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Abstract

Scheduling of industrial job shop processes is normally conducted using estimates of parameters
(e.g. processing times) defining the optimization problem. Inaccuracy in these estimated
parameters can significantly affect the optimality, or even feasibility, of the scheduling solution.
In this work, we incorporate data-driven parameter prediction models of different fidelity into a
unit-specific continuous time scheduling model, and investigate the dependency of the solution
quality on the prediction model fidelity. Our high-fidelity prediction model is based on Gaussian
processes (GP); more specifically we use the maximum a posteriori probability (MAP) estimate.
The low and medium-fidelity prediction models rely on determining the average processing time
or average processing rate, respectively, from the dataset. In our test case, involving prediction of
taxi durations in New York City, the use of GP prediction model yielded, on average, 5.8% and
1.8% shorter realized make spans in comparison to using the low and medium-fidelity prediction
models, respectively.
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1. INTRODUCTION

Industrial job shop processes are inherently stochastic.
The optimal scheduling of these processes is dependent on
the realization of scheduling parameters (e.g. processing
times, customer demand and raw material consumptions).
As the information of future realizations is not available,
scheduling decisions are typically made based on static
tables of estimated scheduling parameters, which contain
both inaccuracies and uncertainty.

Modern industrial job shop processes are monitored with a
significantly large number of sensors; the number of these
sensors being in the order of hundreds or even thousands
(Gungor and Hancke, 2009). Useful information on the
processes can be extracted from the historical data of these
sensors by using machine learning algorithms.

The most common approach of applying machine learning
algorithms to job shop scheduling is to learn dispatching
rules from historical data. Li and Olafsson (2005) applied
an inductive learning algorithm (C4.5) to train a decision
tree model using historical data. Later, Olafsson and
Li (2010) improved the performance of the model by
training it only with a subset of the historical data,
representing the best decisions, which were chosen using a
genetic algorithm. Mouelhi-Chibani and Pierreval (2010)

* Financial support is gratefully acknowledged from the Academy
of Finland project “SINGPRO”, Decision No. 313466.

proposed a neural network-based approach to select, in
real time, the best job for a resource, once it becomes
available. Instead of using historical data, they trained
their model using simulated scheduling data, generated
by simulated annealing. For a more extensive review of
learning dispatching rules from historical data, the reader

may wish to consult the review article by Priore et al.
(2014).

Another approach of applying machine learning algorithms
to job shop scheduling is to improve the accuracy of the
scheduling parameters based on the historical data. Berral
et al. (2010) predicted power consumption levels, central
processing unit loads and service-level agreement timings
of a data center using linear regression and the M5P
algorithm. They used these predictions in the scheduling
of computing tasks, with an objective of reducing the
total power consumption of the data center. Verboven
et al. (2008) predicted the runtimes of computing tasks,
belonging to the same parameter sweep experiment, using
various machine learning tools, in order to assign them to
desktop grids with suitable availability windows.

Jiang et al. (2016) applied Gaussian process regression to
dynamic scheduling of continuous casting of steel in order
to predict slack ratios of jobs. A slack ratio describes the
trade-off between the low production time and increased
risk of a cast-break. Related to the same application, Zhao
et al. (2014) predicted the relationship between adjustable
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gas users and gas tank levels based on a historical dataset
using Bayesian Networks. The information was used to
ensure safe operating level of the gas tanks.

Regardless of the used estimation model, and the size and
quality of the historical dataset, the estimated schedul-
ing parameters contain uncertainty, which is mainly due
to stochasticity of the process, measurement errors and
model imperfections. The deviations in the realized and
estimated scheduling parameters can significantly affect
the optimality, or even the feasibility, of the solution.

The purpose of this paper is to accurately predict the pro-
cessing times from a historical dataset using the Gaussian
process (GP) regression, and to use these predictions in
job shop scheduling. We benchmark the prediction method
against simple average duration and average rate models
(see Section 3) by examining the realized make spans of
a set of 30 scheduling problems. As the scheduling model,
we use the unit-specific continuous-time model by Shaik
and Floudas (2009).

