' Aalto University

Laghrissi, Abdelquoddouss; Taleb, Tarik; Bagaa, Miloud; Prados-Garzon, Jonathan
A Fuzzy Logic-based Mechanism for An Efficient Cloud Resource Planning

Published in:
2019 IEEE Wireless Communications and Networking Conference, WCNC 2019

DOI:
10.1109/WCNC.2019.8885875

Published: 01/04/2019

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:

Laghrissi, A., Taleb, T., Bagaa, M., & Prados-Garzon, J. (2019). A Fuzzy Logic-based Mechanism for An
Efficient Cloud Resource Planning. In 2019 IEEE Wireless Communications and Networking Conference, WCNC
2019 Article 8885875 (IEEE Wireless Communications and Networking Conference). IEEE.
https://doi.org/10.1109/WCNC.2019.8885875

This material is protected by colpyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by ?/ou for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other tuhse: Elgctronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

https://doi.org/10.1109/WCNC.2019.8885875
https://doi.org/10.1109/WCNC.2019.8885875

A Fuzzy Logic-based Mechanism for An Efficient
Cloud Resource Planning

Abdelquoddouss Laghrissi', Tarik Taleb'?, Miloud Bagaa' and Jonathan Prados-Garzon®
1 Communications and Networking department, Aalto University, Espoo, Finland
2 Centre for Wireless Communications, University of Oulu, Oulu, Finland
3 Research Centre for Information and Communications Technologies of the University of Granada,
Granada, Spain
Emails: abdelquoddouss.laghrissi@aalto.fi, tarik.taleb@aalto.fi, miloud.bagaa@aalto.fi, jpg@ugr.es

Abstract—The key concept beneath Multi-Access Edge Com-
puting (MECs) is to place cloud resources in closer proxim-
ity to end-users, through the installation of small-scale cloud
infrastructures at the network edge. In MEC environments,
we identify two issues: 1) data about users’ activities are not
always available, and 2) the available virtual resource plan-
ning mechanisms (i.e., algorithms for the placement of Virtual
Network Functions - VNFs) are not efficient enough to fulfill
the QoS requirements and deployment costs. In this vein, we
design a layered framework to define the presence of Mobile
BroadBand User Equipments (UEs) and automate the underlying
virtual resource placement and management based on the Fuzzy
Logic Controller paradigm (FLC). Experimentation results show
that our framework, compared to baseline solutions, achieves
good performance results; the end-to-end delay is enhanced by
25%, the resource consumption is reduced by 30%, and the
environmental impact, reflected by the carbon footprint that
depends on the amount of deployed Virtual Machines (VMs),
is reduced by 50%.

I. INTRODUCTION

It is observed that a tremendous amount of data is generated
at the edge of the network. This includes videos streamed
from smart-phones and Internet of Thing services (IoT) [1].
End-users would benefit from bandwidth and short latency
if the resources/services needed are available/moved either
partially or completely to the network edge [2]. This is of
high importance particularly that Cloud Service Providers
(CSPs) are facing an interesting phenomenon known as “data
tsunami” or “data deluge” whereby millions of connected users
exchange a massive number of text messages, as well as audio
and video contents. The evolving technologies must process
this amount of data and manage it with the insurance of
ultra-short latency, Quality of Service (QoS) and Quality of
Experience (QoE).

Unfortunately, the classical approaches are unable to assess
the required computational resources and provide them in
real-time. Additionally, in the granularity of Edge Clouds
(ECs) which streamline the traffic flow from mobile User
Equipments (UEs), a “smart” solution is demanded to provide
local data analysis of the traffic in real-time, and then predict
and adjust the needed virtual resources (i.e., VNFs) mainly in
scenarios with similar behavioral patterns (e.g., peak working
hours and tech-trends). In this vein, we propose a framework

dubbed “FL-QUEME” to quantify the end-users’ presence in
EC environments using fuzzy logic.

Unlike the conventional logic, based on the choice between
true or false for any problem statement, fuzzy logic adds
shades of truth and falseness in the same statement [3]. It
is defined as the mathematical evaluation of a given problem
based on the degree of truth, and adds the notion of perspec-
tive.

One of the most important phases of the fuzzy logic design
is to define the Fuzzy Logic Controllers (FLCs). The primary
concept in developing a FLC [4] relies on the information
gathered from various sources of experience or experts. In
our case, when considering the design of a FLC for VNF
placement, we have to keep in-mind the following information:

« Type of service (e.g., streaming services, social networks,

chat services, and web browsing).

o Type of data exchanged (e.g., text, image, video, and

content-mixed web page).

o Duration of the session and subsequently the frequency

of service requests’ generation.

