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Abstract
Currently, there is increasing interest to use sequence-to-
sequence models in text-to-speech (TTS) synthesis with atten-
tion like that in Tacotron models. These models are end-to-end,
meaning that they learn both co-articulation and duration prop-
erties directly from text and speech. Since these models are
entirely data-driven, they need large amounts of data to gen-
erate synthetic speech of good quality. However, in challeng-
ing speaking styles, such as Lombard speech, it is difficult to
record sufficiently large speech corpora. Therefore, we propose
a transfer learning method to adapt a TTS system of normal
speaking style to Lombard style. We also experiment with a
WaveNet vocoder along with a traditional vocoder (WORLD) in
the synthesis of Lombard speech. The subjective and objective
evaluation results indicated that the proposed adaptation sys-
tem coupled with the WaveNet vocoder clearly outperformed
the conventional deep neural network based TTS system in the
synthesis of Lombard speech.
Index Terms: Text-To-Speech (TTS), Tacotron, Lombard
speaking style, Adaptation

1. Introduction
Text-to-speech (TTS) systems are becoming more and more
ubiquitous after the proliferation of personal voice assistants
such as Amazon Echo, Google Home, and Apple Siri. These
devices are usually employed in real-life noisy environments
where the intelligibility of synthetic speech can be affected.
Humans typically change their speaking style depending upon
the acoustic environment for better communication. In noisy
surroundings, humans adapt to Lombard style [1] in order to
improve speech intelligibility. In literature, it has been shown
that the intelligibility of synthetic normal speech is significantly
lower than that of synthetic Lombard speech when evaluated in
noisy surroundings [2]. Thus, TTS systems should be able to
be aware of the noisiness of the environment and adapt their
speaking style to Lombard style to improve intelligibility.

Speaking style adaptation, including adaptation to Lombard
speech, has been studied in TTS [3, 4]. These previous studies
are almost exclusively based on hidden Markov model (HMM)-
based statistical parametric speech synthesis (SPSS) due to its
benefits in adaptation abilities and flexibility in changing voice
characteristics. In HMM-based SPSS systems, adaptation can
be done by adapting the initial HMMs which are trained on nor-
mal speech with a small amount of Lombard speech [3]. In
more recent deep neural network (DNN)-based SPSS systems,
adaptation can be done at three levels: 1) input level, 2) model
level and 3) output level [5–8]. Previous studies have demon-
strated that the naturalness of synthetic speech generated with
DNN-based SPSS systems is higher than that of HMM-based
systems [9, 10], and this also applies to adaptation to Lombard
speech [11].

Even though promising results have been obtained in the
adaptation of synthetic speech using the SPSS framework, this
conventional TTS paradigm has limitations that affect the syn-
thesis’s naturalness. Conventional SPSS systems consist of
two separate blocks: 1) the front-end and 2) the back-end. In
this pipeline, both the front-end and back-end are usually con-
structed independently [12]. Moreover, errors caused in each
block can accumulate and degrade the overall performance of
the system. Furthermore, each block needs its own expertise to
tune the system.

Recently, a more uniform framework using sequence-to-
sequence (Seq2Seq) models with attention was proposed for
TTS [13–15]. These models combine the front-end and back-
end and only learn the relations between them from data. When
Seq2Seq models are coupled with neural vocoders, they enable
generating raw waveforms directly from text [16]. In [17], it
was demonstrated that state-of-the-art results in TTS can be
achieved with the Seq2Seq models. However, despite their suc-
cess in producing high-quality synthetic speech, Seq2Seq-TTS
systems need a sizable amount of data (i.e. text and audio pairs).
In [18], it was concluded that around 10 hours of text and speech
pairs are needed to get decent quality in synthetic speech using a
Seq2Seq model such as Tacotron [14]. However, collecting sev-
eral hours of speech data from one speaker is difficult, if not im-
possible, for high vocal effort speaking styles such as shouting
and the Lombard style. However, to address the data scarcity is-
sue, the transfer learning (TL) approach can be used to leverage
a large volume of available data.

