Du, Luojun; Zhang, Qian; Zhang, Tingting; Jia, Zhiyan; Liang, Jing; Liu, Gui Bin; Yang, Rong; Shi, Dongxia; Xiang, Jianyong; Liu, Kaibei; Sun, Zhipei; Yao, Yugui; Zhang, Qingming; Zhang, Guangyu

Robust circular polarization of indirect Q-K transitions in bilayer 3R-W S2

Published in:
Physical Review B

DOI:
10.1103/PhysRevB.100.161404

Published: 23/10/2019

Please cite the original version:
Robust circular polarization of indirect Q-K transitions in bilayer 3R-WS₂

Luojun Du, Qian Zhang, Tingting Zhang, Zhiyan Jia, Jing Liang, Gui-Bin Liu, Rong Yang, Dongxia Shi, Jianyong Xiang, Kaibi Liu, Zhipei Sun, Yuguang Yao, Qingming Zhang, and Guangyu Zhang

1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2Department of Physics, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
3State Key Laboratory for Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066044, China
4State Key Laboratory for Mesoscopic Physics, Collaborative Innovation, Center of Quantum Matter, School of Physics, Peking University, Beijing, China
5QTF Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076, Finland
6State Key Laboratory for Mesoscopic Physics, Collaborative Innovation, Center of Quantum Matter, School of Physics, Peking University, Beijing, China
7Department of Physics, Renmin University of China, Beijing 100872, China
8School of Physics, University of Science and Technology of China, Hefei 230026, China
9School of Physics and Technology, Lanzhou University, Lanzhou 730000, China
10School of Physics, Peking University, Beijing, China

(Received 28 June 2019; revised manuscript received 9 October 2019; published 23 October 2019)

Valley-contrasting Berry curvature and orbital magnetic moment have led to highly selective circular polarization of direct excitons at the K valleys in transition-metal dichalcogenides. In addition to K valleys, Q valleys, another critical point in the conduction band, also possess well-defined but distinct magnetic moment. Being akin to the direct excitons at K valleys, indirect excitons associated with Q (K) valleys in the conduction (valence) band could allow circular polarization in principle. Here, we report an experimental observation of the circular polarization of indirect Q-K transitions in noncentrosymmetric bilayer 3R-WS₂. In stark contrast to the circular polarization of direct excitons which depolarizes with increasing lattice temperature, the circular polarization of indirect Q-K excitons is extremely robust and independent on the temperature. Such robust circular polarization can be understood as follows: the spin-orbit coupling in the Q valley is much stronger than that in the K point of the conduction band, significantly suppressing the temperature induced valley depolarization. Our results open up opportunities for exotic valleytronics and quantum information processing applications.

DOI: 10.1103/PhysRevB.100.161404
CP of direct excitons [17,30–38]. Thus, the CP of the indirect Q-K transitions in 2H stacked bilayer TMDCs cannot be acquired [33–35].

In addition to 2H stacking, TMDCs have another crystal structure, i.e., 3R stacking [37,39–41]. Compared with 2H stacking, the critical points are the same in 3R stacking since the strengths of interlayer interaction between the two stacking structures are almost equal to each other [29,42]. Strikingly, the inversion symmetry is explicitly broken in 3R stacked bilayer TMDCs [40,41], giving rise to valley-contrasting Berry curvature and orbital magnetic moment [10,19,43]. As a consequence, tungsten-based bilayer TMDCs with 3R stacking phase offer an unprecedented platform to demonstrate the CP of indirect Q-K transitions. Here, we demonstrate the CP of indirect Q-K transitions in 3R stacked bilayer WS$_2$. In striking contrast to the monotone decrease of CP for direct excitons or the absence of CP for indirect Q-Γ transitions, the indirect Q-Γ transitions harbor robust temperature-independent CP, which would be fundamentally important in searching for valleytronics and chiral light-emitting transistor applications.

We first performed density-functional theory (DFT) calculations (see details in the Supplemental Material [44]) to investigate the thickness-driven evolution of electronic structures and the essential difference between 3R and 2H stacking. Figure 1 presents the results of monolayer, bilayer, and trilayer 3R-WS$_2$. In good agreement with previous works [45,46], our results show that monolayer WS$_2$ possesses a direct gap at K valleys coupled with circularly polarized light [Fig. 1(a)]. Moreover, it can be known that the spin-orbit splitting is 433, 30, and 265 meV for the VB at the K point, and CB at the K and Q points, respectively. Compared with the CB at the K points, the much stronger spin-orbit splitting at the Q points would play a key role in CP, as will be seen below.

