
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Kadiri, Sudarsana; Prasad, Ravi Shankar; Yegnanarayana, Bayya
Detection of glottal closure instant and glottal open region from speech signals using spectral
flatness measure

Published in:
Speech Communication

DOI:
10.1016/j.specom.2019.11.004

Published: 01/01/2020

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Published under the following license:
CC BY-NC-ND

Please cite the original version:
Kadiri, S., Prasad, R. S., & Yegnanarayana, B. (2020). Detection of glottal closure instant and glottal open
region from speech signals using spectral flatness measure. Speech Communication, 116, 30-43.
https://doi.org/10.1016/j.specom.2019.11.004

https://doi.org/10.1016/j.specom.2019.11.004
https://doi.org/10.1016/j.specom.2019.11.004


Detection of glottal closure instant and glottal open region from
speech signals using spectral flatness measure

Sudarsana Reddy Kadiri1∗, RaviShankar Prasad2 , B. Yegnanarayana3

1Department of Signal Processing and Acoustics, Aalto University, Finland.
2Speech and Audio Processing Group, IDIAP, Martigny, Switzerland.

3Speech Processing Laboratory, IIIT-Hyderabad, India.

Abstract

This paper proposes an approach using spectral flatness measure to detect the glottal closure instant
(GCI) and the glottal open region (GOR) within each glottal cycle in voiced speech. The spectral
flatness measure is derived from the instantaneous spectra obtained in the analysis of speech using
single frequency filtering (SFF) and zero time windowing (ZTW) methods. The Hilbert envelope
of the numerator of group delay (HNGD) spectrum at each instant of time is obtained using the
ZTW method. The HNGD spectrum highlights the important (like resonances) spectral character-
istics of the vocal tract system at each instant of time. The dynamic characteristics of the vocal
tract system can be tracked by the spectral flatness feature of the HNGD spectrum, thus bringing
out the characteristics of the vocal tract system when the subglottal region is coupled with the
supraglottal region during the open phase of the glottal cycle. The SFF spectra at each instant
change significantly at the location of the GCI. The GCIs can be detected using the changes in the
spectral flatness information derived from the SFF spectra. The proposed methods of detection of
GCI and GOR is compared with several existing methods.

Key words: Speech analysis; Excitation source; Glottal closure instants; Glottal open region;
Single frequency filtering; Zero time windowing.

1. Introduction

During speech production, the major type of excitation is due to glottal vibration at the larynx.
The airflow from the lungs is intercepted by the normally closed vocal folds, which are held
together by the tension on the vocal folds. For sufficiently high pressure from the lungs, the
tension is insufficient to hold the vocal folds together, and hence they are forced to open, releasing
the air through the supraglottal vocal tract system. Just after the pressure is released, the vocal
folds tend to close abruptly, thereby causing an impulse-like excitation of the vocal tract system.
The opening and closing of the vocal folds take place in a quasi-periodic manner. The nature and
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frequency of vibrations depend on several factors, such as the mass and tension on the membranes
of the vocal folds, besides the pressure difference on either side of the vocal folds. The objective
of this paper is to study the effect of coupling during glottal vibration on the response of the vocal
tract system.

Study of features of the glottal vibration by high speed photography may help to identify the
contribution of different parts of the glottis during the vibration of the vocal folds [1, 2, 3, 4]. But
it is not possible to collect such data during normal speech production, where the vocal tract sys-
tem is also time varying. Moreover, some of the visible features of the glottal vibration may not
contribute significantly for production or perception of speech sounds. Measurements such as elec-
troglottograph (EGG) will bring out only some specific characteristics, such as impedance across
the folds during opening and closing phases in each glottal cycle [5, 6, 7]. The high impedance (or
low conductance) values in the EGG signal indicate the open phase (less contact area between the
vocal folds), and the low impedance (or high conductance) values indicate the closed phase (more
contact area between the vocal folds). The open and closed phases are preceded by their onsets
which are attributed to the glottal opening and glottal closing instants, respectively. A schematic
description of the EGG signals during one glottal cycle is shown in Fig. 1. Within a glottal cycle,
the EGG signal can be described by four distinct phases [8], namely, closing, closed, opening and
open phases as follows:
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Figure 1: Illustration of one glottal cycle as seen on an EGG signal in (a) and a DEGG signal in (b). Here, t1-t3:
closing phase, t3-t4: closed phase, t4-t6: opening phase, and t6-t1: open phase.

Closing phase (t1-t3): In this phase, contacting of the vocal folds starts at the lower margins (t1

to t2), then moves to the upper margins (t2 to t3). In general, closing is faster than opening and the
instant of maximum slope occurs at t2, which can be seen as a strong negative peak (impulse-like
behavior) in the differenced EGG (DEGG) signal (see Fig. 1(b)).

Closed phase (t3-t4): In this phase, the vocal folds are in full contact, hence passage of air
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through the glottis is very less.
Opening phase (t4-t6): In this phase, the lower margins of the vocal folds slowly start to sep-

arate from each other (t4 to t5), followed by separation along the upper margins (t5 to t6). The
instant of maximum slope occurs at t5, which can be seen as the positive peak in the DEGG signal
(see Fig. 1(b)).

Open phase (t6-t1): In this phase, the vocal folds are apart. There is little variation in the
impedance resulting in a relatively flat region signal in the EGG (see Fig. 1(a)).

