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ABSTRACT

Josephson junctions and superconducting quantum interference devices with graphene or other 2D materials as the weak link between super-
conductors have become a hot topic of research in recent years, with respect to both fundamental physics and potential applications. We have
previously reported ultrawide Josephson junctions (up to 80 μm wide) based on chemical-vapor-deposition graphene where the critical current
was found to be uniformly distributed in the direction perpendicular to the current. In this paper, we demonstrate that the unusually large
Josephson penetration depth λJ that this corresponds to is enabled by the unique geometric structure of Josephson junctions based on 2D mate-
rials. We derive a new expression for the Josephson penetration depth of such junctions and verify our assumptions by numerical simulations.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5124391

I. INTRODUCTION

Coplanar Josephson junctions and dc superconducting quantum
interference devices (SQUIDs) based on 2D materials with their criti-
cal current tunable by a local gate voltage have potential applications
in low-noise superconducting electronics,1–17 especially in supercon-
ducting quantum circuits.18–20 With graphene or other 2D materials
as the weak link between two superconducting electrodes, Josephson
junctions and dc SQUIDs can have their I-V characteristics easily
tuned by the gate voltage, thanks to the low density of states in 2D
materials. Recently, we demonstrated Josephson junctions fabricated
using chemical-vapor-deposition (CVD) graphene and niobium
superconducting electrodes.21 The use of CVD rather than mechani-
cally exfoliated graphene enables much more freedom for future
device fabrication such as wafer-scale circuit design, but it also
allowed us to study junctions as wide as 80 μm having easily measure-
able critical currents of order 10 μA at 1 K. We found that the critical
current Ic scaled linearly with the junction width W, and in an
applied magnetic field B, an ideal Fraunhofer-like Ic-vs-B pattern was
visible even for the widest junctions. This indicated that despite the
unusually large junction width, the supercurrent was relatively uni-
formly distributed and, consequently, that the Josephson penetration
depth λJ must be comparable or even larger than this width.

The Josephson penetration depth is a key parameter for
Josephson junctions, playing a similar role to the London penetra-
tion depth λL for bulk superconductors. It arises because a large
Josephson supercurrent can generate significant self-magnetic field,
which affects the distribution of the gauge invariant phase differ-
ence w across the junction and in turn affects the supercurrent dis-
tribution via the first Josephson relation js ¼ jc sinw, where jc is the
critical current density. For conventional low-Tc tunnel junctions
[Fig. 1(a)], the standard text book analysis22–24 leads to a nonlinear
differential equation for w as a function of position x across the
width of the junction of the form d2w=dx2 ¼ (1=λ2J ) sinw with

λJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Φ0

2πμ0jc(Lþ 2λL)

s
, (1)

where Φ0 ; h=2e is the magnetic flux quantum, μ0 is the perme-
ability of free space, and L is the length of the junction (the thick-
ness of the tunnel barrier). As a result, the phase decays from the
edges of the junction toward the center over a length scale λJ ,
which is the Josephson penetration depth. The ratio λJ=W deter-
mines the uniformity of the supercurrent and, hence, whether the
critical current scales linearly with the width. Understanding this
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scaling is an important consideration in practical Josephson-based
circuit design since device behavior is typically determined by the
junction critical current among other parameters, and often it
needs to be achieved fairly precisely.

The derivation of Eq. (1) assumes that the flux in the junction
corresponds only to the geometric inductance and ignores any
kinetic inductance contribution. This assumption is not valid when
the London penetration depth is comparable or larger than the
superconducting electrode thickness, as might typically be the case
for coplanar high-Tc grain boundary junctions [Fig. 1(b)]. In such
junctions, the kinetic inductance contribution typically dominates,
and the Josephson penetration depth has instead been defined as25

λJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ0W

4πμ0jcλ
2
L

s
, (2)

where W is the width of the junction/electrode track.
Neither of the above expressions can be applied though to

coplanar Josephson junctions based on 2D materials with low-Tc
electrodes such as niobium or aluminum [Fig. 1(c)]. The electrodes
are usually thick enough compared to λL (Nb: 37.5 nm; Al: 19 nm)

that the flux is dominated by the geometric inductance rather than
the kinetic inductance, and so Eq. (2) is not applicable. Although
Eq. (1) does correspond to the regime where geometric inductance
dominates, it is not applicable to the coplanar geometry when we
consider the actual current paths in the electrodes. This consider-
ation leads us to introduce a new model yielding a different expres-
sion for the Josephson penetration depth of junctions based on 2D
materials. According to the new expression, the Josephson
penetration depth λJ is proportional to 1=

ffiffi
t

p
, where t is the thick-

ness of the 2D material. For coplanar Josephson junctions based on
2D materials, the Josephson penetration depth predicted by the
new expression is much larger than substituting the same junction
parameters into Eq. (1) or (2). We will also show that the
Josephson penetration depth calculated by the new expression
agrees well with the result of numerical simulation.

II. THEORETICAL ANALYSIS

We consider coplanar Josephson junctions based on 2D materi-
als using one of the two possible alternative geometries shown sche-
matically in Figs. 1(d) and 1(e). These represent limiting cases: in

FIG. 1. Schematic diagrams of different types of Josephson junctions. (a) A conventional tunnel junction. (b) A high-Tc coplanar junction. (c) A coplanar junction based on
2D materials. (d) and (e) Top view of two geometries of Josephson junctions based on 2D materials. In both geometries, the 2D material lies parallel to the plane of the
page, between two thin-film superconducting electrodes. In geometry A, the superconducting electrodes can be regarded as infinitely wide; while in geometry B, the super-
conducting electrodes are of the same width W as the 2D material and extend to infinity in the z-direction. The red lines display the distribution of the supercurrent in the
superconducting electrodes and the 2D material. In the superconducting electrodes, the supercurrent is distributed mainly within the width of the London penetration depth
λL from the edges of the superconductors. The blue arrows indicate the direction of the supercurrent. ①, ②, and ③ indicate the regions of the supercurrent considered indi-
vidually in the main text when calculating the magnetic field generated by the supercurrent.
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geometry A, the width of the superconducting electrodes is much
larger than the width of the 2D material; while in geometry B, the
width of the superconducting electrodes is the same as that of the
2D material. Most of the experiments in the literature adopted geom-
etry A,1,3,6,8,9,12,14,17,18,26,27 while a few of them are better described
by geometry B (or somewhere between geometry A and geometry
B2,4,10,11,13,15,16,19,20). When the superconducting electrodes are
thicker than the London penetration depth λL, the supercurrent
tends to flow in a narrow region within � λL from the edge of the
superconducting electrodes as shown. In the 2D material, the distri-
bution of the supercurrent is more uniform, depending on the
Josephson penetration depth λJ , which is the theme of this paper.

For a sandwich-shaped tunnel junction [Fig. 1(a)] carrying a
Josephson current in the z-direction, the derivation of Eq. (1) starts
from the assumption that the electrodes are thick enough in the
y-direction to exclude the flux from their bulk, and relates the flux
By(Lþ 2λL)dx linking a closed rectangular integration loop in the
barrier region extending λL into each electrode between x and
x + dx, to the change in the gauge invariant phase difference
w(x þ dx)� w(x) between opposite sides of the loop. Further
differentiation leads to

d2w
dx2

¼ � 2π(Lþ 2λL)
Φ0

@By

@x
, (3)

from which Eq. (1) follows by writing @By=@x in terms of the
Josephson current using the 4th Maxwell equation, and assuming
@Bx=@y can be neglected for an such an infinitely thick junction.
Equation (3) is still valid for 2D junctions with either geometry A
or geometry B; however, we cannot find a simple expression for
@By=@x because the thickness of the junction in the y-direction is
now negligible. So instead we consider the supercurrent to flow in

an infinitely thin surface in the xz plane and calculate the magnetic
field at a given point within the junction by integrating the contri-
butions from all parts of the supercurrent. For convenience, we
divide the supercurrent flow into several regions as indicated in
Fig. 1. Region 1 is the flow within the 2D material, along the length
of the junction; region 2 is the flow on the edge of the supercon-
ducting electrodes in direct contact to the 2D material, along the
width of the junction; and region 3 is the flow on other edges of
the superconducting electrodes, parallel or perpendicular to the
length of the junction depending on the geometry considered.
Regions 1 and 2 are the same for both geometries; the only differ-
ence between the two geometries is region 3.

