. We include results from (Zhang et al.,[2018)T and (Guo
et al.,2016)1. We run experiments five times to report the mean and the standard deviation of errors and neg-log-likelihoods.

PreActResNet18 Test Error (%) Test NLL PreActResNet18 Test Error (%) Test NLL
No Mixup 4.83+0.066 0.190+£0.003  No Mixup 24.01 £0.376  1.189 4+ 0.002
AdaMix{ 3.52 NA  AdaMix} 20.97 n/a
Input Mixupt 4.20 NA  Input Mixupf 21.10 n/a
Input Mixup (o = 1) 3.82£0.048 0.186+0.004  Input Mixup (o = 1) 22.11 +£0.424 1.055 %+ 0.006
Manifold Mixup (« =2)  2.954+0.046 0.137 £0.003  Manifold Mixup (o =2) 20.34+0.525 0.912 4+ 0.002
PreActResNet34 PreActResNet34

No Mixup 4.644+0.072 0.200 £ 0.002  No Mixup 23.55 +£0.399 1.189 4+ 0.002
Input Mixup (o = 1) 2.88+0.043 0.176 £0.002  Input Mixup (o = 1) 20.53£0.330 1.039 +0.045
Manifold Mixup (a« =2)  2.54+£0.047 0.118 £0.002  Manifold Mixup (o« =2) 18.35£0.360 0.877 + 0.053
Wide-Resnet-28-10 Wide-Resnet-28-10

No Mixup 3.99+0.118 0.162+0.004  No Mixup 21.724+0.117 1.023 + 0.004
Input Mixup (o = 1) 2.924+0.088 0.173 £ 0.001 Input Mixup (o = 1) 18.89 + 0.111  0.927 £+ 0.031
Manifold Mixup (« =2)  2.554+0.024 0.111 +0.001  Manifold Mixup (o« = 2) 18.04 £0.171 0.809 £ 0.005

(a) CIFAR-10

Table 2: Classification errors and neg-log-likelihoods on
SVHN. We run each experiment five times.

(b) CIFAR-100

Table 4: Test accuracy (%) of Input Mixup and Manifold

Mixup for different o on CIFAR-10.

« Input Mixup  Manifold Mixup

PreActResNet18 Test Error (%) Test NLL
No Mixup 2.89£0.224 0.136 £ 0.001
Input Mixup (o = 1) 2.76 £0.014 0.212£0.011
Manifold Mixup (o« = 2) 2.274+0.011 0.122 4+ 0.006
PreActResNet34

No Mixup 2.97+0.004 0.165 £ 0.003
Input Mixup (o = 1) 2.67+0.020 0.199 4+ 0.009
Manifold Mixup (o = 2) 2.18 £0.004 0.137 £ 0.008
Wide-Resnet-28-10

No Mixup 2.80 £0.044 0.143 +0.002
Input Mixup (o = 1) 2.68 £0.103 0.184 £ 0.022
Manifold Mixup (o = 2) 2.06 £ 0.068 0.126 £ 0.008

Table 3: Classification accuracies on Tinylmagenet.

PreActResNet18 top-1  top-5
No Mixup 55.52 71.04
Input Mixup (o = 0.2) 56.47 T71.74
Input Mixup (o = 0.5) 5549 71.62
Input Mixup (o = 1.0) 52.65 70.70
Input Mixup (o = 2.0) 44.18 68.26
Manifold Mixup (o« = 0.2) 58.70 73.59
Manifold Mixup (o« = 0.5) 57.24 73.48
Manifold Mixup (o« = 1.0) 56.83 73.75
Manifold Mixup (o« = 2.0) 48.14 71.69

0.5 96.68 96.76
1.0 96.75 97.00
1.2 96.72 97.03
1.5 96.84 97.10
1.8 96.80 97.15
2.0 96.73 97.23

corresponding to interpolations), we would not expect the
model to be robust to adversarial attacks that consider any
direction around each example. However, since Manifold
Mixup expands the set of examples seen during training, an
intriguing hypothesis is that these expansions overlap with
the set of possible adversarial examples, providing some
degree of defense. If this hypothesis is true, Manifold Mixup
would force adversarial attacks to consider a wider set of
directions, leading to a larger computational expense for the
attacker. To explore this, we consider the Fast Gradient Sign
Method (FGSM, |Goodfellow et al.,2015)), which constructs
adversarial examples in one single step, thus considering a
relatively small subset of directions around examples. The
performance of networks trained using Manifold Mixup
against FGSM attacks is given in Table[7] One challenge
in evaluating robustness against adversarial examples is the
“gradient masking problem”, in which a defense succeeds
only by reducing the quality of the gradient signal. (Athalye
et al.| 2018) explored this issue in depth, and proposed run-
ning an unbounded search for a large number of iterations to
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Table 5: Test accuracy on samples subject to novel deformations. All models were trained on normal CIFAR-100.