The physiological correlates of the peaks observed in the DEGG signal, i.e., negative peak
at t2 and positive peak at t5, are interpreted as glottal closure instant (GCI) and glottal opening
instant (GOI), respectively. These instants serve as the reference/ground truth for evaluating the
GCIs/GOIs derived from the speech signal. In general, the glottal opening is relatively a slower
phenomenon, and hence does not exhibit any impulse-like behavior in the DEGG signal. Hence,
the glottal opening cannot be interpreted as an instant property. However, sometimes a weak
impulse-like behavior with opposite polarity is seen between two successive GCIs in the DEGG
signal, and it is attributed to the glottal opening instant (GOI) [8]. The definitions of different
phases of the glottal activity vary in the case of pathological voices [8], where the presence of
mucus strand bridge affects the EGG signal and also the glottal flow waveform derived from the
speech signal. It is to be noted that the EGG signal does not give any information about the
acoustic pressure variations or the glottal width [9].

Studies on glottal activity features focus mainly on extracting the GCIs from the speech sig-
nal, as it is difficult to extract the GOIs due to their relatively weaker presence [10]. Methods for
detecting the GCIs rely mostly on the linear prediction (LP) residual of the speech signal, assum-
ing that the prediction is low at the GCIs [11]. Refinements were proposed to improve the GCI
detection from the LP residual [12, 13, 14]. In general the inverse filtering in the LP analysis does
not cancel out the effects of the vocal tract resonances completely in the LP residual.

Methods for detecting the GOI rely mostly on the identification of the GCI initially, and then
a suitable duration is marked for the open phase (fixed value or certain ratio with respect to the
period of the glottal cycle). Detection of the GOI is needed for closed phase LP analysis, and also
for analysis of pathological speech due to its dependence on the knowledge of the open quotient
[15, 16]. Detection of GOI is a challenging task, as there is no universally agreed definition of GOI
[17]. Three main definitions of GOI are reported in [17]. The first one defines GOI as the instant
at the end of the closed phase where an increased residual error is obtained in the LP analysis
[17, 18]. This definition is used for closed phase covariance LP analysis. In the second definition,
the GOI is masked at the location of the maximum value of the differenced EGG (DEGG) signal,
that corresponds to the maximum rate of change of the glottal conductivity, and not the air flow
[5, 8]. This definition is used to assess the open quotient in pathological voices [15, 16]. In the
third definition, the GOI is identified with the point at which the amplitude of the EGG waveform
is equal to a percentage of the maximum value within a glottal cycle [19]. Each of these definitions
is limited to specific studies of interest. Actually GCI and GOI are not point properties, but are
regions of finite duration within a glottal cycle, although the closing phase is usually sharp enough
to be considered as occurring at an instant [5, 20]. The opening phase of the glottis being more
gradual, it may be possible to assign only a region for the open phase within a glottal cycle.

Methods for detection of GCI/GOI include changes in the spectra [21], changes in signal en-
3



ergy, Hilbert envelope of LP residual [22], Frobenius norm [23], eigen value decomposition of
Hankel matrix [24, 25, 26], time-order representation based on short-time Fourier-Bessel series
[26], phase flatness [27, 28, 29] and group delay function [30]. With the observation that the dis-
continuities in a signal are manifested as local maxima across multiple wavelet scales, the lines of
maximum amplitude (LoMA) algorithm identifies singularities in a signal [31]. In [17, 32, 33],
the multiscale product of the decomposed wavelet signals has been shown to be effective for
GCI/GOI detection from EGG and speech signals. The yet another GCI/GOI algorithm (YAGA)
[17] uses wavelet transform, group delay, glottal flow waveform and dynamic programming. An-
other method uses a mean-based signal and LP residual to detect GCIs/GOIs [13].

Estimation of the glottal source waveform by glottal inverse filtering (GIF) involves filtering
the speech signal with the inverse of the estimate of the vocal tract transfer function [34, 35]. The
vocal tract system is considered stationary during the analysis frame (20 − 30 ms), which is not
the case in each glottal cycle [36]. To overcome this problem, iterative adaptive inverse filtering
(IAIF) was proposed in [37]. Variants of the IAIF such as weighted linear prediction (WLP),
stabilized weighted linear prediction (SWLP), and quasi-closed phase weighted linear prediction
(QCP-WLP) are proposed in [38, 39]. A second approach for inverse filtering uses joint source-
filter optimization for capturing the vocal tract and glottal source components [40, 41]. In this,
models like Liljencrants-Fant (LF) model [42, 43] and Rosenberg-Klatt (RK) model [34, 44] of
the glottal source are used. A third approach is based on mixed-phase model and combination of
causal (minimum phase) and anti-causal (maximum phase) components of speech. The complex
cepstrum decomposition (CCD) and zeros of the z-transform (ZZT) techniques are two different
methods which fall under this category [45, 46]. In these, the vocal tract impulse response and the
glottal return phase are considered as causal signals, and the open phase of the glottal flow signal
is considered as an anti-causal signal. Even though the accuracy of the GIF methods is difficult
to quantify, several studies conclude that the glottal source estimates tend to become unreliable in
the analysis of certain types of voice such as high pitched and expressive voices [14, 36]. As of
now, the existing GIF methods are limited mostly to analysis of sustained sounds [34].

It is important to note that most of the methods for estimating the glottal source information
from speech do not address the issue of coupling of the subglottal cavity with supraglottal cavity
[21, 47]. The coupling effects have been studied using either acoustic tube or vocal fold mechanics
models [48, 49, 50]. Also these studies focussed mostly on the effect of coupling on the vowel
formants or on the acoustic response of the supraglottal vocal tract. Moreover, the discrete Fourier
transform (DFT) used on short segments of speech smears the effects of coupling due to averaging
effect of the response of the vocal tract in the window of analysis.