In Sec. I, we mentioned the interrelationship between the distri-
bution of the supercurrent and the distribution of the magnetic field.
On the one hand, the supercurrent generates a contribution to the
total magnetic field; on the other hand, the magnetic field deter-
mines the distribution of the gauge invariant phase difference w that
itself determines the distribution of the supercurrent. Therefore,
Eq. (3) has to be solved self-consistently by some numerical tech-
nique to obtain the actual distribution of supercurrent. However, to
derive an approximate analytical expression for λJ , we make an
assumption that for typical devices, the junction width is likely com-
parable or smaller than the Josephson penetration depth, so that the
supercurrent is approximately uniform, with a supercurrent density
of j2D (per unit width). We will revisit this assumption in Sec. III.
Since the junction length L is much smaller than the junction width
W, we assume that the magnetic field in the 2D material is indepen-
dent of the coordinate z. We first consider the magnetic field By(x)
in the y-direction at a given point x in the 2D material that is gener-
ated by all line elements of region 1. The lengths of the line elements
are taken as Lþ 2λL, which extend into the superconducting elec-
trode by λL on each side. According to the Biot-Savart law,

B1y(x)¼�
ðW=2

�W=2

μ0j2D(Lþ2λL)

4π(x�x0)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x�x0)2þ(Lþ2λL)

2=4
q dx0 ¼μ0j2D

2π
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x�W=2)2þ(Lþ2λL)

2=4
q

(Lþ2λL)=2
�arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xþW=2)2þ(Lþ2λL)

2=4
q

(Lþ2λL)=2

2
4

3
5:
(4)

Secondly, we consider the magnetic field in the y-direction at a given point x in the 2D material that is generated by the supercurrent
in region 2. For simplicity, this is taken to be equivalent to the current flowing in a line at �λL from the superconductor edge [�(L=2þ λL)
from the center of the 2D material]. Again, applying the Biot-Savart law,

B2y(x)¼�
ðW=2

�W=2

μ0j2Dx
0(Lþ 2λL)

4π[(x� x0)2 þ (Lþ 2λL)
2=4]

3=2
dx0 ¼ μ0j2D

π(Lþ 2λL)
x2 �Wx=2þ (Lþ 2λL)

2=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x�W=2)2 þ (Lþ 2λL)

2=4
q � x2 þWx=2þ (Lþ 2λL)

2=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xþW=2)2 þ (Lþ 2λL)

2=4
q

2
64

3
75: (5)

Next, we consider the magnetic field B3ay(x) in the y-direction at a given point x in the 2D material that is generated by the supercurrent
in region 3 in geometry A. This is taken to be flowing at a distance of λL from the superconductor edge, to infinity in the ±x-direction, so

B3ay(x) ¼ � μ0j2DW
2π(Lþ 2λL)

x �W=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x �W=2)2 þ (Lþ 2λL)

2=4
q þ x þW=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(x þW=2)2 þ (Lþ 2λL)
2=4

q
2
64

3
75: (6)
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Similarly, we consider the magnetic field B3by(x) in the y-direction at a given point x in the 2D material that is generated by the super-
current in region 3 in geometry B. This is taken to be flowing on the superconductor edges, to infinity in the ±z-direction, so

B3by(x) ¼ � μ0j2DW
4π

2x
x2 �W2=4

� (Lþ 2λL)=2

(x þW=2)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x þW=2)2 þ (Lþ 2λL)

2=4
q � (Lþ 2λL)=2

(x �W=2)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x �W=2)2 þ (Lþ 2λL)

2=4
q

2
64

3
75: (7)