2. SCHEDULING PROBLEM

We use the New York City (NYC) taxi duration dataset
(Kaggle Inc, 2017) !, in order to devise a simple scheduling
problem that can facilitate the evaluation of parameter
prediction models. The dataset contains information of
over 1.4 million taxi trips in NYC, including the duration
of the trip, passenger count, as well as pick-up and drop-off
date, time and coordinates.

We now define a scheduling problem that is based on the
dataset but has features that are transferable to industrial
job shop scheduling. Let us consider a company, which
head quarter is at Wall Street?, located at the South
West tip of Manhattan. The company performs surveys
at remote sites located around NYC. In order to perform
a survey, an employee of the company travels to the site
by taxi, performs the survey and travels back to the head
quarter. We refer to this combination of the outbound taxi
trip, the survey and the inbound taxi trip as a task (Fig. 1).
When performing a survey, an employee relies on a survey
team that is based at the head quarter. We consider both
taxis and survey teams as processing units, and define the
number of both types of units to be two. The number of
traveling employees is not restricted. In addition, a taxi
that drops off an employee to location A is defined to
be instantly available to pick up another employee from
location B. The objective of the scheduling optimization
is to minimize the make span ms of performing surveys at
six different sites located in NYC (see Fig. 2 for an example
set of sites). The durations of outbound and inbound taxi
trips are predicted (see Section 3), whereas the duration
of conducting a survey is fixed to 1800 s.

From an industrial point of view, the taxis and surveying
teams are equivalent to machinery or processing units,
and the procedure of performing a task to a recipe to
produce a product. Alternatively, the inbound and out-
bound taxi trips can be considered as preparation and

1 We have amended the dataset with the corresponding fastest
routes (in kilometers) from another openly available dataset (Os-
carleo, 2017).

2 The coordinates of which are 40.70729°N, 74.01095°W.

i‘taxil‘i i‘surveyl‘i
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Figure 1. The procedure of performing a task from start
to finish. Two parallel units exist for both taxis and
surveying teams.
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Figure 2. The example scheduling problem, consisting of
six survey sites. The grey point indicates the location
of Wall Street. Continuous red and dashed blue lines
indicate the start and end points of the outbound and
inbound trips, respectively, from the test set.

cleaning, respectively, of a processing unit, and the survey
as performing the actual job in the unit.

In order to extract the most relevant information from the
dataset for our purpose, we create a filtered dataset, in
which either the pick-up or drop-off location lies within
500 m from Wall Street (indicated by the red oval in Fig.
3(b)). In addition, we filter trips with unrealistically long
durations (>20 000 s). Figure 3(a) shows the histogram
of trip durations in the filtered dataset. Further, Figure
3(b) presents a scatter plot of trip durations, in which the
location of a point is the pick-up or drop-off location that
lies further away from Wall Street, and the color of the
point indicates the duration of the trip.

Further, we divide the filtered dataset into training and
testing sets, using a ratio of 67-33%. The training set is
used to train the prediction model, and the test set to
evaluate its accuracy (see the next section). In scheduling,
the realization of outbound and inbound trip durations
corresponds to the trip in the training set with the closest
match to Wall Street and the site coordinates. Figure 2
shows the pick-up and drop-off coordinates (connected by
red and blue lines) of these trips for the example set of six
sites.

3. DURATION PREDICTION

In the next three sections, we describe our models to
predict the duration of a taxi trip, starting from the lowest
fidelity. Finally, in Section 3.4, we compare the prediction
accuracy of the models.
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(a) Histogram of trip durations in the filtered dataset.
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(b) Trip durations plotted on the map of New York City. The
points of the scatter plot are either the pick-up or drop-off location
of the trip, whichever lies further away from Wall Street. The
cluster of points in the South East corner corresponds to John
F. Kennedy International Airport, and the rectangular area in
Manhattan without any points to Central Park.

Figure 3. Visualization of the filtered dataset, containing
all taxi trips, the start or end point of which lies within
500 meters from Wall Street. The region is marked by
the red circle in Subfigure (b).