It is obvious that different glottal phases within the period of a glottal cycle affect the resulting
speech signal differently. The impulse-like excitation due to glottal closure produces speech as
the response of the supraglottal vocal tract system. The strong excitation at the GCI is generally
observed in the residual signal. Also, the spectrum due to the impulse at the GCI (if it can be
computed) should appear more flat than at the other regions. When the vocal folds are open,
speech is the response of the subglottal system coupled with the supraglottal system. As opening
of the vocal folds is gradual in nature, it is difficult to determine its influence on the response of
the vocal tract system. However, when the vocal folds are completely open, the subglottal system
is coupled to the supraglottal system, and the resultant vocal tract has different dimensions in
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comparison with the vocal tract dimensions in the closed phase region. Thus the effect of opening
on the response of the vocal tract system is likely to be different at different instants in the open
region. When the opening is too small, then there may be some increase in the bandwidth of the
first formant of the supraglottal vocal tract system. On the other hand, if the opening is large the
effective vocal tract length will be large due to coupling, and hence low frequency resonances
appear along with increase in the bandwidth of other resonances. This may also result in flat
spectrum in the response of the vocal tract system.

Response of the vocal tract system is generally examined using the spectral characteristics
derived from the speech signal. Some attempts were made to exploit the changes in the spectral
characteristics for determining the events in the glottal cycle, especially the GCIs from the speech
signal. In [21], the abrupt changes in the short-time spectral characteristics are estimated using
auto-regressive (AR) models. To detect the abrupt change from open to closed regions at the GCI,
two statistical methods (likelihood ratio and divergence between short-term probability distribu-
tion function (PDF) and long-term PDF) were used [21]. In these cases, the spectrum is estimated
using lower order AR models to improve the temporal resolution. But lower order AR model gives
smoothed spectral envelope, thus reducing the discrimination between open and closed regions.
Moreover, an AR model tries to fit the spectrum of the entire windowed segment, and thereby
capturing only the overall short-time spectrum characteristics. Recently in [47], the magnitude
spectral properties of the time domain impulse are used for detecting the GCIs, as the effect of the
time domain impulse is spread across all the frequencies resulting in a flatter spectrum. In [31],
wavelet transform has been used to highlight the discontinuities in voiced speech for different
time-scales.

In this paper, we intend to study the effect of glottal closure and glottal opening on the coupling
of the vocal tract system within a glottal cycle in order to determine the GCI and glottal open region
(GOR). We focus on GOR instead of GOI, as it is difficult to define GOI precisely. It is to be noted
that the present study attempts to interpret these features in terms of changes in the vocal tract
system, rather than the changes in the excitation characteristics. We attempt to determine the GCI
and GOR by exploiting the changes in the spectral characteristics derived from single frequency
filtering (SFF) [51] and zero time windowing (ZTW) [52] methods, respectively. We exploit the
distinctive features that the GCI is reflected prominently in the excitation component of the signal,
and the GOR is reflected through the changes in vocal tract system characteristics due to coupling
of the subglottal system.

The key contributions of the present study are as follows:

• A new approach for determination of GCI and GOR from speech signals is proposed using
the changes in the spectral characteristics within a glottal cycle using two signal processing
methods, namely, ZTW and SFF.

• The spectral flatness parameter derived from the SFF spectra highlights the impulse-like
characteristics at the GCI.

• The spectral flatness derived from the ZTW spectra highlights the glottal opening, as there
are significant changes in the effective vocal tract length in the GOR.
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• The proposed method of GCI detection is compared with several existing methods in clean
speech and telephone quality speech scenarios. The results of the proposed method is com-
parable to the existing methods in clean speech and better in telephone quality speech.

• The proposed method of GOR detection is shown to be comparable with the existing meth-
ods.

The organization of the paper is as follows: Section 2 briefly describes the ZTW and SFF
methods for processing signals. Derivation of glottal source features from the ZTW and SFF is
discussed in Section 3. Effect of analysis parameters in these methods is discussed in Section 4.
Section 5 gives the methods for detection of GCI and GOR from speech signals. The results of the
proposed methods in comparison with the existing methods are discussed in Section 6. Finally,
Section 7 gives a summary of the study.

2. SFF and ZTW methods

Two recently proposed signal processing methods are used in this study to determine the GCI
and GOR in each cycle of glottal activity. A brief description of these two methods is given in this
section.

2.1. Single frequency filtering (SFF) method
In the SFF method, the amplitude envelope of the speech signal is obtained at any desired

frequency by frequency shifting the signal and filtering the signal using a single-pole filter. The
following are the steps involved in obtaining the amplitude envelope of the signal at the kth desired
frequency ( fk Hz) [47, 51].

(a) The speech signal s[n] is differenced to remove low frequency variations.

x[n] = s[n] − s[n − 1]. (1)

(b) The signal x[n] is multiplied with a complex exponential (e jω̄kn), where ω̄k = π−ωk = π− 2π fk
fs

.
The resulting frequency-shifted signal is given by

xk[n] = x[n]e jω̄kn. (2)

The Fourier transform of the frequency-shifted signal is given by Xk(ω) = X(ω − ω̄k), where
Xk(ω) and X(ω) are the Fourier transforms of xk[n] and x[n], respectively.

(c) The signal xk[n] is passed through a single-pole filter whose transfer function is given by

H(z) =
1

1 + rz−1 . (3)

The output of the filter yk[n] is given by

yk[n] = −ryk[n − 1] + xk[n], (4)
6



Figure 2: Schematic block diagram of computations in the SFF method.

where r ≈ 1 for a root close to the unit circle. Here yk[n] = ykr[n] + jyki[n], where ykr[n] and
yki[n] are the real and imaginary parts of yk[n], respectively.