In geometry A, the total magnetic field in the y-direction in
the 2D material is then B1y þ B2y þ B3ay , whereas in geometry B, it
is B1y þ B2y þ B3by . For a Josephson junction based on 2D materi-
als with Nb as the superconducting electrodes and graphene as the
weak link, we can choose L ¼ 50 nm, W ¼ 80 μm, λL ¼ 37:5 nm,
and a value of critical current j2D ¼ 0:1 A=m corresponding to our
previously fabricated devices.21 Using these parameters, we calcu-
late the variation of B1y , B2y , B3ay , and B3by across the junction, as
shown in Fig. 2(a). For B3by , the model is oversimplified at the
boundaries x ¼ +W=2 (since we have ignored the exact distribu-
tion of the supercurrent in the x- and y-directions as x ! +W=2),
so consequently it predicts B3by ! 1. Except for the narrow
regions within �λL of these boundaries, the total magnetic field in
either geometry is dominated by B2y, which changes almost linearly
with x. However, since λL � W, we may assume that the supercur-
rents in the narrow regions close to the boundaries make negligible
contribution to the total supercurrent of the junction. Therefore,
except for these narrow regions, we can write

@By

@x
� @B2y(x ¼ 0)

@x
¼ � μ0j2D

π(Lþ λL)
Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W2=4þ (Lþ 2λL)
2=4

q
� � 2μ0j2D

π(Lþ 2λL)
: (8)

Substituting this into Eq. (3) gives

d2w
dx2

¼ � 2π(Lþ 2λL)
Φ0

@By

@x
� 4μ0jc,2DW

Φ0
sinw, (9)

where jc,2D is the critical current density per unit width. Similar to
how the conventional Josephson penetration depth is defined in
Eq. (1), we propose that for Josephson junctions based on 2D
materials, the Josephson penetration depth should be

λJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Φ0

4μ0jc,2D

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Φ0

4μ0jct

s
, (10)

where t is the thickness of the 2D material (single or multiple
atomic layer thickness), and jc is the critical current density per
unit cross-sectional area. Comparing Eq. (10) with Eq. (1), we can
see that for conventional tunnel junctions, λJ / 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ 2λL

p
; while

for coplanar Josephson junctions based on 2D materials,
λJ / 1=

ffiffi
t

p
. For coplanar Josephson junctions based on single- or

few-layer 2D materials, t � Lþ 2λL, so the Josephson penetration
depth given by Eq. (10) should be much larger than the value cal-
culated by Eq. (1). Note that Eq. (10) results from the unique struc-
ture of 2D junctions: (i) the 2D material is so thin that the
distribution of supercurrent in the y-direction is considered as a
δ-function; and (ii) the superconducting electrodes are thicker than
the London penetration depth so that the kinetic inductance can be
ignored and Eq. (3) is still valid.

Note that to derive the Josephson penetration depth in
Eq. (10), we assumed a sinusoidal current-phase relation in Eq. (9).
However, for Josephson junctions based on metallic 2D materials
such as graphene, the current-phase relation is usually found to
become skewed as the temperature is lowered,8,9,19 Similar behavior
is well-understood for conventional small metallic weak links in the
framework of the Kulik and Omel’yanchuk’s KO-1 and KO-2
theories for the dirty and clean limits, respectively.28 A skewed

FIG. 2. Variation of the magnetic field
in the y-direction in the 2D material gen-
erated by the supercurrent across the
junction width for parameters given in
the main text. (a) The magnetic field
generated by different regions of the
supercurrent as marked in Fig. 1. B1y is
much smaller than others that it is
hardly visible. (b) The total magnetic
field in geometries A and B. In geometry
A, the total magnetic field is B1y þ B2y
þB3ay ; in geometry B, it is B1y þ B2y
þB3by . In both geometries, the total
magnetic field is dominated by B2y.
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current-phase relation will, compared with a sinusoidal current-
phase relation, change the distribution of supercurrent slightly;
however, it will not change the scale of the Josephson penetration
depth, as we will show by simulation in Sec. III. Therefore, the
Josephson penetration depth given by Eq. (10) is still valid for junc-
tions with a skewed current-phase relation.

For a Josephson junction based on monolayer graphene,
t ¼ 0:3 nm. So for a critical current density jc,2D ¼ 0:1 A=m, the
Josephson penetration depth predicted by Eq. (10) is 63 μm.
However, if we use the conventional expression, Eq. (1), the
Josephson penetration depth is only 2.4 μm. Consequently, Eq. (10)
better matches the length scale implied by the experimental results
in Ref. 21.