3.1 Awverage prediction model

The simplest approach to estimate the duration of a taxi
trip is to calculate the average duration in the dataset
and assume that all future taxi trips have the same
duration. We refer to the corresponding model as the
average prediction model. The average taxi duration in
the training set is 1082 s. While the model exploits the
ground truths of the training set, it naively discards the
information stored in the features of the training set. In
industrial job shop scheduling, the values of static tables
are often determined using the average values of relevant
jobs in the past.

3.2 Rate prediction model

Considering the current application, a more reasonable
prediction model involves determining the average speed
of the taxi trips in the training set, and using the street
distance of the planned trip to predict its duration. We

refer to this prediction model as the rate prediction model.
The average taxi speed in the training set is 6.299 m/s.
From an industrial point of view, this approach is relevant
to estimating the processing time of a job where a given
volume of a material state is treated (e.g. heated or
purified) 3 .

3.8 Gaussian process prediction model

A Gaussian process (GP) defines a prior distribution in a
space of functions f without parameterizing f. Thus, they
are considered as nonparametric methods. After seeing
some data, the prior distribution over functions is updated
into a posterior distribution over functions. In this work,
we use Gaussian process regression® to predict taxi trip
durations. Here, we wish to point out that other nonlinear
machine learning methods, such as neural networks or
support vector regression, could possibly yield results with
similar prediction accuracy.

Let us consider a training set D = {x;,y;,4 = 1: N}, in
which the values of y contain noise in the form of

yi = f(xi) +¢ (1)
where f is the underlying (noise-free) function, and € ~
N(0, 05) is a normally distributed noise term. Using GPs
for regression, the posterior predictive density is

(£ X, X, y) = N (ful e, 2i), (2)
where X is the design matrix, X, is the test input, u, is the

mean of multivariate distribution and X, is the covariance
matrix. The latter two are defined as

pe = KK,y (3)
{ =K. - KIK,'K,, (4)
where, for a chosen kernel k:
K. = r(X,X,) (5)
K.. = r(Xs,Xy) (6)
K, = #(X,X) + 0.1y, (7)

where Iy is an identity matrix having dimensions N x V.
For a comprehensive review of GPs, the reader may wish
to consult text books by Rasmussen and Williams (2006)
and Murphy (2012).

We chose to use the exponential kernel

-
’f(x@/) = 0,% exp( - %), (8)

where = and 2’ are the two inputs for the kernel, oy is the
scaling parameter, and [ is the length scale. The reason
is that the kernel enables us to define a priori all taxi
durations to be positive.

We include two features from the dataset described in
Section 2 in our GP regression model: the latitude and
longitude of the pick-up or drop-off location that lies
further from the head quarter. Thus, our model predicts
the same taxi durations for trips from location A to B and
from B to A. In order to enable the relatively memory-
intensive training of the model on a laptop, we use a
random subset of 3000 samples from the training set.

3 Assuming that the processing time is linearly dependent on the
volume.

4 The GP regression model is implemented using the Python pack-
age PyMC3 (Salvatier et al., 2016).
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Parameters oy, o, and [ in Equations 7 and 8 are hy-
perparameters 6 of the model. We tune them using the
maximum a posteriori (MAP) estimate

Ovap = arggnax log p(X|0)p(0), 9)

where p(0) is the prior distribution of the hyperparameters
(see for example the text book by Murphy (2012)). The
tuned hyperparameters fyap are listed in Table 1.

Table 1. Hyperparameters of the GP predic-
tion model, estimated using the maximum a
posteriori (MAP) method.

parameter  value
oy 1805

l 0.8151

oy 410.7

3.4 Prediction accuracy

We used the three above described models to predict the
durations of the taxi trips in the test set. In order to
quantify the prediction accuracy, we list the root mean
square error (RMSE) and coefficient of determination
(r?) of these predictions in Table 2. As expected, the
values of RMSE decreases and 72 increases with respect
to increasing model fidelity. The value of 72 ~ 0 for the
average prediction model indicates that the model explains
none of the variability around the average duration of the
test set. This is also an expected result as the model always
returns the average duration of the trips in the training set.

