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Abstract: Methods based on Sentinel-1 data were developed to monitor crops and fields to facilitate
the distribution of subsidies. The objectives were to (1) develop a methodology to predict individual
crop species or or management regimes; (2) investigate the earliest time point in the growing season
when the species predictions are satisfactory; and (3) to present a method to assess the uncertainty
of the predictions at an individual field level. Seventeen Sentinel-1 synthetic aperture radar (SAR)
scenes (VV and VH polarizations) acquired in interferometric wide swath mode from 14 May through
to 30 August 2017 in the same geometry, and selected based on the weather conditions, were used in
the study. The improved k nearest neighbour estimation, ik-NN, with a genetic algorithm feature
optimization was tailored for classification with optional Sentinel-1 data sets, species groupings, and
thresholds for the minimum parcel area. The number of species groups varied from 7 to as large as
41. Multinomial logistic regression was tested as an optional method. The Overall Accuracies (OA)
varied depending on the number of species included in the classification, and whether all or not
field parcels were included. OA with nine species groups was 72% when all parcels were included,
81% when the parcels area threshold (for incorporating parcels into classification) was 0.5 ha, and
around 90% when the threshold was 4 ha. The OA gradually increased when adding extra Sentinel-1
scenes up until the early August, and the initial scenes were acquired in early June or mid-May. After
that, only minor improvements in the crop recognition accuracy were noted. The ik-NN method
gave greater overall accuracies than the logistic regression analysis with all data combinations tested.
The width of the 95% confidence intervals with ik-NN for the estimate of the probability of the
species with the largest probability on an individual parcel varied depending on the species, the area
threshold of the parcel and the number of the Sentinel-1 scenes used. The results ranged between
0.06–0.08 units (6–8% points) for the most common species when the Sentinel-1 scenes were between 1
June and 12 August. The results were well-received by the authorities and encourage further research
to continue the study towards an operational method in which the space-borne SAR data are a part
of the information chain.

Keywords: crops; classification; synthetic aperture radar; C-band; k-NN; genetic algorithm;
multinomial logistic regression; boreal region; ESA Sentinel-1

1. Introduction

The Introduction section discusses the importance of studying Sentinel-1 time series data in
the mapping of crops, and relates our work with the state-of-the-art in the context of the study.
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The introduction is divided into two sub-sections. Firstly, the background and motivation are discussed
and the objectives of the study are given. Examples of the earlier studies using synthetic aperture
radar (SAR) data in crop classification are reviewed further in the second sub-section.

1.1. Background and Motivation

The Land Parcel Identification System (LPIS) of the European Commission is used for registration
of agricultural reference parcels considered eligible for annual payments of European Common
Agricultural Policy (CAP) subsidies to farmers [1]. LPIS and the subsidies presume a system of
controlling the quality of the management for each parcel. The control was carried out through
field visits and using aerial photographs, and both methods are quite expensive. The European
Union is interested in a more cost-efficient way of controlling the management of crop fields, e.g., the
utilization of the space-borne remote sensing data. Reliable image acquisition is important in operative
applications. Clouds and haze often prevent the acquisition of applicable optical area images in such a
way that, e.g., even a single cloud free Sentinel-2 can not be acquired from the growing season from
each region in most of the European countries. Space-borne SAR data are thus the only remote sensing
data source suitable for rapid and near real-time assessment of crop fields during the growing season
in European countries. Since the advent of the Copernicus programme Sentinel-1 SAR satellites that
are capable to provide repeated acquisitions every six days (with two satellites), the potential for
continuous monitoring of crops was established.

One key prerequisite for an operational method is a possibility to recognize the management
operations and species early enough during the growing season. This requirement arises from the
need to make decisions and provide the subsidy payments early enough. It is also important to know
the uncertainty of the species prediction at an individual parcel level. An operational system may
still need several auxiliary information sources, e.g., provided by methods using data acquired by
space-borne or airborne sensors, and even field visits. Uncertainties of the species prediction at an
individual field parcel level are therefore important to decide whether other information is needed or
not, in addition to the predictions based on satellite observations.

To date, several approaches to use space-borne SAR data to monitor agricultural regimes, e.g.,
for detecting ploughing, moving, or sowing activities were reported in the literature (see Section 1.2).
Studies in crop classification with fully polarimetric C-band SAR and optical area data have also been
reported (Section 1.2). Many studies concentrated on tree orchards, grapes, or sugarcane. A few studies
exist with detailed corn species recognition particularly using Sentinel-1 data. Section 1.2 reviews the
aforementioned literature.

The objectives of this research are (1) to develop a method for recognition of individual crop
species, or species groups, and management regimes; (2) to investigate the earliest time point in
the growing season when the species predictions will be satisfactory; and (3) to present a method
to assess the uncertainty of the crop species prediction at an individual parcel level. The improved
k nearest neighbour method (ik-NN) with the feature optimization using a genetic algorithm was
modified for estimation [2,3]. The uncertainty assessment of the parcel level predictions was based
on the probabilities of the crop species that are outputs of the ik-NN method. A parametric method
to estimate the confidence intervals of the largest probabilities was developed. Multinomial logistic
regression was employed as an optional method for comparison with the ik-NN method. The methods
and results were demonstrated on a test site located in Southern Finland, in Eura muninicipality.
The number of crop field parcels was 10,287 with a total study area of 24,503.5 hectares.

1.2. SAR Data in Crop Classification

SAR technology offers many advantages for crop monitoring activities, given that the radiowaves
are generally unaffected by the presence of clouds and haze. The presence of multiple SAR instruments
increases the opportunity to build temporally rich data sets in the early weeks of crop growth. Due to
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the size of the crops, C-band is considered to be a wavelength most suitable for crop monitoring
applications with various SAR techniques [4–7].