III. NUMERICAL SIMULATIONS

To obtain an analytical expression of the Josephson penetra-
tion depth in Sec. II, we assumed that the junction width is smaller
than the Josephson penetration depth so that the supercurrent is
still almost uniformly distributed across the width of the junction.
Another assumption we made is that the singularities in d2w=dx2

at the boundaries of the junction have negligible effect on the dis-
tribution of the supercurrent. In this section, we validate these two
assumptions by finding numerical solutions to the equations we
discussed in Sec. II.

To avoid the first assumption in the numerical simulations, we
use an iterative process to numerically solve

dw
dx

¼ � 2π(Lþ 2λL)
Φ0

(Bext þ Bsc), (11)

where Bext is the external magnetic field and Bsc is the magnetic
field generated by the supercurrent calculated in the same way as in
Sec. II. In such a way, we consider the interrelation between the dis-
tribution of the supercurrent and the distribution of the magnetic
field self-consistently.

To avoid the second assumption in the numerical simulation,
the step size along the width of the junction is chosen to be much
smaller than the London penetration depth λL, so that we can
make sure that the effect of the supercurrent on the edges of the
junction is taken into consideration.

We numerically simulated junctions with different widths
from 40 μm to 200 μm using the same junction parameters as in
Sec. II. We first consider the case without an external magnetic
field and assume a sinusoidal current-phase relation. The distribu-
tions of the gauge invariant phase difference w and of the supercur-
rent density j2D across the width of the junction are plotted in
Figs. 3(a) and 3(b). As can be seen in Fig. 3(a), the critical current
(maximum of the supercurrent) is reached when w is distributed as
close to π=2 as possible. When the junction width is smaller than
or comparable with the Josephson penetration depth [which is
63 μm according to Eq. (10)], the deviation of w from π=2 is rela-
tively small; as the junction width becomes larger than the
Josephson penetration depth, the deviation of w from π=2 becomes
more and more significant. The supercurrent density is related to w
by the first Josephson relation and plotted in Fig. 3(b). When the
junction width is smaller than or comparable to the Josephson

penetration depth, the supercurrent density is almost uniform and
close to the critical current density; as the junction width becomes
larger than the Josephson penetration depth, the supercurrent
becomes less and less uniform and shows two peaks in the distribu-
tion. We have simulated the distributions of w and j2D for both
geometries A and B, and there is hardly any noticeable difference
in the distributions. The distribution of the supercurrent density in
Fig. 3(b) indicates that as the junction width increases the critical
current of the whole junction does not scale linearly with the junc-
tion width like Ic ¼ j2DW . As shown in Fig. 3(c), the critical
current reaches its maximum when the junction width is about five
times the Josephson penetration depth predicted by Eq. (10).

We next consider the case of a skewed current-phase relation.
The current-phase relation of graphene-based junctions has been
studied theoretically by several authors taking into account the par-
ticular band structure of graphene.9,29,30 For simplicity though, just
to illustrate the effect of a strong degree of skewness on our predic-
tions, we consider the case of a ballistic Nb-graphene-Nb junction
following the conventional KO-2 theory,

j2D / sin (w=2) tanh
Δ cos (w=2)

2kBT

� �
, (12)

where Δ is the energy gap of the electrodes, and T is the tempera-
ture that we take as 0.3 K corresponding to our previous experi-
ments in Ref. 21. With a skewed current-phase relation, we
perform a simulation similar to the above. The distributions of the
gauge invariant phase difference w and of the supercurrent density
j2D across the width of the junction are plotted in Figs. 3(d) and 3(e).
Compared with Figs. 3(a) and 3(b), the distributions of w and j2D
are both slightly distorted. However, the trends that w and j2D
become less uniform as the junction width increases are similar to
those in Figs. 3(a) and 3(b). Furthermore, the relation between the
critical current of the junction and the junction width [Fig. 3(f)] is
similar to that in Fig. 3(c), indicating that the Josephson penetra-
tion depth we predicted is still valid for a skewed current-phase
relation. In Fig. 3(f ), we also display the critical currents and the
corresponding junction widths in our previous experiments,
showing the junctions we fabricated were not quite wide enough to
be show the effect of the Josephson penetration depth.