(d) The amplitude envelope vk[n] of the signal is given by

vk[n] =
√

ykr[n]2 + yki[n]2. (5)

To ensure stability of the filter, the value of r is chosen slightly less than 1. The amplitude en-
velopes of the signal can be obtained for several frequencies, at interval of ∆ f . That is

fk = k∆ f , k = 1, 2, . . . ,K, (6)

where K =
( fs/2)

∆ f .
The computational steps involved in the SFF method are shown in the schematic block diagram

in Fig. 2.
An illustration of the 3-D view of the SFF spectra (computed using r = 0.995) for a complete

glottal cycle in a voiced speech segment is shown in Fig. 3. The SFF spectra show the harmonics
due to periodic impulse-like excitation. The spectral changes within a glottal cycle are not evident
due to the harmonic structure in each of the SFF spectra. The spectral changes within a glottal
cycle can be seen from the SFF spectrogram shown in Fig. 4. Fig. 4(b) shows the SFF spectrogram
of the voiced speech segment shown in Fig. 4(a), and the corresponding DEGG signal is shown
in Fig. 4(c). The SFF spectrum is flatter around the instants of glottal closure, which can be
highlighted using a spectral flatness measure as discussed in Section 3.

2.2. Zero time windowing (ZTW) method
In this method the instantaneous spectral characteristics of the time varying vocal tract response

is captured. The speech signal is multiplied with a heavily decaying window at each instant, so
that the samples at the beginning of the window are given more emphasis, and hence the name
zero time windowing (ZTW). Group delay analysis of the windowed signal gives good spectral
resolution. The method thus gives high temporal resolution, maintaining simultaneously good
spectral resolution. The use of a heavily decaying window function is equivalent to integration in
the frequency domain, analogous to the zero frequency filtering (ZFF) method in the time domain
[53]. The hidden spectral features are highlighted by successively differencing the numerator of
the group delay (NGD) function. Hilbert envelope (HE) of the differenced NGD function brings
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Figure 3: Illustration of 3-D view of SFF spectra for a complete glottal cycle, starting from glottal open region. The
significant change that occurs near GCI (around 5 ms) is not clearly visible in this spectra, due to harmonic structure
of the spectra. But the change around GCI can be seen clearly in the spectral flatness contour computed from SFF
spectra.
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Figure 4: An illustration of the SFF spectrogram for a voiced speech segment. (a) A segment of voiced speech. (b)
SFF spectrogram. (c) DEGG signal.
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out even the weaker resonances as discussed in [52]. The resulting spectrum is referred to as the
HNGD spectrum. The following are the steps involved in extracting the instantaneous spectral
characteristics using the ZTW method [52].

(a) The speech signal (s[n]) is pre-emphasized to reduce the effects of low frequency variations.

(b) Consider a speech segment of L ms (number of samples: M = L ∗ fs/1000) at each instant,
where fs is the sampling frequency. That is, s[n] is defined for n = 0, 1, . . . ,M − 1.

(c) Multiply the segment with a window w2
1[n], where

w1[n] = 0, n = 0,

=
1

4sin2(πn/2N)
, n = 1, 2, . . . ,N − 1. (7)

Here N is the number of samples used for DFT computation, and N >> M. Multiplying s[n]
with the window w2

1[n] is approximately equivalent to four times integration in the frequency
domain [52].

(d) Truncation of the signal in the time domain at the instant n = M − 1, may result in a ripple
effect in the frequency domain. The ripple effect is reduced by using another window w2[n],
which is square of half cosine window. That is

w2[n] = 2(1 + cos(π n/M)) = 4 cos2(πn/2M), n = 0, 1, . . . ,M − 1. (8)

(e) The NGD function (g[k]) of the windowed signal (i.e., x[n] = w2
1[n]w2[n]s[n]) is given by

g[k] = XR[k]YR[k] + XI[k]YI[k], k = 0, 1, 2, . . . ,N − 1. (9)

where XR[k] and XI[k] are the real and imaginary parts of the N-point DFT X[k] of x[n], and
YR[k] and YI[k] are the real and imaginary parts of the N-point DFT Y[k] of y[n] = nx[n].

(f) The NGD function is double differenced to highlight the spectral peaks corresponding to reso-
nances of the vocal tract. Hilbert envelope of the double differenced NGD is called the HNGD
spectrum, denoted by S n[k].

The computational steps involved in the ZTW method are shown in the schematic block dia-
gram in Fig. 5.

An illustration of the 3-dimensional (3-D) view of the HNGD spectra (computed for L = 4 ms)
for a complete glottal cycle in a voiced speech segment is shown in Fig. 6. The spectral peaks in
the HNGD spectrum correspond mostly to the resonances of vocal tract system. The initial part
corresponds to the spectra in the open phase region and the later (more uniform) part corresponds
to the spectra in the closed phase region. The spectral changes within a glottal cycle can be ob-
served from the HNGD spectrogram over several glottal cycles, as illustrated in Fig. 7. Fig. 7(b)
shows the HNGD spectrogram for the voiced speech segment shown in Fig. 7(a). The correspond-
ing DEGG signal is shown in Fig. 7(c). The negative peaks in the DEGG signal correspond to the
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Figure 5: Schematic block diagram of computations in the ZTW method.
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Figure 6: Illustration of 3-D view of HNGD spectra for a complete glottal cycle, starting from glottal open region.
The effect of the initial glottal open region on the HNGD spectrum can be seen clearly in comparison with the HNGD
spectra in the glottal closed region.
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Figure 7: An illustration of the HNGD spectrogram for a voiced speech segment. (a) A segment of voiced speech. (b)
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GCIs. We know that the effective length of the vocal tract system is shorter in the closed phase
region and longer in the open phase region. The spectral energy is distributed more uniformly in
the open phase region, compared to that in the closed phase region. A spectral flatness measure
highlights this feature better as discussed in the next section.