Multitemporal SAR data sets can be used to exploit changes in the crop structure as crops transition
from one growth stage to another and thus to separate one crop type from another. In particular, SAR
backscatter at C-band is very sensitive to changes in structure during seed and fruit development,
stages which occur later in the growing season [8]. This means that high quality crop inventories can be
readily delivered close to the end of the growing season. For mono-temporal SAR based classification
of crops, in order to maximize classification accuracies, SAR image acquisition is recommended to be
planned during seed and reproductive phenology phases [8,9]. With multitemporal SAR approaches,
it remains still to be seen how early in the growing season the crop inventories can be produced, and
what accuracies can be achieved as the growing season develops.

To date, the majority of research on cropland classification was done using multiparametric
SAR data [10]. This includes mostly polarimetric and multitemporal SAR data [8,11–22], as well
as multi-frequency SAR and fusion of satellite optical and SAR data [7,23]. In addition, the
potential of interferometric SAR approaches was evaluated along with SAR backscatter data in crop
monitoring [6,24,25]. While often SAR data acquired at X-band, and, to lesser extent, L-band [26],
can still be used in crop monitoring and change detection, satellite C-band SAR data are assumed to
be the preferred choice for crop mapping, particularly for agricultural areas with low vegetation [8].
There is a trade-off between the polarimetric information and the multitemporal information; however,
results obtained using the multitemporal information tend to be better [5]. On the other hand, when
only a few acquisitions are available, the polarimetric mode may perform better than the single- and
dual polarization modes.

In Loosvelt et al. [15], the Random Forests approach was used for the probabilistic mapping
of vegetation using fully polarimetric L- and C-band EMISAR data to assess and analyze
classification uncertainty based on the local probabilities of class membership. Results showed that
multi-configuration in the dataset decreases the classification uncertainty for the different agricultural
crops when compared to the single-configuration alternative. Furthermore, the uncertainty assessment
revealed lower confidence for the classification of (mixed) pixels at the field edges.

Currently, Sentinel-1 series satellites of European Space Agency (ESA) are the key resource for
supplying freely available SAR data. The data are not fully polarimetric, but scenes are acquired every
6–12 days (depending on the geographical region) and can continuously cover the whole growing
season. This enables monitoring at different times and allows access to the whole phenological cycle of
the crops. It also brings forward the aspect of temporal variation of backscatter for different types of
crops, as these can be useful in differentiating between crops.

Most recently, due to freely available ESA Sentinel-1 C-band SAR data, many research
efforts concentrate on various crop classification with advanced methods using Sentinel-1 time
series [21,23,26–29]. Likewise, we use SAR data and review several classification approaches in
more detail.

In [26], repeat-pass Sentinel-1 data were used over North Dakota to classify individual agricultural
land-cover types. In this approach, the times series forms the basis of a classification algorithm, where
individual pixels are compared against a model of average crop backscatter response and classified as
the crop with the least difference from the model.

Similarly, in [21], the temporal intensity models were used in K-means clustering approach for
crop classification (4 to 5 types of crops including corn, soybean, rice, peanut, lotus, and grass), gaining
accuracies on the order of 75 to 90% for different crops. Xu et al. [21] used Sentinel-1 time-series data to
construct temporal intensity models employing K-means clustering. The introduced spectral similarity
value measure (SSV) seemed to work better than the decision tree and the Bayesian classifier methods.
The training data were produced through visual interpretation. The number of the species groups
were five and four in the two study area. Overall accuracies were as high as 90–92%. The average sizes
of the field parcels were not given.
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Analysis of Sentinel-1 time series along with optical Sentinel-2 data in [23] has shown that SAR
backscatter and NDVI (normalized difference vegetation index) may be complementary for agricultural
applications. Particularly, the VH-to-VV ratio at C-band was shown to be a good discriminator and
notably suitable for crop applications. Veloso et al. [23] analyzed and interpreted the temporal trajectory
of remote sensing data for a variety of winter and summer crops that are widely cultivated in the
world (wheat, rapeseed, maize, soybean and sunflower). Sentinel-1 data were used and compared
to the temporal variation with NDVI derived from Sentinel-2 type optical data. The performances
of different features in assessing the phenological stages of the crops were analyzed. The purpose
was to also investigate the possibilities of estimating physical parameters, such as fresh biomass and
green area index (GAI). The authors concluded that the dense time series allowed the capture of short
phenological stages and to describe various crop developments. The authors concluded also that a
better understanding of SAR backscatter and NDVI temporal behaviors under contrasting agricultural
practices and environmental conditions help upcoming studies related to crop monitoring based on
Sentinel-1 and Sentinel-2, such as dynamic crop mapping and biophysical parameters estimation.

In earlier work [27], a set of five Sentinel-1 scenes were used along with one multispectral
Sentinel-2 image to classify six crop types (beans, beetroot, grass, maize, potato, and winter wheat).
To assess the potential of crop classification with common off the shelf supervised learning models, a
benchmarking using four different approaches (kernel-based extreme learning machine, multilayer
feedforward neural networks, random forests, and support vector machine) was implemented. The first
approach performed best with very high overall accuracy of 96.8%. Evaluation of the sensitivity of
classification models and relative importance of data types using data-based sensitivity analysis
showed that the two most important scenes (explanatory variables) was VV-pol channel of one of
Sentinel-1 scenes and band 4 of the Sentinel-2 scene, indicating complementary of optical and SAR
data in crop classification.

In yet another methodological study on crop-type mapping using a sequence of Sentinel-1
images [28], the dynamic conditional random fields were shown to effectively capture spatio-temporal
phenological information for various crops. This kind of variation appears inherent in images and
can be used for crop classification purposes. Not surprisingly, the final classification performance was
higher for the multitemporal stack than for any of the separate scenes. The suggested approach was
also shown to perform better than the conventional maximum likelihood approach with multitemporal
images aggregated as composite bands.