By increasing the thickness from monolayer to bilayer or trilayer 3R-WS$_2$, we can see the crossover from direct to indirect [Figs. 1(b) and 1(c)], The CBM changes from K point in monolayer to Q valley in bilayer/trilayer 3R-WS$_2$. Strikingly, a quite distinct VBM between bilayer and trilayer 3R-WS$_2$ can be observed. The VBM is still at K point for bilayer [Fig. 1(b)] while becomes the Γ point in trilayer [Fig. 1(c)]. According to these results, the indirect excitons are Q-K and Q-Γ transitions for bilayer and trilayer 3R-WS$_2$, as illustrated in Figs. 1(b) and 1(c), respectively. Such distinct indirect excitons between bilayer and trilayer 3R-WS$_2$ are further confirmed via temperature-driven evolution of photoluminescence (PL), since distinct critical points harbor different temperature responses (see Supplemental Material for more details [44]). In addition, the Berry curvature of the Γ point is null, thus the indirect Q-Γ transitions in trilayer would show no CP, which can be viewed as a perfect reference.

Since bulk WS$_2$ crystal is usually 2H phase, it is difficult to obtain 3R stacked bilayer WS$_2$ through mechanical exfoliation. Fortunately, the chemical vapor deposition (CVD) method provides an efficient path to obtain 3R stacked TMDCs [42,47]. Here, WS$_2$ layers with 3R stacking are obtained by the CVD process on 90-nm SiO$_2$/Si substrates [48], using sulfur and tungsten trioxide powder as precursors (see Supplemental Material for more details [44]). Figure 2(a) shows the optical micrograph of representative samples with the thickness overlaid. The number of layers is first visually identified by observing their interference color through the optical microscope and further confirmed by PL and Raman spectra. The evolution of PL versus the number of layers is presented in Fig. 2(b). The PL spectrum of monolayer consists of a single narrow feature centered at 1.964 eV with the strongest quantum efficiency, indicating the direct-gap feature [46,48,49]. In marked contrast, PL spectra from bilayer and trilayer flakes display not only direct-gap transitions (higher energy), but also indirect excitons (lower energy). The indirect band gap locates at 1.62 eV (1.54 eV) for bilayer (trilayer), in fair agreement with previous results [46,48,49]. Figure 2(c) presents the Raman spectra excited by 1.96 eV radiation on resonance with the A exciton, which provides a reliable fingerprint to determine the thickness since the out-of-plane A$_{1g}(\Gamma)$ mode of WS$_2$ splits into N components for N layers [48,50]. It can be seen clearly, from the Lorentzian fitting (solid lines), that A$_{1g}(\Gamma)$ mode spectra have one, two, and three components for monolayer, bilayer, and trilayer 3R-WS$_2$, respectively. Strikingly, from the optical micrograph [Fig. 2(a)], it can be known that the crystal orientations of distinct layers in bilayer and trilayer are the same. Thus, we believe that our WS$_2$
FIG. 2. Microscopy and characterization of monolayer, bilayer, and trilayer 3R-WS₂. (a) Optical micrograph of the representative 3R-WS₂ samples. Monolayer, bilayer, and trilayer samples are highlighted by black, red, and blue dashed lines, respectively. Scale bar is 40 μm. (b) PL spectra of monolayer, bilayer, and trilayer 3R-WS₂ at 2.33 eV excitation. (c) Raman spectra of monolayer, bilayer, and trilayer 3R-WS₂ under 1.96 eV excitation, on resonance with the A exciton. Lorentzian fitting of the A₁g(Γ) phonon modes are shown. (d) Layer-dependent SHG spectra of 3R-WS₂ under the excitation wavelength (λₑₓ) of 820 nm.

samples should be 3R phase. In order to verify this, we performed second-harmonic generation (SHG) measurement which is a sensitive probe to the crystalline symmetry [40,41,51]. Figure 2(d) presents the layer-dependent SHG spectra of our WS₂ samples under an excitation wavelength of λₑₓ = 820 nm. The SHG intensity of bilayer (trilayer) is four (nine) times stronger than that of monolayer, unequivocally confirming that our WS₂ samples are 3R stacking [40,41,47,52].

Having obtained the bilayer 3R-WS₂, we then focus on the CP of indirect Q-K transitions associated with Q (K) valleys in CB (VB). Figure 3 presents the polarization-resolved normalized PL spectra (left circularly polarized σ⁺ and right circularly polarized σ⁻) of bilayer [Fig. 3(a)] and trilayer [Fig. 3(b)] 3R-WS₂ at 10 and 300 K, excited by σ⁺ radiation with energy of 2.33 eV. We quantify the magnitude of CP, i.e., the anisotropy of circularly polarized PL, as follows [11,12]:

$$\rho = \frac{I(\sigma^+) - I(\sigma^-)}{I(\sigma^+) + I(\sigma^-)},$$

where I(σ±) is the intensity of the left- (right-) handed circular-polarization component. Being good congruent with previous analysis, the indirect Q-Γ transitions of trilayer 3R-WS₂ are unpolarized at either 10 or 300 K [Fig. 3(b)]. In marked contrast, the indirect Q-K transitions in bilayer 3R-WS₂, in close analogy to the direct A excitons of bilayer and trilayer, hold highly selective CP at both 10 and 300 K. Our results demonstrate the CP of indirect Q-K transitions, which would play a prominent role for exotic optoelectronic applications. More importantly, from the dashed horizontal lines illustrated in Fig. 3(a), it is evident that the normalized intensity of the σ⁻ component for indirect Q-K transitions is larger (smaller) than that for direct A excitons in bilayer 3R-WS₂ at 10 K (300 K). This indicates that the CP of indirect Q-K transitions is weaker than that of direct A excitons in 10 K, but stronger than A excitons at 300 K, demonstrating more robust CP for indirect Q-K transitions at room temperature.

Figure 4 presents the temperature-driven evolution of CP for the direct A and indirect excitons of bilayer and trilayer 3R-WS₂. Within experimental measurement error, the CP of indirect Q-Γ transitions of trilayer 3R-WS₂ is null at all temperatures. In contrast, we can observe highly selective CP for direct A excitons of both bilayer and trilayer, and indirect Q-K transitions in bilayer 3R-WS₂. Interestingly, a distinct temperature response between the direct A excitons and in-
direct Q-K transitions is observed. For the A excitons of both bilayer and trilayer 3R-WS\textsubscript{2}, the CP decreases monotonously with increasing temperature, being consistent with the results of 3R-MoS\textsubscript{2} [37]. In marked contrast, the CP of indirect Q-K transitions in bilayer 3R-WS\textsubscript{2} is independent on the temperature. Such robust CP of indirect Q-K transitions could broaden the CP sources and play a key role for valleytronics [1,7].

Under steady-state circularly polarized light excitation, the magnitude of CP is determined by the exciton lifetime (τ_E) and valley lifetime (τ_V) and can be approximated as $\rho = \frac{\rho_0}{1 + \tau_{2\pi E}/\tau_V}$, where ρ_0 denotes the initially generated polarization component.

FIG. 3. Robust CP of indirect Q-K transitions. σ^+ (blue) and σ^- (red) resolved PL spectra for bilayer 3R-WS\textsubscript{2} (a) and trilayer 3R-WS\textsubscript{2} (b) at 10 K (upper panel) and 300 K (lower panel). The intensities more than (less than) 1.82 eV are normalized by the intensity of the direct (indirect) exciton with σ^+ component.

Under steady-state circularly polarized light excitation, the magnitude of CP is determined by the exciton lifetime (τ_E) and valley lifetime (τ_V) and can be approximated as $\rho = \frac{\rho_0}{1 + \tau_{2\pi E}/\tau_V}$, where ρ_0 denotes the initially generated polarization component.

FIG. 4. The CP of the direct A exciton (black) and the indirect exciton (red) as a function of temperature for bilayer (upper panel) and trilayer (lower panel) 3R-WS\textsubscript{2}. The error bar stems from multiple measurements of at least three samples.

To summarize, our results uncover the CP of indirect Q-K transitions in noncentrosymmetric bilayer 3R-WS\textsubscript{2}. In contrast to the fact that the CP of direct A excitons decreases monotonously with increasing temperature, the indirect Q-K transitions harbor robust and temperature-independent CP. Such robust CP paves a way for prospects in optical control of exotic spintronics and valleytronics applications at room temperature.

G.Z. acknowledges the financial support from NSF of China (Grants No. 11834017 and No. 61888102), the Strategic Priority Research Program of CAS (XDB30000000),
the Key Research Program of Frontier Sciences of CAS (QYZDB-SSW-SSLH004), and the National Key R&D program (2016YFA0300904). Q.Z. acknowledges support from the Ministry of Science and Technology of China (2017YFA0302904 and 2016YFA0300504) and the NSF of China (11774419). Z.S. acknowledges the financial support from Business Finland (A-Photonics), Academy of Finland (Grants No. 276376, No. 284548, No. 286920, No. 295777, No. 298297, No. 304666, No. 312297, No. 312551, and No. 314810), Academy of Finland Flagship Programme (320167, PREIN), the European Union’s Horizon 2020 research and innovation programme (820423, S2QUIP).

[44] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.100.161404, which includes Refs. [9,10,16,18,30,33,36,37,41,48,50,58–75], for details on DFT calculations, the essential difference between the electronic structure of 3R and 2H stacking concerning chemical vapor deposition, Raman measurement, the evolution of photon energy with temperature, valley Zeeman splitting, and photon energy dependent CP.