Table 2. Prediction accuracy, measured using

root mean square error (RMSE) and coefficient

of determination (r?), of the average, rate and
Gaussian process (GP) prediction models.

prediction model ~RMSE r2
average 701.8 -2.37e-4
rate 556.5 0.371
GP 438.4 0.610

Figure 4 visualizes the predicted durations by the GP
prediction model against actual durations on the cost
line drawing of NYC. Predicted durations are shown as
a contour plot, and the actual durations of the test set
as a scatter plot. In general, the isocurves of the contour
are oriented circumferentially around the head quarter.
However, the density of the isocurves is the highest in
the longitudinal direction of Manhattan, i.e. roughly North
East, while they are the sparsest in the direction East from
the head quarter.

4. SCHEDULING MODEL

Let us next describe the reasoning for our choice of the
scheduling model and how we incorporate the predicted
durations from the three alternative prediction models into
the scheduling optimization.

As the scheduling model, we use the unit-specific conti-
nuous-time model by Shaik and Floudas (2009), which is
formulated using the state-task network (STN). The model
flexibly facilitates changes in the realized durations, with
respect to those predicted. In contrast, the use of discrete
time formulations would expose the realized scheduling

14000
3500
40.84°N
3000
o
10.78°N 2500 £
2000 2
40.72°N 1500 =
3
1000
40.66°N
500

74.08°W 74.02°W 73.96°W 73.9°W 73.84°W 73.78°W

Figure 4. Predicted durations (the contour plot) plotted
against the actual durations of the test set (scatter
points). The predictions are obtained by the GP
model.

models to the risk of being infeasible (in the occurrence
of a job exceeding its allocated time slot).

The scheduling model by Shaik and Floudas (2009) is an
improved version of the original model by Ierapetritou and
Floudas (1998) — enabling jobs to span over a number of
event points, An. In this work, we define our model using
equations 1-8, 10-16, 34 and 35 from the paper by Shaik
and Floudas (2009), and use the value of An = 1. We
determine the total number of event points n iteratively
by starting from n = 3, and increasing it by one until the
model has a feasible solution. We note that shorter make
spans could possibly be obtained by increasing the number
of event points, but we have not studied this.

If the durations of inbound and outbound taxi trips would
be constant for all tasks, we could formulate the model
by using the following four states only: 1) employee in
the head quarter (survey not performed), 2) employee on
site (survey not performed), 3) employee on site (survey
performed), and 4) employee in the head quarter (survey
performed). However, in this work, we wish to assign
individual predictions of inbound and outbound taxi trip
durations to a job. Therefore, we are required to divide
these states into substates, specific to a task in the prob-
lem. As we have earlier fixed the number of tasks to be
six, the number of states in the problem is 4 x 6 = 24.

In the current scheduling problem, we only consider whole-
sale jobs, i.e. the amount of material in each job is required
to equal unity. Therefore, we constrain the initially scalar
variables that determine the amount of material in a
specific job (denoted by symbol b by Shaik and Floudas
(2009)) to be equal to the corresponding binary variables
defining at which event point the job starts and ends
(denoted by symbol w by Shaik and Floudas (2009)).

Finally, after solving the scheduling problem with pre-
dicted durations, we evaluate the realization of the
scheduling solution. This is conducted by updating the
durations of taxi trips with their realized values from the
test set, fixing the binary variables of the model, and
solving the resulting linear programming problem.

The scheduling model is implemented using the Python
package Pyomo (Hart et al., 2011, 2017), and the resulting
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Figure 5. Optimized and realized schedules with average, rate and Gaussian process (GP) prediction models. The
realized make span (ms) is reported in the captions of Subfigures (b), (d) and (f).

mixed integer linear programming problems are solved

using CPLEX.
5. RESULTS

Although the prediction and scheduling models are de-
terministic, the realized schedules are dependent on in-
dividual taxi trips in the test set. Thus, solving the op-
timization problem with only a single set of sites would
not yield representative comparison of the solution quality
of the scheduling model with different prediction models.
Therefore, we solve 30 different optimization problems?,
in which the site locations are varied.