Several conventional machine learning approaches were compared with deep learning approaches
subject to crop classification performance in [30]. Ndikumana et al. [30] demonstrated the performances
of the traditional k-NN, random forest (RF) and support vector machine (SVM) in a test site in France
with eleven species categories and 25 Sentinel-1 scenes, ranging from from May 2017 to September
2017. The two most dominant categories, rice and wheat, comprised more than 50% of the area of
the test sites. The average parcel area of rice was 3.3 hectares and that of wheat 1.7 hectares. The
performances of the traditional methods were compared to those of two deep learning techniques,
deep recurrent neural network (RNN)-based classifiers. Interestingly, while deep learning approaches
proved superior, the performance in terms of overall accuracies was not so strong: 86–87% with more
traditional methods and 89–90% with deep learning models. The k-NN method and its optimized
version ik-NN has some advantages over the other methods, where we selected it as the main method
here [31]. These advantages are discussed in Section 2.3.

While there is a considerable amount of research on the use of Sentinel-1 time series in crop
mapping, considerable gaps seem to be present. Most notably, the prediction uncertainty assessment
is typically missing. Furthermore, the connection of classification performance to the specific stage
of phenological cycle of crops is barely established. However, examples of the earlier studies and
references can be found, e.g., in Veloso et al. [23] and Song and Wang [32]. The latter one deals
with one species in its phenology. In addition, the reported classification accuracy levels were not
always satisfactory, particularly for a large number of crops, lacking in depth sensitivity analysis of
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the classification performance on the number of crops used, size of the parcels, and the number of
Sentinel-1 scenes employed in the experiment. In addition, in the majority of the studies, no selection
of most suitable Sentinel-1 scenes was performed, and the study area is often very small. In this study,
we address several of these issues.

2. Materials and Methods

The methods were developed and the results demonstrated and discussed using one test site from
southwest Finland, located in the Eura municipality (Figure 1), crop data from the test site, provided
by the Finnish Food Authority [33] and seventeen 17 Sentinel-1 scenes.

2.1. Sentinel-1 Scenes

Seventeen ground-range detected (GRD) Sentinel-1 images acquired in IW mode during the
period 14 May–30 August were downloaded from ESA Open Access Hub and orthorectified.

Image orthorectification was done using a digital elevation model available from the National
Land Survey of Finland. Scenes were aggregated in azimuth and range to obtain images with pixel
dimensions approximately corresponding to the 20 m grid spacing. The bilinear interpolation method
was used for resampling in connection with the ortho-rectification. Radiometric normalization
of intensity was done using a projected pixel area based approach to minimize the effect of the
topography [34,35]. The scenes were further re-projected to the ERTS89/ETRS-TM35FIN projection
(EPSG:3067) and resampled to a final pixel size of 16 m.

The averages and standard deviations of the intensities of the both VV and VH polarizations
were calculated for each agriculture parcel, as well as the ratios. Multi-temporal imagery shows the
progress of the vegetation during the growing season and is necessary when identifying crop species.
It also makes it possible to reduce the effect of the random scattering (speckle) on the predictions and
error estimates and also to utilize the variation of the data acquisition conditions in the estimation
through using multifaceted information. The dates of the images are shown in Table 1. An example of
multitemporal color coded composition of Sentinel-1 time series at different stages of crop development
are shown in Figure 2.

Figure 1. Study area location in the southwestern part of Finland.
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Figure 2. An example of multitemporal Sentinel-1 colour composition, upper left image, Red, Green.
Blue (RGB) composite of scenes acquired on 1 June (R), 7 June (G) and 13 June 13 (B); upper right
image—RGB composite of scenes acquired on 25 July (R), 6 August (G) and 12 August (B); bottom
image is the enlarged fragment of the upper right image showing the parcel boundaries in white color.
The backscatter coefficient of VH polarization of each scene is used.
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Table 1. List of Sentinel-1 scenes used in the study.

Image Date Mode Polarization

1 14 May 2017 IW VV, VH
2 26 May 2017 IW VV, VH
3 1 June 2017 IW VV, VH
4 7 June 2017 IW VV, VH
5 13 June 2017 IW VV, VH
6 19 June 2017 IW VV, VH
7 25 June 2017 IW VV, VH
8 1 July 2017 IW VV, VH
9 7 July 2017 IW VV, VH
10 13 July 2017 IW VV, VH
11 19 July 2017 IW VV, VH
12 25 July 2017 IW VV, VH
13 6 August 2017 IW VV, VH
14 12 August 2017 IW VV, VH
15 18 August 2017 IW VV, VH
16 24 August 2017 IW VV, VH
17 30 August 2017 IW VV, VH

2.2. Field Parcel Data

The Eura site included 10,287 agriculture parcels with the total area amounting to 24,503.5 hectares.
The number of different crop species or land management categories in the 2017 data was 119.
The species data together with the boundary data of the agriculture parcel were provided by the
Finnish Food Agency [33]. Several species groupings were tested. The grouping with nine categories
was used in the analyses and is shown in Table 2 together with the numbers of the parcels by species
groups as well as the averages and standard deviations of the areas of the parcels by species groups.
The final grouping was selected in collaboration with the agriculture experts from the Finnish Food
Authority taking into account also the development of the crop species within the growing season [33].
The ranges of the dates of the Sentinel-1 scenes were also selected in collaboration with the same
authorities and cover the growing seasons of the species. Overall, the average parcel area was 2.38
hectares and the standard deviation of the areas 2.83 hectares.

Table 2. The nine species groups, the codes used in the analyses together with number of the parcels,
averages, and standard deviations of the areas in the test site.