We further consider the distribution of the critical current
under an external magnetic field. For simplicity in the simulation,
we only consider the case of a sinusoidal current-phase relation.
For Josephson junctions of finite widths but much narrower than
the Josephson penetration depth, the critical current Ic will show
an ideal Fraunhofer-like pattern under an external magnetic field
due to self-interference. In the simulation, we assume that the
external magnetic field is evenly distributed across the effective area
of the junction, Aeff ¼ (Lþ 2λL)W. In Fig. 4, we plot the simulated
critical current vs the magnetic flux inside the effective area,
Φ ¼ BAeff , for junctions with different widths in geometries A
and B. For both geometries, when the junction width is smaller
than, or comparable to, the Josephson penetration depth given by
Eq. (10), the interference pattern is quite similar to an ideal
Fraunhofer-like pattern. When the junction width much exceeds
the Josephson penetration depth, the interference pattern becomes
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distorted from an ideal Fraunhofer-like pattern in the following
three ways: (i) the maximum critical current at zero external mag-
netic field becomes significantly smaller than the critical current
density times the junction width, as shown in Fig. 3(c); (ii) the
first few minima of the critical current on both sides of the
central peak do not reach zero, which means the supercurrent

components within the junction no longer cancel with each other
under those magnetic fields; and (iii) there appear some small
peaks near the first few minima of the critical current. Although
the numerical simulation here cannot tell us the exact value of the
Josephson penetration depth, it does show that the Josephson
penetration depth predicted by Eq. (10) is in the right order of

FIG. 3. The simulated distributions of (a) the gauge invariant phase difference w and (b) the supercurrent density j2D across the width of the junction for junctions with dif-
ferent widths, when there is no external magnetic field and when the critical current is reached, assuming a sinusoidal relation between j2D and w. (c) The critical current
vs the junction width, assuming a sinusoidal relation between j2D and w. Similar distributions of w and j2D are shown in (d) and (e), respectively, assuming a skewed (non-
sinusoidal) relation between j2D and w as given by Eq. (12). (f ) The critical current vs the junction width, assuming a skewed (nonsinusoidal) relation between j2D and w
as given by Eq. (12). We also display in (f ) the data points obtained from our previous experiments in Ref. 21. The curves shown in (a), (b), (d), and (e) are for geometry
A; however, there is hardly any noticeable difference for geometry B. In both (c) and (f ), as the junction width exceeds the Josephson penetration depth, the critical
current does not increase linearly with the junction width.

FIG. 4. The simulated self-interference
pattern in an external perpendicular
magnetic field for junctions with differ-
ent widths. (a) Geometry A. (b)
Geometry B. As the junction width
becomes larger than the Josephson
penetration depth λJ ¼ 63 μm, the
ideal Fraunhofer-like pattern becomes
more and more distorted. The curves
are offset along the vertical axis by
steps of 0.2 for clarity.
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magnitude and confirm the validity of the two assumptions in the
derivation of the Josephson penetration depth for junctions based
on 2D materials.

IV. CONCLUSION

In conclusion, we have proposed a new expression for the
Josephson penetration depth of coplanar junctions based on 2D
materials. The Josephson penetration depth is a crucial parameter
for designing such junctions, since it sets the limit of where the
critical current scales with the junction width. We have shown that
the Josephson penetration depth of this sort of junction is propor-
tional to 1=

ffiffi
t

p
and is around tens of micrometers for typical

Josephson junctions based on graphene, much wider than most
conventional tunnel junctions. That means even for junctions as
wide as tens of micrometers, the supercurrent is relatively uni-
formly distributed across the width of the junctions. Such ultrawide
and uniform junctions could allow us to fabricate multiple local
gates across the width of a single junction, with their positions and
shapes engineered so that we can arbitrarily control the local criti-
cal current density, thus controlling the total critical current and
even realizing novel self-interference patterns within a single junc-
tion under an external magnetic field.
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