In all studied optimization problems, the scheduling model
becomes feasible when the number of event points is
increased to n = 6. The number is independent of the
used prediction model. The resulting optimization problem
has 396 binary variables, 601 scalar variables and 4885
constraints.

Let us next examine the optimized and realized schedules
(Fig. 5) of the example scheduling problem, the site loca-
tions of which were shown in Fig. 2. In both optimized and
realized schedules, each task consists of the outbound taxi
trip, survey, and inbound taxi trip, in this chronological
order.

When using the average prediction model, all taxi trips
have the same predicted duration (Fig. 5(a)). In fact, the
jobs corresponding to the six tasks could be ordered in
any of 6! permutations without changing in the optimized

5 We perform the computations on a laptop, having an Intel®
™
Core i5-7300U processor and 8 GB of memory.

make span. The predicted durations from the rate and
GP prediction models, on the other hand, have variation
(Figs. 5(c)) and 5(e)). The shortest predicted durations
correspond to the sites 1 and 4 lying the closest to
the head quarter, whereas the longest predicted duration
corresponds to site 2, lying the furthest from the head
quarter.

In this case, the realized make span is longer than the
optimized make span for all prediction methods. The main
cause for this is the significantly longer realized duration
for the outbound taxi trip to site 2 in comparison to its
predicted values. Other jobs in the realized schedule do
not have any outstanding difference in comparison to their
estimated values. The realized make span® obtained by
the GP prediction model is shorter than those obtained
by the average and rate prediction models by the margins
of 9.8% and 3.6%, respectively.

Table 3 presents a summary of the results on the 30
optimization problems. We here report the mean and
standard deviation of make spans that are normalized
with respect to results that would be obtained by an
ideal prediction model, i.e. a model with the coefficient
of determination r?> = 1 and root mean square error of
0, on the same optimization problem. The normalization
is conducted by dividing the obtained makespans by the
corresponding makespan obtained by the ideal predictor.
The normalization is required as the results between
the optimization problems are not comparable. The GP

6 It should be noted that comparing the make spans of the optimized
schedules, obtained using different prediction methods, is irrelevant
as they are solutions to different optimization problems.
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prediction model yields, on average, shorter realized make
spans than the average and rate prediction models by the
margins of 5.8% and 1.8%, respectively. However, these
realized make spans are still, on average, 10.9% longer that
those that would be obtained by an ideal prediction model.

Our results show that the average computational cost of
solving the scheduling problem with predictions from the
GP and rate models is an order of magnitude higher than
with those obtained from the average model (see Table 3).
The reason for this is that, despite the number of variables
is the same in all optimization problems, the scheduling
problem where all taxi trips have a fixed duration is
simpler than with variable durations. As we mentioned
earlier, if the taxi trips have a fixed duration, there are
at least 6! scheduling solutions (i.e. the permutations of
the tasks) that are optimal (in the unrealized domain). In
this case, the optimization problem only involves finding
the optimal arrangement jobs with respect to each other,
whereas with variable durations the problem also involves
finding the optimal sequence of tasks.

Table 3. The summary of results on 30 schedul-

ing problems using the average, rate and Gaus-

sian process (GP) prediction models. For the

normalized make span ms, we report the mean
and the standard deviation (sd).

prediction model ms [-] solution time [s]
mean sd mean min max
average 1.178 0.119 4.45 4.25 5.74
rate 1.129 0.072 45.94 7.71 121.69
GP 1.109 0.061 79.66 16.44 344.82

6. CONCLUSIONS

This study studied job shop scheduling with data-driven
duration predictions of three levels of fidelity, which we
referred to as average, rate and GP prediction models. Our
results show that the GP prediction model yields shorter
make spans than average and rate prediction models by
the margins of 5.8% and 1.8%, respectively.

However, as the scheduling problem becomes more com-
plex with site-specific taxi duration predictions (i.e. the
rate or GP model), its computational cost is an order
of magnitude higher than when a fixed prediction value
is used for all taxi trips (i.e. the average model). These
conclusions are specific to the studied scheduling problem.