Code Species Group Number of Average Standard Deviation
the Parcels Areas of the Areas

1 Spring wheat, Oats 2994 2.809 2.889
2 Broad bean, Vicia faba 104 2.742 2.901
3 Potato, sugar beet 1373 2.559 2.512
4 Spring Oilseed Rape 218 3.320 3.190
5 Pea, beetroot and some other 726 1.852 2.444
6 Grass, Hay 928 1.965 2.275
7 Winter wheat, Winter barley 295 4.121 3.919
8 Feed barley, Malting barley 1858 3.061 3.446
9 Shelter belt, Nature management field 1791 0.837 1.208

Total All parcels 10,287 2.382 2.827

2.3. Methods

Commonly used methods when classifying multinomial variable observations with remote
sensing data are, in addition to discriminant analysis, logistic regression and neural network based
methods, Random Forests and Support Vector Machine (e.g., [36,37]). Discriminant analysis and logistic
regression as parametric methods presume the acceptance of the distributional properties of the data.
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Several studies have been published with all these methods. Nearest neighbour techniques have been
employed since the early 1950s in pattern recognition. Nearest neighbour methods became popular in
forest and other environmental applications since they were launched for forest inventory applications
in the early 1990s in Finland (e.g., [31,38]). The feature optimization with a heuristic genetic algorithm
approach for k-NN for forest remote sensing purposes was developed by Tomppo and Halme [3].
The advantages of k-NN include, in addition to being non-parametric and thus not presuming any
distributional properties, (1) a possibility to simultaneous estimation of several parameters, (2) to keep
the dependence structure of the variables on the training data also in the estimates, and (3) to keep
the distribution of training data in small area estimates [31,38]. The non-parametric property means
suitability to problems with complex dependencies between dependent and explanatory variables.
Keeping the dependencies between different dependent variables is important when dealing with
multivariate data, e.g., if we would be interested in estimating crop species and yield by species.
The small area estimates can be derived directly from the training data using the weights of the
training observations and thus avoiding the typical tendency towards mean that is present in many
other methods. The k-NN methods suit thus well for operational applications [31].

Two methods were tested keeping in mind the applicability for operational work. The improved
ik-NN estimation method with a genetic algorithm feature optimization was tailored for the study
with optional Sentinel-1 data sets, species groupings, and thresholds for the minimum parcel area
(cf. [2]). The genetic algorithm has turned out to suit complex optimization problems. It is popular
in economic and ecological phenomena and machine learning (e.g., [39]). However, it often needs
fine-turning and tailoring for different applications. Multinomial logistic regression for categorical
variables were tested as an optional method.The number of species groups varied from 7 to as large
as 41, the latter one requested by the agricultural authorities for the Eura site. Leave-one-out cross
validation and splitting the data to training data (2/3) and validation data (1/3) were used in result
validation. The flowchart of the work-flow of the study is shown in Figure 3. The first analyses were
conducted with both methods. Only the ik-NN method was used in the deeper analyses because it
turned out to give smaller prediction errors.
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Figure 3. The flowchart of the study.

2.3.1. SAR Metrics Used in the Crop Species Assessment

The SAR features were calculated for each field parcel to remove the speckle effect and of the
radiometric variation within the homogeneous parcel for both polarizations. From the pixel level
intensities (Ik,p

s,i ), the following features were calculated for each parcel, s, for both polarizations p and
for each image, k

(a) averages,

10 log10 Ik,p
s = 10 log10

∑ns
i=1 Ik,p

s,i

ns
, k = 1, . . ., 17, p ∈ {VV, VH}, (1)

where ns is the number of the pixels on parcel s,
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(b) standard deviations√
ns

∑
i=1

(10 log10 Ik,p
s,i − 10 log10 Ik,p

s )/(ns − 1), k = 1, . . ., 17, p ∈ {VH, VV}, (2)

(c) ratios

1/ns

ns

∑
i=1

I
k1,p
s,i /I

k2,p
s,i , k1 = 2, 3, 4 and k2 = 5, 6, 7, 8, 9. (3)

Several different sets of predictor variables were tested, parcel-averaged intensities (Equation (1)),
standard deviations (Equation (2)), and different ratio features (Equation (3)).

2.3.2. ik-NN Method for Crop Species Identification

The well-known k-NN estimation method was tailored for and employed in crop species
prediction. The weights for the features selected were calculated using the genetic algorithm [3,31]
and its variant for categorical variables [2]. This k-NN method is called the ik-NN method here.
The advantages of the ik-NN method is the weighting of the explanatory variables based on their
importance in prediction and thus smaller prediction errors compared to the ordinary k-NN method;
thus, it is called improved.

Let’s recall the main features of the ik-NN estimation with the genetic algorithm in the feature
weighting. Denote the k nearest feasible parcel by i1(p), . . ., ik(p) when the distance is calculated in the
feature space. The weight wi,p of parcel i to parcel p is defined as

wi,p =
1

dt
pi ,p

/
∑

j∈{i1(p),...,ik(p)}

1
dt

pj ,p
, if and only if i ∈ {i1(p), . . ., ik(p)}

= 0 otherwise.

(4)

The value of k was fixed to be 5 after preliminary tests using the overall accuracy as the criteria.
The distance weighting power t is a real number, usually t ∈ [0, 2]. The value t = 1 was used here. A
small quantity, greater than zero, is added to d when d = 0 and i ∈ {i1(p), . . ., ik(p)}.

The distance metric d employed was

d2
pj ,p =

n f

∑
l=1

ωl
2( fl,pj

− fl,p)
2, (5)

where
fl,p is the lth SAR feature variable of parcel p,
fl,pj

is the lth SAR feature variable of the nearest neighbour j of parcel p,
n f the number of SAR feature variables,
and ωl the weight for the lth SAR feature variable.

The values of the elements ωl of the weight vector ω were selected with a genetic algorithm.
The details of the genetic algorithm employed are given in [3] and the modification to categorical
variables in [2].