In [19, 20], a Seq2Seq-TTS system was studied to synthe-
size the speech of different speakers using a limited amount
of data. These studies employed speaker embeddings, which
contain speaker-specific characteristics for multispeaker speech
synthesis. However, extracting the speaker embeddings for un-
seen speakers in training data may require a huge amount of
data in order to train a separate speaker-encoder network [21].
However, to learn style-specific embeddings for challenging
speaking styles does not call for having that much data. Hence,
in this study, we propose a method to effectively leverage an ex-
isting large volume of normal speech data in order to synthesize
Lombard speech using a Seq2Seq-TTS system. The contribu-
tions of the paper are twofold. First, we develop a Lombard
speaking style adaptation system with a little amount of data by
utilizing a TL technique in a Seq2Seq-TTS system. Second, we
investigate the effect of using a WaveNet vocoder [22] in Lom-
bard speech synthesis. To the best of our knowledge, the current
study is the first investigation of the adaptation of speech syn-
thesis to Lombard style using a modern Seq2Seq-TTS system.

2. The Seq2Seq-TTS system
Seq2Seq models depend heavily on encoder–decoder neural
network structures that map a sequence of characters to a se-
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quence of acoustic frames. The Seq2Seq-TTS system consists
of three main components: 1) the encoder, 2) attention, and 3)
the decoder. The encoder takes the text sequence x of length
L as an input, which is represented either in the character or
phoneme domain as one-hot vectors. The encoder learns a con-
tinuous sequential representation h using various neural net-
work architectures such as long short-term memory (LSTM)
recurrent neural networks [14, 17] and/or convolutional neural
networks (CNNs) [19]:

h = encoder(x). (1)

At each output time step t, both the attention and decoder mod-
ules work together in the following manner:

αt = attention(st−1, αt−1,h), (2)

ct =

L∑
j=1

αt,jhj , (3)

yt = decoder(st−1, ct). (4)

where st−1 is the (t−1)-th state of the decoder recurrent neural
network, αt ∈ RL are the attention weights or the alignment
and ct is the context or attention vector. The decoder takes the
previous hidden state st−1 and the current context vector ct as
inputs and generates the current output yt. This process runs
until the end of the utterance is reached.

In order to synthesize the speech waveform, Seq2Seq-TTS
systems use different vocoding approaches. Initial studies pre-
dict mel-spectrograms as output, mapping them to linear spec-
trograms and further to speech waveforms using the Griffin-Lim
algorithm [14]. Recent studies, however, generate speech wave-
forms with the neural WaveNet vocoder, which is conditioned
using the predicted mel-spectrograms [17]. In the current study,
we predict the WORLD vocoder [23] parameters as well as
mel-spectrograms as the system outputs, which are later used in
conditioning the WaveNet vocoder to generate the final speech
waveform.

3. Adaptation of the Seq2Seq-TTS system
by TL

TL is an important and extremely useful framework in machine
learning [24]. Let us suppose there are two tasks, a (1) source
task and (2) target task, by assuming that they are related. TL
can be applied to improve the learning of the target task by uti-
lizing the knowledge learned from the source task. In particular,
TL helps the learning significantly when the data of the target
task is scarce. In small data conditions, training a new model on
a small amount of data might not lead to good generalization.
However, the knowledge from the source task which is trained
on a large dataset could be very useful. This kind of approach
has been widely used in a large number of machine learning
tasks [25, 26]. TL can be used in many ways in deep learning.
However, two popular approaches are (a) to fine-tune the source
network for the target task [18, 27, 28] and (b) to learn feature
representations using the source network for the target task [29].

In the present study, we propose a method to effectively
transfer knowledge from a Seq2Seq-TTS system trained on a
large amount of speech of a normal speaking style. As described
in Figure 1, the method uses TL with fine-tuning in two steps.
We first trained a Seq2Seq-TTS system on the normal speech
of a female speaker (called Nancy). Then, we fine-tuned the
learned model with the normal speech of a male speaker (called
Nick) with limited data. Finally, using Lombard speech of Nick,

Figure 1: A flow diagram of the proposed adaptation approach.

we fine-tuned the model again to generate synthetic Lombard
speech. Since success of the TL technique depends on the simi-
larity between the source and target tasks, we used the approach
shown in Figure 1 instead of adapting Nancy (normal) directly
to Nick (Lombard).