3. Glottal activity information from SFF and HNGD Spectra

At each instant the spectrum is normalized by dividing the values with their sum across the
frequency, so that the spectral sum at each instant is equal to 1. The normalized SFF spectrum
v̂k[n] and HNGD spectrum Ŝ n[k] are given in Eqn. (10) and Eqn. (11), respectively.

v̂k[n] =
vk[n]

K∑
k=1

vk[n]
, k = 1, 2, . . . ,K. (10)

Ŝ n[k] =
S n[k]

N∑
k=1

S n[k]
, k = 1, 2, . . . ,N. (11)

where K is the number of frequencies in the SFF analysis. For a sampling frequency of fs = 8 kHz,
and ∆ f = 10 Hz, K = 400. The value of N = 2048 is the number of DFT points used in the ZTW
analysis.

3.1. Spectral flatness measure
The spectral flatness is calculated by dividing the geometric mean of the spectral values with

the arithmetic mean. A high spectral flatness indicates that the spectral values are more uniformly
spread out. A low spectral flatness indicates that the spectral values are more unevenly distributed.
The spectral flatness measure for spectra from SFF and ZTW methods are given in Eqn. (12) and
Eqn. (13), respectively.

δS FF[n] =

K

√
K∏

k=1
v̂k[n]

1
K

K∑
k=1

v̂k[n]
. (12)

δZTW[n] =

N

√
N∏

k=1
Ŝ n[k]

1
N

N∑
k=1

Ŝ n[k]
. (13)

3.2. Glottal activity information from SFF method
The effect of the impulse-like excitation is observed in the amplitude envelope extracted at

each frequency in the SFF method. While there is temporal smearing due to IIR nature of the
filter response, the effect of the impulse-like excitation is preserved at the respective time instants
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in all the frequencies. The spectral flatness computed from the SFF spectrum provides a one
dimensional representation of the excitation source features. The spectral flatness contour derived
using the SFF envelopes for r = 0.995 is shown in Fig. 8(e). It can be seen that the SFF spectral
flatness contour has higher values in the regions where the EGG values are low. The values of
the SFF spectral flatness are low in the open phase region where the EGG values are high. The
sudden changes in the spectral flatness occur at the GCI locations, which are well matched with the
negative peaks in the DEGG signals. The abrupt transition of the SFF spectral flatness values from
low to high can be attributed to the impulse-like excitation of the vocal tract system. The spectral
flatness contour gradually moves to lower values at other regions due to temporal smearing of the
SFF output.

The SFF spectra show the harmonics due to sequence of impulse-like excitation. Fig. 9 shows
the SFF spectra for r = 0.995 at ten locations within a glottal cycle. Fig. 9(a) shows the segment of
voiced speech, Fig. 9(b) shows the corresponding SFF spectral flatness contour. Figs. 9(c1)-9(c10)
show the normalized SFF spectra at time instants 1 to 10, marked in the speech signal (Fig. 9(a))
and in the spectral flatness contour (Fig. 9(b)). In Figs. 9(c1)-9(c4), the spectral tilt is higher
(although it is difficult to visualize due to presence of the harmonic structure), as it is located in
the open phase region. Near the glottal closure (Fig. 9(c5)), the spectral tilt is lower (i.e., flatter
spectrum). The flatness of the spectrum is evident, if we see carefully in the regions 1000-2000
Hz and 2000-3000 Hz in (c5) compared to (c1-c4) and (c6-c10). There is a sudden rise in the SFF
spectral flatness value (see Fig. 9(b) before the instant 5) in this region. This sudden change in the
spectral tilt can be attributed to the sharp closure of the glottis. The spectral tilt increases slowly
in the open phase region although it cannot be seen in the Figs. 9(c6)-9(c10). The spectral flatness
goes to lower values (see Fig. 9(b) at the instants 7 to 10).

3.3. Glottal open region information from ZTW method
Changes in the length of the vocal tract during opening and closed phases are reflected in the

spectral characteristics derived from the HNGD spectra at each instant of time. In particular, the
spectral flatness computed from the HNGD spectrum provides a one dimensional representation of
the dynamics of the vocal tract system. Fig. 8(a) shows a segment of voiced speech, and Figs. 8(b)
and 8(c) show the corresponding EGG and DEGG signals. The spectral flatness contour derived
using a L = 4 ms window in the ZTW analysis is shown in Fig. 8(d). It can be seen that the spectral
flatness contour has higher values in the regions where the EGG values are high, and the values of
the spectral flatness are low in the closed phase region where the EGG values are low.

The transition of the spectral flatness value from low to high can be attributed to the coupling
of the subglottal system with the supraglottal system. However, the change is gradual, and it also
depends on the size of the analysis window in relation to the pitch period.

Fig. 10 illustrates the HNGD spectra obtained using a 4 ms window at ten equidistant locations
within a glottal cycle. Fig. 10(a) shows the segment of voiced speech, Fig. 10(b) shows the corre-
sponding spectral flatness contour. Figs. 10(c1)-10(c10) show the normalized HNGD spectra for
the locations at the time instants 1 to 10, marked in the speech signal and in the spectral flatness
contour.