The fitness function for the categorical variables to be minimized with respect to ω vector was

f [ω, γ, B(X) =
nm

∑
j=1

γj[1− Bj(Xj)], (6)

where γj > 0 is a user defined coefficient, Xj an error matrix, Bj the accuracy measure with response
variable j whose classes are to be predicted, nm is the number of response variables to be considered in
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the optimization procedure, and ω is the weight vector to be optimized (Equation (5)). The number of
generations in the genetic algorithm optimization was selected to be 40 after the tests.

For categorical variables, the mode or median of the predicted classes for the nearest neighbors can
be used as a prediction instead of a weighted average as is used for continuous variables. For this study,
the mode gave more accurate results than the median, consistent with the earlier investigations [2].
The predicted category is the category that has the greatest sum of the weights, ωi,p, when summed up
by classes over the k nearest neighbors. In theory, equal sums are very rare when real value weights
are used; in fact, the probability is zero if rounding is not considered. In cases of equal sums for two or
more classes, one class is selected randomly from among those with the greatest sum. This method
was used for predicting the categorical variable obtaining the values, the value being the species or
species group number.

2.3.3. Multinomial Logistic Regression Method

Multinomial logistic regression was tested as one optional estimation method. The probability of
the species group k on parcel p was estimated using the model

P(speciesgroup on parcel p = k|xp) =
eβkxp

1 + ∑L−1
l=1 eβkxp

, k = 1, ..., L− 1 and

=
1

1 + ∑L−1
l=1 eβkxp

, k = L,
(7)

where f (k, p) = βkxp is a linear predictor function, βk the vector of the regression coefficient associated
with species group k, xp a vector the set of the explanatory variables associated with observation
(parcel) p, and L the number of the species group, here 9. The data was split to the training data and
validation data also in this case, two thirds of the parcels and one third of the parcels, respectively.

2.3.4. Confidence Intervals of Probabilities for Individual Observations Using ik-NN

The uncertainty of the category prediction of an individual field parcel is important when assessing
which field parcel needs additional efforts to get reliable enough information for decision-making.
In order to do this, the confidence intervals of the predicted probability of the category for an individual
field parcel are needed.

We propose the following procedure to assess the uncertainty of an individual prediction.
The k-NN estimation, and its improved version ik-NN, produce probabilities for the predicted category
on parcel p. These probabilities can be calculated using the weights wi,p (Equation (4)) as follows

˜prob(k)p = P(category(p) = k) = ∑
i∈Ip

wi,p Ind(cat(i)=k) , (8)

where k is the mode category based on the largest sum of the weights wi,p by categories on parcels
i ∈ Ip and Indcat(i)=k is an indicator function of the category in parcel i. The confidence intervals for
the probabilities of the mode for the individual parcels were calculated using a linear model

̂̃prob(k)p = a +
n f

∑
l=1

bl fl,p + c · k + ε, (9)

where fl,p are the SAR features (Equation 5), k is the predicted crop category, a categorical variable
(factor), and a, b, and c are the regression coefficients to be estimated (b being a vector), and ε a
normally distributed random error.

The confidence intervals of the predictions were calculated in a normal way using the estimator

V̂f = s2 x0 (X
′
X)−1 x

′
0 + s2 , (10)
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for the variance for the individual prediction with a predictor vector of x0, residual sum of s2 and
design matrix X consisting of the feature vectors f and predicted categories k.

3. Results

3.1. Classification Performance Using ik-NN and Logistic Regression

The results were calculated using several subsets of the Sentinel-1 scenes and also several
minimum area thresholds of the agricultural field parcels. The data sets were split into training data
(2/3) and validation data (1/3) both with the ik-NN method and the multinomial logistic regression.
Two starting time points of the scenes were tested, the first scenes from 1 June, and the first scenes
from 14 May. The Sentinel-1 data accumulation period varied with the ik-NN method. Only the full
Sentinel-1 data sets were tested with the multinomial logistic regression, starting either on 1 June or 14
May. The area thresholds varied from zero hectares to four hectares in the first results with the both
methods (Tables 3 and 4).

The overall accuracy OA with the ik-NN method employing the genetic algorithm and nine
species groups was 71–73% when all parcels were included and the Sentinel-1 scenes until mid
August, or beyond that, around 80% when the parcel area threshold (for incorporating parcels into
classification) was 0.5 hectares, and around 89–90% when the parcel area threshold was two to four
hectares (Tables 3 and 4).

The OAs with the multinomial logistic regression were somewhat smaller than with the ik-NN
method with all minimum area thresholds (Tables 3 and 4). The differences of the OA proportions
between ik-NN and multinomial logistic regression were statistically significant at the level of 5% for
the area thresholds 0, 0.5 and 1 hectares, near significance for 2 hectares, and not significant for three
and four hectares when using McNemar’s test for dependent samples. The validation data are used in
the tests. The number of the observations in the validation data affects the significance. The rest of the
analyses were carried out therefore with the ik-NN method only.

Concerning the key question of a sufficient time period for Sentinel-1 data acquisition for crop
species prediction, some detailed analyses were carried starting with the features from one scene
and accumulating scene by scene until the features from all scenes were the explanatory variables.
These analyses were carried out using the parcel area threshold of two and four hectares only. The OA
increased with the number of Sentinel-1 scenes until the middle of August when the first scenes were
from the early June. After that, only minor improvements in the crop recognition accuracy were noted
(Table 3). When using all 17 Sentinel-1 scenes from 14 May, in addition to the scenes from 1 June
onward, the OAs were somewhat greater when the latest scenes were from the middle of July and
slightly greater when the latest scenes were from 25 July compared to the case in which all scenes were
used. After that time point, the accuracies were at about the same level as both starting dates, 14 May
and 1 June (Tables 3 and 4 and Figure 4).