4. Experiments
4.1. Speech material

Our initial Seq2Seq-TTS model was trained on the Blizzard
Challenge 2011 speech corpus [30]. The corpus contains
around 12,000 utterances (which add up to around 16 hours of
speech) read in a normal speaking style by a US professional
female voice talent named Nancy. We employed the Hurricane
Challenge speech data [31] for adaptation to Lombard style.
The Hurricane Challenge data was spoken by a British male
voice professional named Nick. The Nick data consists of both
normal and Lombard styles. The normal speech data consists
of 2592 utterances (which add up to 2 hours of speech), and
the Lombard speech data consists of 720 utterances (which add
up to 30 minutes of speech). All the data was sampled 16 kHz.
The data was partitioned into train, valid and test sets as shown
in Table 1.

Table 1: The partition of the data (number of utterances) used
in the present study.

Speaker (Gender) Style Train Valid Test
Nancy (Female) Normal 11,000 200 800

Nick (Male) Normal 2400 72 120
Nick (Male) Lombard 500 100 120

4.2. Systems built for comparison

A total of five systems were built for comparison as shown in
Table 2. The systems were different in terms of their acous-
tic parameter output types (WORLD vocoder parameters/mel-
spectrograms) and the vocoder (WORLD/WaveNet) used. The
WORLD vocoder parameters consisted of the mel-generalized
cepstrum (MGC), fundamental frequency (F0) and band ape-
riodicity (BAP) with the dimensions 60, 1 and 1 respectively.
The mel-spectrograms were extracted with the LibROSA [32]
package by using 80 mel bands. The WORLD vocoder pa-
rameters were extracted at a 5 ms frame rate, whereas the mel-
spectrogram features were extracted at a 12.5 ms frame rate.
The F0 values were transformed into the log domain and lin-
early interpolated in unvoiced regions.

System S1 is the baseline system which uses a LSTM type
of recurrent neural network (RNN)-based TTS system for adap-
tation and synthesizes the speech waveform using the WORLD
vocoder. System S2 is built using the Seq2Seq-TTS model, and
the final waveform is rendered by the WORLD vocoder. Sys-
tems S3 and S4 have the same architectures as systems S1 and
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(a) Nick (normal) standalone (b) Nancy (normal) standalone (c) Nick (normal) adapted (d) Nick (Lombard) adapted

Figure 2: An illustration of the alignments in different systems. The sentence “PAPER WILL DRY OUT WHEN WET” is taken from
the test set. The x-axis and y-axis of each plot correspond, respectively, to the mel-spectrogram (extracted from speech) and phoneme
(extracted from text).

S2 respectively, but they use the WaveNet vocoder for synthe-
sis. System S5 has the same architecture and vocoder as S4, but
instead of using the WORLD vocoder parameters, it uses the
mel-spectrogram for acoustic features.

The baseline S1 system was built as reported in our previous
study [11]. The input linguistic features of Systems S1 and S3
were full-context labels and extracted using Festival toolkit. We
used the fine-tuning method to adapt a LSTM-RNN–based TTS
system of normal speaking style to Lombard style because this
adaptation method showed the best performance. Our previous
work used oracle durations to synthesize Lombard speech. In
the current study, however, a separate duration model is built
and adapted to Lombard speech. Our Seq2Seq-TTS system
is based on the Tacotron-1 architecture [14] with a few mod-
ifications such as predicting the WORLD vocoder parameters
instead of the mel-spectrograms as output. Our systems were
implemented using an open source repository [33]. All mod-
els were trained on a single NVIDIA Titan X GPU. The data is
preprocessed in such a way that very long duration utterances
are excluded from the training. The batch size was 32, and 2
acoustic frames were used per output step. The input linguis-
tic features were mono-phonemes extracted using the Combilex
lexicon [34] and represented by one-hot vectors. All acoustic
parameters were normalized to have zero mean and unit vari-
ance using the standard mean-variance normalization. Linguis-
tic parameters were normalized to lie between 0 and 1 using the
min–max normalization.