An advantage of using the GP regression as a prediction
model is that it yields, as a by-product, an estimate
of the prediction uncertainty. This prediction is a key
input parameter for proactive scheduling approaches. The
future work will investigate the use of GP regression based
parameter predictions in proactive scheduling.

REFERENCES

,

Berral, J.L., Goiri, 1., Nou, R., Julia, F., Guitart, J.,
Gavalda, R., and Torres, J. (2010). Towards energy-
aware scheduling in data centers using machine learning.
In Proceedings of the 1st International Conference on

energy-Efficient Computing and Networking, 215-224.
ACM.

Gungor, V.C. and Hancke, G.P. (2009). Industrial wire-
less sensor networks: Challenges, design principles, and
technical approaches. IEEE Transactions on industrial
electronics, 56(10), 4258-4265.

Hart, W.E., Laird, C.D., Watson, J.P., Woodruff, D.L.,
Hackebeil, G.A., Nicholson, B.L., and Siirola, J.D.
(2017). Pyomo-optimization modeling in python, vol-
ume 67. Springer Science & Business Media, second
edition.

Hart, W.E., Watson, J.P., and Woodruff, D.L. (2011).
Pyomo: modeling and solving mathematical programs
in python. Mathematical Programming Computation,
3(3), 219-260.

Ierapetritou, M.G. and Floudas, C.A. (1998). Effective
continuous-time formulation for short-term scheduling.
1. multipurpose batch processes. Industrial & engineer-
ing chemistry research, 37(11), 4341-4359.

Jiang, S.L., Liu, M., Lin, J.H., and Zhong, H.X. (2016). A
prediction-based online soft scheduling algorithm for the
real-world steelmaking-continuous casting production.
Knowledge-Based Systems, 111, 159-172.

Kaggle Inc (2017). New york city taxi trip duration
[accessed on the 15th of June, 2018]. URL https://
www.kaggle.com/c/nyc-taxi-trip-duration.

Li, X. and Olafsson, S. (2005). Discovering dispatching
rules using data mining. Journal of Scheduling, 8(6),
515-527.

Mouelhi-Chibani, W. and Pierreval, H. (2010). Training a
neural network to select dispatching rules in real time.
Computers & Industrial Engineering, 58(2), 249-256.

Murphy, K.P. (2012). Machine learning: a probabilistic
perspective. The MIT Press, Cambridge, MA, USA.

Olafsson, S. and Li, X. (2010). Learning effective new sin-
gle machine dispatching rules from optimal scheduling
data. International Journal of Production Economics,
128(1), 118-126.

Oscarleo (2017). New york city taxi with osrm [accessed on
the 25th of June, 2018]. URL https://www.kaggle.
com/oscarleo/new-york-city-taxi-with-osrm/
version/5.

Priore, P., Gémez, A., Pino, R., and Rosillo, R. (2014).
Dynamic scheduling of manufacturing systems using
machine learning: An updated review. AT EDAM, 28(1),
83-97.

Rasmussen, C.E. and Williams, C.K.I. (2006). Gaussian
processes for machine learning. The MIT Press, Cam-
bridge, MA, USA.

Salvatier, J., Wiecki, T.V., and Fonnesbeck, C. (2016).
Probabilistic programming in python using PyMCS3.
PeerJ Computer Science, 2, eb5.

Shaik, M.A. and Floudas, C.A. (2009). Novel unified
modeling approach for short-term scheduling. Industrial
& Engineering Chemistry Research, 48(6), 2947-2964.

Verboven, S., Hellinckx, P., Arickx, F., and Broeckhove,
J. (2008). Runtime prediction based grid scheduling
of parameter sweep jobs. In Asia-Pacific Services
Computing Conference, 2008, 33-38. IEEE.

Zhao, J., Wang, W., Sun, K., and Liu, Y. (2014). A
bayesian networks structure learning and reasoning-
based byproduct gas scheduling in steel industry. IFEFE
Transactions on Automation Science and Engineering,
11(4), 1149-1154.