When starting the scene accumulation from the end of the image acquisition period that is from
the latest scene, 30 August, the increase in the OA was more rapid compared to starting from the early
growing season (Figure 5, cf. Figure 4). The OA increased quite rapidly and the scenes from 30 August
backwards to late or mid July gave almost as large OA as the case in which the June and May scenes
were also included. A conclusion is that the data from the later period of the growing season are more
important than from the early period.

We also tested some separate combinations of a few Sentinel-1 data sets in crop species groups
classification. The OAs with three scenes, from 1 June, 1 July and 25 July, and with the area thresholds
two and four hectares were 0.628 and 0.641, respectively. Using the three scenes, from 1 July, 24 August
and 30 August, the OA was 0.690 and 0.730, respectively. That is, adding the scene from 1 July to the
two late August scenes increased the overall accuracies (cf. Figure 5). The difference of the proportions
of correctly classified for the case 2 hectares, 0.062, is statistically significant at 5% level when using

McNemar’s test for dependent samples (1.96 ×
√ ̂vardi f = 0.061), and the difference of 0.089 slightly
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not statistically significant at the same level for the case of four hectares (0.091). The validation data
are used in the tests here.

The results revealed, in addition to relatively good potentials of Sentinel-1 time series in
distinguishing the crop species, that it is sufficient to acquire the images from early June until early or
mid-August, or even from late June, or from mid July until mid- or late August, when the growing
conditions are similar to that in the test site in South Finland.

An example of a confusion matrix is given in Table 5. The user’s and producer’s accuracies (UA
and PA) as well as F1 scores were also quite promising, UA and PA for most of the crop categories
between 75–90, in some cases even 95%, except for the category Shelter belt, nature management
field (9) and producer’s accuracy for the category 5, ‘Pea, beetroot and some other species’ when the
Sentinel-1 scenes were from 1 June until 3 August, and the parcel area threshold was two hectares
(Table 6). Both user’s and producer’s accuracies of the category 2 (Broad bean), the category with
smallest number of parcels, increased to some extent when the two May scenes were included.

Table 3. Overall accuracies with the improved k nearest neigbor (ik-NN) method, maximum 15
Sentinel-1 scenes from the period 1 June–30 August, ascending geometry VV and HV polarizations,
and, with multinomial logist regression (Log regr), nine species groups, the minimum area of the parcel
varies from 0 ha to 4 ha.

Sentinel-1 Data 1.6–1.7 1.6–13.7 1.6–25.7 1.6–12.8 1.6–24.8 1.6–30.8 1.6–30.8

Accumulation Period ik-NN Log regr

Number of scenes 6 8 10 12 14 15 15
Area threshold (ha) Overall accuracy

0 0.517 0.600 0.667 0.710 0.719 0.722 0.672
0.5 0.562 0.659 0.748 0.803 0.809 0.813 0.741
1 0.606 0.686 0.782 0.828 0.838 0.870 0.766
2 0.612 0.703 0.809 0.853 0.873 0.870 0.807
3 0.601 0.700 0.824 0.871 0.874 0.876 0.829
4 0.613 0.709 0.839 0.894 0.888 0.894 0.829

Table 4. Overall accuracies with the ik-NN method, maximum 17 Sentinel-1 scenes from the period
14 May–30 August, ascending geometry VV and HV polarizations, and with multinomial logist
regression (Log regr), nine species groups, the minimum area of the parcel varies from 0 ha to 4 ha.

Sentinel-1 Data 14.5–1.7 14.5–13.7 14.5–25.7 14.5–12.8 14.5–24.8 14.5–30.8 14.5–30.8

Accumulation Period ik-NN Log regr

Number of scenes 8 10 12 14 16 17 17
Area threshold (ha) Overall accuracy

0 0.537 0.578 0.657 0.707 0.716 0.722 0.686
0.5 0.594 0.646 0.747 0.802 0.807 0.813 0.749
1 0.625 0.692 0.776 0.839 0.841 0.846 0.772
2 0.644 0.719 0.805 0.847 0.872 0.872 0.817
3 0.629 0.705 0.824 0.850 0.880 0.880 0.834
4 0.591 0.695 0.818 0.883 0.888 0.900 0.820
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Table 5. An example of confusion matrix, 15 Sentinel-1 scenes, 1 June–30 August, nine species groups,
minimum area 2 ha, observed on coloumns, predicted on rows.

Predicted Observed Group
Group 1 2 3 4 5 6 7 8 9 Total

1 451 0 0 4 2 8 7 28 7 507
2 0 12 2 1 3 0 0 0 0 18
3 2 1 204 0 22 0 0 1 0 230
4 1 1 0 35 0 0 0 0 0 37
5 3 3 2 0 48 1 0 0 5 62
6 3 0 0 0 2 68 0 0 17 90
7 1 0 0 0 0 5 53 1 1 61
8 11 1 2 0 5 1 2 277 1 300
9 1 0 0 0 3 14 1 0 32 51

Total 473 18 210 40 85 97 63 307 63 1356

Table 6. An example of user’s and producer’s accuracies (UA and PA) and F1 scores by species groups
with all the Sentinel-1 scenes when the first scene was either from 1 June, 15 scenes, or 14 May, 17 scenes.
With 15 scenes, the data correspond to Table 5.

Species Group

1 2 3 4 5 6 7 8 9

UA, 15 scenes 0.890 0.667 0.887 0.946 0.774 0.756 0.869 0.923 0.628
PA, 15 scenes 0.954 0.668 0.971 0.875 0.565 0.701 0.841 0.902 0.508
F1, 15 scenes 0.921 0.667 0.927 0.909 0.653 0.727 0.855 0.912 0.562

UA, 17 scenes 0.898 0.857 0.902 0.947 0.769 0.726 0.850 0.915 0.628
PA, 17 scenes 0.954 0.667 0.967 0.900 0.588 0.711 0.810 0.912 0.508
F1, 17 scenes 0.925 0.750 0.933 0.923 0.666 0.718 0.830 0.913 0.562

Figure 4. Overall accuracies as a function of the stage of the phenology and the number of scenes
calculated with the minimum sizes of the parcels of two and four hectares.