Table 2: The systems developed for experiments.

Sys. ID TTS model Ouput Vocoder
S1 LSTM MGC+F0+BAP+VUV WORLD
S2 Seq2Seq ” ”
S3 LSTM ” WaveNet
S4 Seq2Seq ” ”
S5 ” Mel-spectrogram ”

For the adaptation, we trained a Seq2Seq-TTS model on the
Nancy data of a normal style; later that model was fine-tuned by
the Nick data of a normal style. Then, the Nick normal speech
Seq2Seq-TTS model was fine-tuned by the Lombard-style data
of Nick. The initial Nancy model was trained for 150k steps.
The initial learning rate was set to 0.002 and during the training
the learning rate was adjusted based on the Noam scheme [35]
with 4000 steps as warmup. The pre-trained Nancy model was
fine-tuned by Nick date for 10k steps to learn the Nick normal
speaking style model, and the initial learning rate was set to

0.00032. The Nick normal style model was further fine-tuned
by Nick Lombard data for 10k steps to learn the Nick Lombard
speaking style, and the initial learning rate was set to 0.00031.
All the parameters of the model were optimized using the Adam
optimizer [36].

As seen in Figure 2(a), when we trained the Seq2Seq-TTS
model using only the Nick data of a normal style (i.e. approx.
2 hours of speech), the alignment between the input phoneme
sequences and output acoustic frames is not as clear as in Fig-
ure 2(c), which was obtained by adapting the Nick normal
speech data using the Nancy Seq2Seq-TTS model. In infor-
mal listening tests, pronunciation errors were perceived when
we trained the Seq2Seq-TTS model on the Nick data only. This
was most likely because the model was unable to generalize
well with little data. Thus we decided to train the initial model
using the Nancy data (i.e. approx. 16 hours of speech) in order
to learn a good alignment between input phoneme sequences
and output acoustic frames.

We used a WaveNet configuration similar to [37], three
repetitions of a 10-layer convolution stack with exponentially
growing dilations, 64 residual channels and 128 skip channels.
Separate models were trained for the WORLD vocoder acoustic
features and mel-spectrograms using 8 bit categorical cross en-
tropy on quantized µ-law companded signals. We found that
excluding BAP from the WORLD features improved perfor-
mance, so the WaveNet vocoder for WORLD only used MGCs,
VUV and logF0 (interpolated over unvoiced frames). Both the
WORLD features and the mel-spectrograms were globally min–
max normalized to lie between zero and one.

4.3. Subjective evaluation

Two types of subjective tests were conducted: 1) speaking style
similarity test and 2) comparison category rating (CCR) test of
speech naturalness. The goal of the similarity test is to assess
whether the technology developed is capable of generating syn-
thetic speech of different speaking styles (normal vs. Lombard)
while the CCR test aims to evaluate how much the naturalness
of speech is sacrificed when the speaking style is adapted. We
used an evaluation setup similar to [38] for the style similar-
ity test. In this evaluation, each stimulus consists of two utter-
ances, the first being a natural speech signal (either normal or
Lombard) and the second one a synthesized signal. The sub-
jects were asked to compare the second utterance to the first
one and rate the style similarity on a 4-level scale ranging from
0 (Same: Absolutely sure) to 4 (Different: Absolutely sure) [38].
In the CCR test, each stimulus consists of a pair of utterances
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Table 3: SIIBGauss scores measured in bits/s at different
SNRs. The higher the score the better the intelligibility.