« Estimated number of packets and packet size.

o Needed computation resources (i.e., bandwidth, storage,

and CPU).

As a basic design of our FLC, we consider a VNF placement
core agent, which takes as inputs the aforementioned infor-
mation for each given area and gives as an output the needed
virtual resources (i.e., number of required CPU cores). In a
traditional cloud infrastructure, this would be a viable option,
as it is meant to fulfill general-purpose computing and increase
resource utilization. In EC environments, an optimized design
should consist of at least two types of controllers, an eNB-
level controller and an EC-level controller in order to serve
latency-sensitive services in large-scale environment setups. In
this vein, our work proposes a fuzzy logic-based framework,
the objective of which is twofold: i) Quantify the service
usage of UEs in a spatio-temporal fashion (i.e., variability of
UE behavior in terms of service usage defined for a given
period of time and considering the mobility); ii) Based on the
first objective, provide an efficient mechanism for placing the
needed virtual resources.

The remainder of this paper is organized as follows. Section
IT briefly reviews the related literature. Section III describes

each step of our framework design (i.e., membership functions
and rule base). Section IV evaluates the performance of our
solution against those of the literature. Finally, Section V
concludes the paper with insights and future avenues.

II. RELATED WORK

The optimal placement of virtual mobile core network
functions is known to be NP-hard [7], and several strategies
tackling this issue have been proposed in the literature. In this
section, we discuss the work related to the management and
evaluation of service requests, and the placement of virtual
resources.

Moens et al. consider in [8] the management of service
and VM requests separately, for two types of service chains.
The proposed management algorithm was tested through a
scenario of a small service provider. Based on Integer Linear
Programming (ILP), the proposed algorithm finishes in few
seconds (i.e., 16 seconds), which makes it quick to cope
with sudden changes in demand for resources due to NFV
burstiness. In this solution, the virtualized services handle the
spillover and the hardware handles the base load [9], [10],
but without considering the restrictions on the link usage,
nodes capacity, and cost. Those restrictions are discussed in
the following.

With the objectives of minimizing the usage cost of link and
node resources, Baumgartner et al. [11] addressed the place-
ment of different VNFs, such as Serving Gateway (S-GW),
Packet Data Network Gateway (P-GW), Home Subscriber
System (HSS) and Mobility Management Entity (MME),
excluding VNFs of the RAN. They also considered the VNF
requirements (i.e., processing, storage, and bandwidth) exclud-
ing latency on the end-to-end network and that on VNF nodes.
The RAN domain was taken into account by Riggio et al. in
[12]. They aimed to satisfy VNF requirements (i.e., memory,
CPU, radio, storage and bandwidth), while minimizing the cost
of mapping VNFs, but without taking into account the end-
to-end delay.

Indeed, this poses challenges related to the management of
communication among data and control plane elements and
to the consequent delay budgets among cellular core compo-
nents. In alignment, many approaches such as in [13], [15]-
[18] aimed to define efficient placement algorithms for the
typical Evolved Packet Core (EPC) functions, instantiated in
decentralized and load-aware physical machines, and improve
load-balance, energy (i.e., reduce number of active machines),
bandwidth, and link utilization.

Although in several other deployments, UE-related param-
eters (e.g., delay and mobility) were neglected, they were
considered in the recent work of the authors [14], [19], [23]-
[25], [28], [29]. In [14], a new simulator dubbed Network Slice
Planner (NSP) was introduced. NSP defines a tool to simulate
mobile service usage over a particular geographical area and in
real time'. It allows to generate data about UEs service usage
(e.g., video streaming, social networks, and instant messaging)

'Network Slice Planner: http://mosaic-lab.org/implementations.aspx

Fuzzy Logic Controller

Knowledge Base

Inference System

Preprocessing —)} ‘—) Postprocessing

—~—

Fuzzification]—)[Inference]—)[Deiuzzification

State
Variables

e

Control
Variables

Controlled System

Fig. 1: Generic design of a fuzzy logic controller and its
requirements.

and mobility (e.g., driving users and walking users). The
simulation data can be exported as JSON files and exploited in
testing VNF placement algorithms. More importantly, it offers
a spatio-temporal viewpoint of the generated data. Several
reactive placement algorithms were tested using the simulator.
As a continuation of this work, we propose in this paper a new
approach to place VNFs in closer proximity to where the data
was generated, in order to reduce latency and optimize virtual
resources usage (i.e., CPU) using a fuzzy logic-based learning
process. The approach will be detailed in the following section.