Remote Sens. 2019, 11, 2480 15 of 22

Figure 5. Overall accuracies as a function of the stage of the phenology and the number of scenes
calculated with the minimum sizes of the parcels of two and four hectares. The time is reverse compared
to Figure 4.

An example of a map of the predicted crop species is shown in Figure 6 and an example of the
largest class probability (scale 0–100) in Figure 7 (see Section 3.3). The Sentinel-1 scenes from 1 June to
30 August have been used here, in 15 scenes total. The crop species has been predicted for all field
parcels here, that is, with a minimum field parcel size of greater than zero. Still, the majority of the
probabilities are large, in 90% of the parcel area larger than 50% and, in about 80%, larger than or equal
to 80% (see also Table 3).

Figure 6. An example of a map of the predicted crop species with the field parcel boundaries, c©Finnish
Food Authority, c©Google Earth.
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Figure 7. An example of a map of the probability of the predicted crop species with the field parcel
boundaries, c©Finnish Food Authority, c©Google Earth.

3.2. The Effect of VV and VH Polarizations in Crop Species Classification

Some experiments were carried to test the capability of different VV and VH polarizations in
crop species classifications. Each of the 17 single Sentinel-1 scenes were analyzed separately due to
the assumption that the the classification capabilities of VV and VH polarizations change during the
growing season. Only one explanatory variable, one scene, and one polarization was thus employed
in each classification. The area threshold of two hectares was used in this experiment. The OAs were
low as can be expected (Figure 8). The tests revealed that the OA increases during the growing season
with both polarization until early August and either stabilizes (VV polarization) or decreases slightly
after that (VH polarization). The OA increases with VV polarization from about 25% to 52% and with
VH also from about 25% near 50% but decreases with VH after that to the level of 43%. The OAs with
the two scenes together from 12 and 18 August gave the OAs of 58% (VV) and 55% (VH) and with the
three scenes from from 12, 18, and 24 August 62% (VV) and 59% (VH). Finally, when using all 17 scenes,
the OAs with single polarizations were 85.2% (VV) and 82.7% (VH). Based on these experiments,
VV performs slightly better than VH, although the differences are small. However, the differences
were statistically significant at the 5% level, many at the 1% level, in all cases except with the scene 19
June when using McNemar’s test for dependent samples.
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Figure 8. Overall accuracies when using a single Sentinel-1 scene and either VV or VH polarization
calculated and the minimum sizes of the parcels of two hectares.

3.3. Confidence Intervals for Individual Parcel Predictions

The probabilities of the predicted category in the validation data sets were assessed as given
in Equation (8). The 95% confidence intervals of the predicted probabilities were calculated using
Equation (10) and the Sentinel-1 data sets from the period 1 June–12 August, that is, in total 14 scenes.
Basic statistics of the widths of the confidence intervals by the parcel area thresholds are shown in
Table 7. The median and mean of the intervals with a threshold of two hectares, e.g., are about 9%
points. Figure 9 shows statistics of the widths of predictions intervals by the species groups for the
parcels in the validation data set together with the outliers. The statistics are the median, 25% and 75%
percentiles and 1.5 times the interquartile range.

The averages of the widths of 95% confidence intervals of the predicted probabilities by the area
classes (ha) and species group predictions are shown in Table 8 and the number of the parcels using the
same grouping in Table 9. The average width of the interval is smaller than 10% points in most cases.

Table 7. Examples of the statistics of the 95% confidence intervals of the predictions of the probability
of the category with the largest probability when the Sentinel-1 scenes from the period 1 June–12
August 2017 were used. The statistics are shown by the threshold of the minimum of the parcel area.

Area (ha) Mean of Std of Min of Median of Mean of Max of Std of
Predictions Predictions Intervals Intervals Intervals Intervals Intervals

0 ha 0.888 0.096 0.062 0.120 0.130 0.077 0.022
2 ha 0.889 0.092 0.049 0.088 0.094 0.274 0.026
4 ha 0.889 0.092 0.062 0.120 0.130 0.299 0.039
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Figure 9. Distributions of the confidence intervals by the species groups, shown as boxplots, that
is, median, 25% and 75% percentiles, 1.5 times of the interquartile ranges, and individual outliers.
The width of the box is proportional to the square root of the number of the observations of the
species group.

Table 8. The averages of the widths of 95% confidence intervals of the probability predictions of the
categories by the area classes (ha) and species groups.

Area, ha Predicted Species Group
1 2 3 4 5 6 7 8 9 Total[

0–1) 0.066 0.180 0.080 0.125 0.097 0.084 0.113 0.070 0.070 0.074[
1–2) 0.057 0.177 0.073 0.108 0.100 0.082 0.106 0.063 0.060 0.067[
2–3) 0.056 0.176 0.072 0.112 0.092 0.083 0.105 0.065 0.061 0.067[
3–4) 0.058 0.176 0.067 0.104 0.097 0.081 0.107 0.066 0.065 0.068[
4–5) 0.057 0.176 0.066 0.105 0.099 0.087 0.104 0.069 0.080 0.069[
5–6) 0.058 0.175 0.079 0.111 0.102 0.082 0.104 0.066 0.061 0.073[
6–7) 0.057 0.174 0.063 0.113 0.104 0.086 0.101 0.066 0.074 0.068[
7–8) 0.062 - 0.066 0.108 - 0.110 0.112 0.067 - 0.071[
8–9) 0.063 0.183 0.074 0.108 - 0.102 0.108 0.070 - 0.075[

9–10) 0.063 - 0.077 0.107 - 0.091 0.113 0.076 - 0.076[
10– 0.077 - 0.088 0.130 0.118 0.109 0.128 0.092 - 0.093

Total 0.060 0.177 0.074 0.112 0.098 0.084 0.109 0.068 0.068 0.071
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Table 9. The number of the parcels by the area classes (ha) and species group prediction.