In Figs. 10(c1) and 10(c2), the spectral amplitude is distributed around a few resonances, as
the analysis window is located in the closed phase region. As the analysis window approaches
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the glottal opening (Figs. 10(c3) and 10(c4)), the spectral amplitude is getting distributed more
uniformly. It can also be observed that the spectral amplitude is tilting towards low frequency due
to coupling of the subglottal system. We observe a sudden rise of the spectral flatness value in this
region. As the analysis window approaches the instant of glottal closure, the spectral amplitude
is higher at the prominent spectral peak, as can be seen in Figs. 10(c5) and 10(c6). Thus there is
a gradual change in the spectral flatness from a higher value in the open phase region to a lower
value in the closed phase region. Transition in the spectral flatness value from open to closed phase
regions appears gradual.

In studies [49, 54, 55, 56], the changes in the spectral characteristics of the vocal tract system
during the open phase region within a glottal cycle were reported. The dissipation of the first
formant energy was observed during the open phase of the glottal cycle, and it was termed as
glottal damping. The transition of the spectral flatness to a higher value also takes place at the
onset of glottal damping due to glottal opening, which is also in conformity with the studies
reported in [49, 54, 55, 56]. It was also found that during the open phase there exists a shift of the
formant locations and increase in the bandwidths [49, 54]. The HNGD spectral characteristics in
the voiced speech also confirms this observation.

4. Effect of parameters used in SFF and ZTW methods on spectral flatness

The effect of r value in the SFF method is illustrated in Fig. 11. For higher r value (i.e.,
closer to one), the SFF provides good spectral resolution and lower temporal resolution due to
smearing of certain features. For lower r value, the SFF provides good temporal resolution but
lower spectral resolution of certain features. A segment of voiced speech and the corresponding
DEGG signal are shown in Figs. 11(a) and 11(b). Figs. 11(c), 11(e), 11(g) and 11(i) show the
SFF spectrograms and Figs. 11(d), 11(f), 11(h) and 11(j) show the corresponding spectral flatness
contours for r = 0.95, 0.97, 0.99, and 0.995, respectively. From the SFF spectrograms, it can be
clearly seen that the SFF spectrum appears to be flatter around the GCIs. Even though the SFF
spectral flatness seems to be somewhat broader for lower r values, the increase in the SFF spectral
flatness from lower to higher value occurs at the same location of GCI for different values of r.

The effect of the length of the analysis window in the ZTW method is illustrated in Fig. 12,
which shows that the HNGD spectrograms and spectral flatness contours for different lengths of
the analysis window varying from 3 to 6 ms. A segment of voiced speech and the corresponding
DEGG signal are shown in Figs. 12(a) and 12(b). Figs. 12(c), 12(e), 12(g) and 12(i) show the
HNGD spectrograms and Figs. 12(d), 12(f), 12(h) and 12(j) show the corresponding spectral flat-
ness contours for L = 3, 4, 5, and 6 ms, respectively. From the HNGD spectrograms, it can be seen
that the spectrum appears to be flatter in some regions between two successive GCIs. A longer
(6 ms) analysis window gives a smoother spectral flatness contour compared to a smaller (3 ms)
window. But the effects of the glottal opening region can still be observed in the spectral flatness
contour. Hence, the spectral flatness contour obtained from the HNGD spectra using a suitable
window size is useful to study the changes in the vocal tract during the opening phase.

For smaller (3 ms) window length, the spectral flatness contour has fluctuations, mostly due to
window effects. As the window length is increased (from 3 ms to 6 ms), the temporal resolution
in the spectral flatness contour is decreased due to the combined effect of closed and open regions.
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A window length in the range of 4 to 5 ms seems to be useful for identification of the glottal open
region from the HNGD spectra, although the choice also depends on the pitch period.

5. Methods for Detection of GCI and GOR

This section presents the methods for detection of GCI and GOR from speech signals.

5.1. Proposed Method of GCI Detection
The proposed method of GCI detection uses the ZFF method [53]. ZFF method captures the

major impulse-like discontinuity present in speech signal. In this study, we use the spectral flatness
obtained using SFF method as an input to the ZFF method in order to detect the region of presence
of GCIs. The precise GCI location is obtained by searching for spectral flatness peak in that region.

The following are the steps involved in the proposed method of GCI detection.

1. Obtain the spectral envelope (vk[n]) of the signal s[n] using SFF method as in Eqn. (5) for
r = 0.995.

2. Derive the normalized spectral envelope (v̂k[n]) (Eqn. (10)) and compute the spectral flatness
δS FF[n] of v̂k[n] across the frequency at each instant, as in Eqn. (12).

3. Spectral flatness contour is given as input to the ZFF method. The ± 1ms region around the
positive-to-negative zero crossings of filtered output signal is hypothesized as the presence
of GCIs.

4. The location of the spectral flatness peak in the hypothesized GCIs region is marked as
accurate GCI. The proposed method is referred as S FF − S F.

5.2. Proposed method for GOR detection
In this study, we propose to derive the open phase region using the spectral flatness obtained

from the HNGD spectrum. The region between the spectral flatness peak to the following GCI in
a glottal cycle is hypothesized as the open phase region. The following are the steps involved in
deriving the open phase region within each glottal cycle.

1. Compute the HNGD spectrum (S n[k]) at each instant for a window length of 4 ms as de-
scribed in Sec. 2.2.

2. Derive the normalized spectral envelope (Ŝ n[k]) (Eqn. (11)) and compute the spectral flat-
ness δZTW[n] of Ŝ n[k] across the frequency at each instant, as in Eqn. (13).

3. Smooth the spectral flatness contour using a 5–point median filter to remove outliers, if any.

4. Obtain the GCI locations for voiced segments as described in the above Sec. 5.1 and identify
the region between two successive GCIs as the glottal cycle.