Sys. ID -10 dB -5 dB 0 dB 5 dB
S1 14.2 25.3 39.7 57.9
S2 16.6 28.3 43.6 65.1
S3 16.0 31.3 50.6 75.5
S4 16.8 32.9 53.1 79.0
S5 17.8 33.0 53.7 80.3

which were stitched together with a silence of 0.5 seconds be-
tween them. Subjects were asked to evaluate the naturalness
of the second utterance in comparison to the naturalness of the
first utterance on a 7-level scale, ranging from -3 (First sample
sounds much more natural) to 3 (Second sample sounds much
more natural).

Both tests were conducted on FigureEight [39], a crowd-
source platform (see [37] for more details of conducting the
tests). We selected 16 utterances randomly from the test set
and used them for each system. Each utterance was evaluated
by 50 listeners, and the listeners were screened using natural
reference null pairs and artificially corrupted anchor samples.

4.4. Instrumental intelligibility evaluation

To measure the effect of Lombard adaptation on speech intelli-
gibility, a recently developed instrumental intelligibility metric
called speech intelligibility in bits (SIIB) [40] was used. SIIB
measures the mutual information between a clean reference and
a noisy signal. The noise signal is created by adding speech
shaped noise (SSN) at various SNRs to the clean signal. A mod-
ified version of SIIB called as (SIIBGauss) [41] was employed
in the present study.

5. Results and discussion
The results of the style similarity test are plotted in Figure 3.
From the right pane of the figure, it can be observed that synthe-
sized speech by all adapted systems was rated to sound different
from natural normal speech with high confidence. When com-
pared to the natural Lombard reference (the left pane), system
S5 was rated highest, followed by systems S3, S4, S2 and S1.
System S5 was built using the Seq2Seq-TTS model and it used
the mel-spectrogram as output. It can be clearly seen that the
systems that employed the WaveNet vocoder got higher scores
than the ones that used the more traditional WORLD vocoder,
even though the WaveNet was only trained with 30 minutes of
Lombard speech. Further, system S5, which is based on con-
ditioning the WaveNet vocoder with mel-spectrograms, got a
higher score than the ones that used the WORLD vocoder pa-
rameters; a similar finding was observed in an earlier study [42].
From these results we can conclude that the synthetic speech
produced by system S5 sounds most Lombard-like among the
systems compared1.

For the CCR test, we only included systems S1, S3 and
S5. System S1 can be regarded as the baseline. System S3
was selected because it was the best system in the similarity
test with the LSTM models and the WaveNet vocoder. S5 was
selected because it was the best system overall in the similarity
test. The results of the CCR test are shown in Figure 4. The
scores were calculated by reordering the ratings for each system

1Samples available at http://tts.org.aalto.fi/
lombard_seq2seq/
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Figure 3: The results of the style similarity test.

and pooling together all ratings the system received. Natural
Lombard speech was included in the tests as a reference system.
The plot shows mean ratings with 95% confidence, corrected
for multiple comparisons. As expected, the Lombard reference
signal was rated highest followed by S5, S3 and S1. System S5
got a significantly better score than the baseline system S1 and
the LSTM based system S3.
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Figure 4: The combined score differences obtained from the
CCR test of naturalness. Error bars are t-statistic–based 95%
confidence intervals for the mean.

Table 3 presents the SIIBGauss intelligibility scores. It
can be observed that the baseline system S1 gave the worst
performance and system S5 was best. The systems using the
WaveNet vocoder got higher scores than the corresponding sys-
tems with the WORLD vocoder, thereby demonstrating how the
vocoder choice affects the intelligibility of synthesized Lom-
bard speech. These observations are in line with the results ob-
tained both in the style similarity test and in the speech natural-
ness test.

6. Conclusions
This article proposed an adaptation approach using TL for the
synthesis of Lombard speaking style in modern Seq2Seq TTS
systems. Moreover, we also studied the role of a modern neural
vocoder, WaveNet, for the synthesis of Lombard speech. Lis-
tening tests show that the proposed approach coupled with the
WaveNet vocoder outperformed the previous best method that
was developed using a LSTM-RNN–based adapted system. Fu-
ture work includes extensive subjective evaluations and train-
ing both the WaveNet and Seq2Seq-TTS models in a single
pipeline.
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