Area Predicted Species Group
1 2 3 4 5 6 7 8 9 Total[

0–1) 349 4 143 13 88 79 16 196 496 1384[
1–2) 236 4 107 17 28 40 11 126 123 692[
2–3) 177 3 79 12 14 27 13 84 49 458[
3–4) 114 3 62 10 6 20 9 62 23 309[
4–5) 75 2 34 6 4 7 5 35 7 175[
5–6) 47 2 22 7 7 10 1 26 1 123[
6–7) 35 1 16 2 4 5 1 12 5 81[
7–8) 19 0 12 1 0 2 4 14 0 52[
8–9) 14 1 6 1 0 1 2 12 0 37[

9–10) 12 0 7 2 0 1 2 7 0 31[
10– 26 0 12 3 5 5 5 31 0 87

Total 1104 20 500 74 156 197 69 605 704 3429

4. Discussions

Each study concerning crop species prediction with multi-temporal SAR data has some unique
features, including the classification approach, number, and specificity of crop species used, as well
as the SAR data used. This generally complicates comparison, as no baseline mapping approach is
established, often requiring testing with several approaches within each study, e.g., [30]. Other factors
affecting the possible accuracy levels in mapping are the structure of the crop species, that is, whether
only crop species are predicted or also root vegetables.

In this study, different types of species groups were predicted with high accuracy. Uncertainty
levels of the prediction were also assessed. Achieved accuracy levels compare favourably to prior
recent studies particularly with multitemporal Sentinel-1 data [21,23,30]. Here, OA was either at
same level or higher, especially when using the parcel size threshold of four hectares. Importantly,
the number of crops was considerably higher, indicating a potential for further development of an
operational crop mapping method.

The overall accuracy (OA) with the ik-NN method varied depending on the number of species
included in the classification, and whether all field parcels were included, or an area threshold for
the field parcels was employed. The later one exhibits the dependence of OA on the size of the area
threshold. The OAs have been calculated here using the observation as the weight, that is, each field
parcel had the same weight. The area weighted OAs had been larger because the crop species were
predicted more accurately for the larger field parcels than for the small field parcels.

Some tests with a very high number of the species groups showed also a great OA. The OA was
at a level of 82% with 41 species and with an area threshold of 0.5 hectares. However, the results with
41 species groups are dominated by a few species with large areas explaining an unexpected large OA.

The uncertainty assessments of the predicted crop species also gave promising results. The
certainty was over 90% in most cases when using 95% confidence intervals (Tables 7 and 8, see also
Figure 7). The prediction uncertainty is largest in the rare species groups, such as 2, 4, and 7 (Broad
bean Vicia faba, Spring Oilseed Rape and 7 = Winter wheat, Winter barley) as can be expected. Overall,
the species can be predicted relatively accurately in most cases, even compared to the earlier studies.

Importantly, while SAR time series have been used recently, the analyses of the effect of the precise
acquisition time of the SAR data in crop species predictions has been studied less. The scenes from the
late growing season had the greatest explanatory power in predicting the crop species (Figures 4 and 5).
The analyses separately with the VV and VH polarizations and with one Sentinel-1 scene only revealed
the same thing; in addition to that, the VV polarization gave greater OAs than VH polarization in the
later part of the growing season (Figure 8).

Establishing the number of Sentinel-1 scenes and the timing of SAR data that it takes to achieve
acceptable overall accuracy can have important effects on operational LPIS. The time period from
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which the Sentinel-1 scenes or other SAR data are needed depends naturally on the progress of the
growing season and thus the latitude and other growing factors. The data acquisition period must
be adapted to the local conditions. The proposed method to estimate the confidence intervals of the
probabilities of the predicted species group is also new to the best of our knowledge.

5. Conclusions

The study demonstrated a strong potential of C-band Sentinel-1 time series in consistent
monitoring crop cultivation and in distinguishing crop species with high levels of accuracy.
The improved k-NN method, ik-NN, in which the feature weights are optimized using a genetic
algorithm, gave somewhat higher overall accuracies with all the data sets tested than multinomial
logistic regression analysis. It was also competitive compared to several prior studies keeping in
mind larger number of crops, especially when larger parcels are considered in the prediction accuracy
assessment.

Overall accuracies in predicting crop species with nine species groups and ik-NN method were
remarkably high. The overall accuracy in a separate validation data set was around 70% when all
cropland parcels were included, around 80% when the parcel area threshold was 0.5 ha, and around
90% when the threshold was 4.0 ha. The scenes acquired from early June until the middle of August
turned out to be sufficient. The user’s and producer’s accuracies were also high, in most cases 90% or
higher except the category ’Shelter belt, nature management field’ (about 55%). The scenes from the
mid and late growing season turned out to be important in species prediction in our study.

A method to assess the uncertainty of the crop prediction on an individual field parcel was
presented. The widths of the 95% confidence intervals for the probability of the individual field parcels
varied by the species groups and also by the area of the parcel. The narrowest average intervals were
0.05–0.06 units (5–6% points) and the widest ones less than 0.2 units (20% points). It is expected that
this kind of information can be used in determining whether other auxiliary data and training data are
needed for crop identification, such as, e.g., airborne observations, or even field visits.

The presented analysis of SAR data acquisition timing on crop species predictions can be used
in other similar studies and incorporated into operational LPIS. The latter can also benefit from the
developed methodology to estimate the prediction uncertainty of the various species group. The results
of this study were well-received by the authorities and encourage the continuation of the study towards
an operational method in which the space-borne SAR data are a critical part of the information chain.
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