5. The region between the spectral flatness peak in a glottal cycle to the following GCI region
is identified as the open phase region. The rest of the glottal cycle is identified as the closed
phase region (i.e., region between GCI to spectral flatness peak). The proposed method is
referred as ZTW − S F.
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6. Results and Discussion

6.1. Experimental Protocol
The CMU-Arctic databases [57] were considered to evaluate the proposed methods and to

compare the results with the existing methods. The database consists of sentences spoken by two
male (BDL and JMK) and one female (SLT) speakers. The database contains the simultaneous
recordings of the EGG signals. Reference locations of the GCIs were extracted by finding peaks
in the differenced EGG signal. For each sentence, 1/8 times of the maximum negative value of
dEGG was used as a threshold [53, 12, 58]. The EGG and speech signals of each speaker were
time aligned to compensate for the delay, which is approximately 0.7 msec [53]. A set of 100
utterances are considered in this study.

The proposed method of GCI detection is compared with the five state-of-art GCI detection
methods. They are: ZFF [53], SEDREAMS [13], MSF [59], DYPSA [60], and YAGA [17]. ZFF
and YAGA methods are obtained from the authors, SEDREAMS is available in [61], MSF is avail-
able in [62], and DYPSA is available in [63]. ZFF method exploits the nature of the impulse-like
excitation by filtering the speech signal around 0 Hz. SEDREAMS method uses the mean based
signal for finding the possible GCI locations in an interval and then an LP residual is inspected in
that to detect accurate location. MSF method is based on the approach of microcanonical multi-
scale formalism and relies on the precise estimation of multi-scale parameter called as singularity
exponent at each sampling instant. DYPSA method uses the zero crossings of the phase slope
function calculated on the LP residual along with dynamic programming. YAGA method uses the
voice source signal (estimated using inverse filtering), group delay function, wavelet transform
and M-best dynamic programming for identifying the glottal closure and opening instants.

The glottal open phase regions obtained using the proposed method are compared with the
open phase regions derived using three existing methods, namely SIGMA [33], YAGA [17] and
dominant resonance frequency (DRF) [56] methods. The SIGMA algorithm uses multiscale analy-
sis and group delay function over EGG signals to compute the glottal closing and opening instants.
In SIGMA and YAGA methods, glottal open phase region is defined as the region between GOI
and the following GCI. In DRF method, the glottal open phase region is derived using a threshold
value of 0.5 over the normalized DRF contour. The region below this threshold are identified as
open phase region and the remaining region of the glottal cycle is identified as the closed phase
region.

Performance of the GCI detection methods was evaluated using the measures defined in [60].
They are: identification rate (IDR), miss rate (MR) and false alarm rate (FAR) and the identifica-
tion accuracy (IDA). For a good GCI method, IDR should be high (i.e., MR and FAR should be
low) and IDA should be low. Performance of the GOR detection methods was evaluated using the
scatter plots for the durations of open phase and closed phase as in [56].

6.2. Results of GCI Detection Methods
GCI detection methods are evaluated in clean speech and telephone quality speech. Table 1

shows the results of GCI detection methods on the three databases for clean speech. From the table,
it can be observed that the proposed method (SFF-SF) performs reasonably well and comparable
to the existing methods for all the three databases. In some cases such as for BDL database, the
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Table 1: Performance comparison of the GCI detection methods for clean speech. IDR - Identification rate,
MR - Miss rate, FAR - False alarm rate, IDA - Identification accuracy.

Database Method IDR% MR % FAR % IDA (ms)

BDL

SFF-SF 97.58 1.20 1.22 0.35
ZFF 97.87 0.20 1.93 0.29
SEDREAMS 98.58 0.67 0.75 0.30
MSF 95.26 2.30 2.44 0.33
DYPSA 94.44 1.38 4.18 0.35
YAGA 97.45 0.47 2.08 0.28

JMK

SFF-SF 95.44 4.10 0.46 0.44
ZFF 97.59 2.25 0.16 0.42
SEDREAMS 98.72 1.01 0.27 0.39
MSF 95.45 1.36 3.19 0.41
DYPSA 96.22 2.67 1.11 0.40
YAGA 98.53 0.55 0.92 0.38

SLT

SFF-SF 95.91 3.25 0.84 0.34
ZFF 99.01 0.65 0.34 0.24
SEDREAMS 97.25 1.97 1.78 0.29
MSF 96.39 3.26 0.35 0.35
DYPSA 96.81 2.23 0.96 0.38
YAGA 98.06 1.11 0.83 0.27
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Table 2: Performance comparison of the GCI detection methods for telephone quality speech. IDR - Identi-
fication rate, MR - Miss rate, FAR - False alarm rate, IDA - Identification accuracy.

Database Method IDR% MR % FAR % IDA (ms)

BDL

SFF-SF 96.82 0.61 2.57 0.61
ZFF 46.19 1.19 52.62 0.88
SEDREAMS 45.97 2.02 52.01 0.84
MSF 90.19 4.17 5.64 0.66
DYPSA 87.08 3.94 8.98 0.65
YAGA 34.06 1.11 64.83 0.93

JMK

SFF-SF 97.48 0.97 1.55 0.69
ZFF 33.18 2.38 64.44 0.89
SEDREAMS 31.01 0.84 68.15 1.21
MSF 91.51 3.41 5.08 0.70
DYPSA 86.71 2.69 10.60 0.72
YAGA 32.88 2.11 65.01 0.93

SLT

SFF-SF 96.58 1.82 1.60 0.62
ZFF 64.72 0.95 34.33 0.74
SEDREAMS 61.92 3.04 35.04 0.69
MSF 87.19 8.98 3.83 0.63
DYPSA 71.63 2.89 25.48 0.64
YAGA 70.29 1.77 27.94 0.75
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IDR of the proposed method is better than the methods such as DYPSA and MSF, and comparable
to ZFF, SEDREAMS and YAGA methods. In terms of IDA measure, methods such as YAGA,
SEDREAMS and ZFF are performing better than the DYPSA, MSF and proposed method. The
IDA of the proposed method is comparable to DYPSA and MSF in all the three databases.