Deformation No Mixup Input Mixup (o« = 1) Input Mixup (o« = 2) Manifold Mixup (o = 2)
Rotation U(—20°,20°) 52.96 55.55 56.48 60.08
Rotation U(—40°,40°) 33.82 37.73 36.78 42.13
Shearing U(—28.6°, 28.6°) 55.92 58.16 60.01 62.85
Shearing U(—57.3°, 57.3°) 35.66 39.34 39.7 44.27
Zoom In (60% rescale) 12.68 13.75 13.12 11.49
Zoom In (80% rescale) 47.95 52.18 50.47 52.70
Zoom Out (120% rescale) 43.18 60.02 61.62 63.59
Zoom Out (140% rescale) 19.34 41.81 42.02 45.29

Table 6: Test accuracy (%) of Manifold Mixup for different
sets of eligible layers S on CIFAR-10/CIFAR-100.

S CIFAR-10 CIFAR-100
{0,1,2} 97.23 79.60
{0,1} 96.94 78.93
{0,1,2,3} 96.92 80.18
{1,2} 96.35 78.69
{0} 96.73 78.15
{1,2,3} 96.51 79.31
{1} 96.10 78.72
{2,3} 95.32 76.46
{2} 95.19 76.50
0 95.27 76.40

Table 7: Test accuracy on white-box FGSM adversarial ex-
amples on CIFAR-10/CIFAR-100 (using a PreActResNet18
model) and SVHN (using a WideResNet20-10 model). We
include the results of (Madry et al.;, 2018)7.

CIFAR-10 FGSM
No Mixup 36.32
Input Mixup (o = 1) 71.51
Manifold Mixup (o = 2) 77.50
PGD training (7-steps)t  56.10
CIFAR-100 FGSM
Input Mixup (o = 1) 40.7
Manifold Mixup (o« = 2) 44.96
SVHN FGSM
No Mixup 21.49
Input Mixup (o = 1) 56.98
Manifold Mixup (o« = 2) 6591
PGD training (7-steps)t  72.80

confirm the quality of the gradient signal. Manifold Mixup
passes this sanity check (consult Appendix [D]for further de-
tails). While we found that using Manifold Mixup improves
the robustness to single-step FGSM attack (especially over
Input Mixup), we found that Manifold Mixup did not sig-
nificantly improve robustness against stronger, multi-step
attacks such as PGD (Madry et al., 2018)).

6. Conclusion

Deep neural networks often give incorrect, yet extremely
confident predictions on examples that differ from those
seen during training. This problem is one of the most cen-
tral challenges in deep learning. We have investigated this
issue from the perspective of the representations learned
by deep neural networks. We observed that vanilla neural
networks spread the training data widely throughout the
representation space, and assign high confidence predic-
tions to almost the entire volume of representations. This
leads to major drawbacks since the network will provide
high-confidence predictions to examples off the data mani-
fold, thus lacking enough incentives to learn discriminative
representations about the training data. To address these
issues, we introduced Manifold Mixup, a new algorithm to
train neural networks on interpolations of hidden represen-
tations. Manifold Mixup encourages the neural network to
be uncertain across the volume of the representation space
unseen during training. This leads to concentrating the
representations of the real training examples in a low dimen-
sional subspace, resulting in more discriminative features.
Throughout a variety of experiments, we have shown that
neural networks trained using Manifold Mixup have bet-
ter generalization in terms of error and log-likelihood, as
well as better robustness to novel deformations of the data
and adversarial examples. Being easy to implement and
incurring little additional computational cost, we hope that
Manifold Mixup will become a useful regularization tool for
deep learning practitioners.
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