The results of GCI detection methods for telephone quality speech are given in Table 2. Tele-
phone quality speech is simulated using G.191 software [64]. From the table, it can be observed
that the performance of the existing methods for all the three databases is severely degraded for
telephone quality speech compared to clean speech (Table 1). On the other hand, the perfor-
mance of the proposed method is significantly better than all the existing methods for all the three
databases in terms of both IDR and IDA measures. The degradation in performance of the existing
methods for telephone quality speech is mainly due to their inability to capture the impulse-like
discontinuity corresponding to GCI from the speech signal (as in ZFF, SEDREAMS and MSF) or
derived glottal source signal (as in DYPSA and YAGA). Among the existing methods, the perfor-
mance of the DYPSA and MSF are relatively higher than ZFF, SEDREAMS and YAGA methods.
The performance of DYPSA is better than YAGA because of the use of LP residual signal directly,
without estimation of glottal source signal as in YAGA. It is known that estimation of glottal
source signal from telephone speech is a difficult task. Overall, the performance of the proposed
method is better in terms of both IDR and IDA measures compared to all the existing methods due
to exploitation of impulse-like discontinuity using spectral flatness parameter.

6.3. Results of GOR Detection Methods
Figure 13 shows the scatter plots for the durations of open phase and closed phase for SIGMA,

YAGA, DRF and the proposed method. The three columns in the figure correspond to three differ-
ent speakers, namely BDL, JMK and SLT. The results using SIGMA method are shown in Figs.
13(a1), (b1) and (c1), YAGA method are shown in Figs. 13(a2), (b2) and (c2), DRF method are
shown in Figs. 13(a3), (b3) and (c3). Finally, Figs. 13(a4), (b4) and (c4) show the results using
the proposed method (ZTW-SF) for window length 4 ms. From the figures, it can be observed that
the scatter plots of the open vs closed phase points appear in a relatively tight cluster in the case
of SIGMA and YAGA methods. This is mostly because of the fact that the GOIs obtained from
the EGG/voice source signal are post-processed using dynamic programming to ensure the best
alignment of open quotient values over successive glottal cycles. This constraints the locations of
GOIs within close bounds, resulting in a tight cluster.

The scatter plots obtained using DRF method exhibits more spread in the cluster compared to
the results obtained using SIGMA and YAGA methods. Also it can be observed that, there are
some points occurring in the extreme values of open and closed duration values. It was found
that these regions occur during the onset and offset of voiced segments due to gradual build up of
the glottal source characteristics and also depends the thresholds [56]. The scatter plots obtained
using the proposed method exhibits relatively less spread in the cluster compared to DRF method
and relatively more spread in the cluster compared to the results of SIGMA and YAGA methods.
This is mainly because the proposed method does not use thresholds or dynamic programming
constraints. Results obtained from the proposed method appear closer to those obtained using the
SIGMA and YAGA methods. Different post-processing techniques can be used to refine the open
phase regions the proposed method.
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Figure 13: Scatter plots of open vs closed phase duration points obtained for three speakers in the CMU-Arctic
database. (a1), (b1) and (c1) are obtained using SIGMA method on EGG signals. (a2), (b2) and (c2) are obtained
using YAGA method on speech signals. (a3), (b3) and (c3) are obtained using DRF method on speech signals. (a4),
(b4) and (c4) are obtained using the proposed method (ZTW-SF) for window length of 4 ms.
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7. Summary and conclusion

In this paper, the problem of detecting some of the features of glottal activity, namely, glottal
closure instant (GCI) and glottal open region (GOR) from the speech signal is addressed. The
changes in the spectral characteristics within a glottal cycle are exploited using two recently pro-
posed signal processing methods, namely, single frequency filtering (SFF) and zero time window-
ing (ZTW). A spectral flatness parameter derived from the SFF spectra highlights the impulse-like
characteristics at the GCI. The spectral flatness derived from the HNGD spectra highlights the
GOR, as there are significant changes in the effective vocal tract length in the glottal opening
region. The spectral flatness representation of the dynamic vocal tract characteristics may pro-
vide complementary information with other types of source representations, and thus may help to
improve our understanding of the glottal source.

The proposed methods for the detection of GCI and GOR do not use any knowledge of the pe-
riodicity information of the excitation source or of the resonance characteristics of the vocal tract
system. The proposed approach may be useful to analyze changes in the glottal source character-
istics for different types of voices, like different phonations, emotions, singing, laughter, patho-
logical voices [65, 66, 67, 68, 69, 70, 71], etc. Preliminary experiments in [72, 73, 74] showed
the usefulness of these methods for the analysis and detection of phonation types in speech and
singing. Detailed analysis of the SFF and HNGD spectral flatness contours may help in bringing
out the distinctive characteristics of different voice qualities caused by different types of glottal
excitations.

Since the ZTW method provides information at each sampling instant with good spectral res-
olution, these studies can be explored for analysis of subglottal effect on the supraglottal system
[48], and also for analysis of source-tract interaction within a glottal cycle [50, 75, 76, 77].
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