III. FL-QUEME FRAMEWORK DESCRIPTION

FLCs were founded and refined by Zadeh, Mamdani and
Assilian in [4]-[6] as a generalization of crisp sets using a
membership function p. The main decision phases for our
FLC are depicted in Fig. 1. These steps will be detailed in
the following subsections. Initially, we introduce the main
design components, namely, the preprocessing, membership
functions, rule base, and fuzzification and defuzzification
methods. Then, the mathematical formulation used to tune the
membership functions throughout the simulation is detailed.
Finally, we define two algorithms used for virtual resources
dimensioning, implemented in eNB and EC controllers, re-
spectively.

A. Preprocessing

Prior to this phase, the inputs are in a crisp form, resulting
from equipment measurements. The preprocessing consists of
converting the crisp inputs into linguistic values. This is han-
dled by the set of rules (i.e, rule base). This conversion should
reflect the variations of the crisp values into the best-level
discrete universe. In our case, we consider experts’ guidelines
for the preprocessing, based on the following studies [26],
[27], [30] and translated through the rule base that will be
detailed in the following subsection. The considered UEs are
tablets, smart-phones, and laptops.

B. Membership functions

A membership function, usually denoted as p(z), takes
values from within the interval [0, 1] and reflects the degree

of membership of x to given fuzzy sets. We chose the small-
medium-large classification for data rates and service duration,
both for the up-link and down-link. The initial membership
graphs are generated using JFuzzylLogic Java library [31]
based on the experts’ values. Some of them are depicted in
Fig. 2. The input values are manipulated by the rule base in
order to provide, in our case, the output CPU needed for up-
link and down-link.

Algorithm 1 Some of the rules of our rule base.
RULEBLOCK
// Use *min’ for ’and’ (also implicit use 'max’
// for *or’ to fulfill DeMorgan’s Law)
AND : MIN;
// Use min’ activation method
ACT : MIN;
// Use *max’ accumulation method
ACCU : MAX;

RULE 1 : IF serduration_uplink IS
serdata_uplink IS low

THEN cpu_u IS low;
RULE 2 : IF serdata_uplink IS good
THEN cpu_u IS medium,

RULE 3 : [IF serdata_uplink
serduration_uplink IS high

THEN cpu_u IS high,;

RULE 4 IF serduration_downlink 1S
serdata_downlink 1S low THEN cpu_d IS low;

RULE 5 : IF serdata_downlink IS good
THEN cpu_d IS medium;

RULE 6 : IF serdata_downlink 1S high AND
serduration_downlink 1S high

THEN cpu_d IS high;
END_RULEBLOCK

low OR

IS high AND

low OR

C. Rule base

While the fuzzy logic design can be simply defined as “the
control with sentence rather than equations”, the empirical
rules that help into making decisions based on the inputs
manipulated as linguistic variables are known as the rule base.
They are usually written as sets of IF (i.e., premise) and Else
(i.e., conclusion) pairs. This set of rules is the abstraction of
the control strategy which can be the equivalent to an equation-
based description.

We depict in Algorithm 1 some of the main entries of our
rule base. The inputs are the data size, service usage duration,
and number of service requests generated for the up-link and
down-link. The output is the CPU resources needed.

Initially, based on experts’ values, we estimate in the fuzzifi-
cation phase the number values for fuzzy sets as: low, medium,
and high for each input (see sub-section III.D.1). Inspired by
[20] and given the obtained trapezoidal fuzzy partitions (see
Fig. 2), we use the Center of Gravity as the defuzzification
method. Finally, we define the set of rules to compute the
resources needed in terms of CPU (e.g., if the service duration
and the data size are high, high CPU is needed).

2] =]
usefrequency_uplink

1.00

Membhership
o o o
Now W
5 3 a

2
=]
a

o

250 500 750 1000
X

& high & low & good

(a) UE’s number of service requests.

£ =]
serdata_uplink

Membership
o
o
3

o 1 2 3 4 5 8 7
X

ahigh & low & good

(b) Service Data usage (Mb/min).

Fig. 2: Some of the initial membership functions graphs
generated using JFuzzyLogic.

D. Core functions of FL-QUEME

1) Temporal Membership Functions: In this sub-section,
we give details on the mathematical formulation of temporal
membership functions for fuzzy sets low, medium and high.

Let us consider a universal set A; : H € A;, M €

Ajand L € Ay, whereby H is the fuzzy set for heavy
usage, composed of two fuzzy sets for the up-link and down-
link H,, and H 4, respectively. Formally: H = H,0 H,.

M is the fuzzy set for regular usage, composed of two fuzzy
sets for the up-link and down-link M., and M4, respectively.
Formally: M = M0 M,.

L is the fuzzy set for low usage, composed of two fuzzy
sets for the up-link and down-link L, and L, respectively.
Formally: L=1L,o0Ly

R, is the relation matrix for the down-link and R,, is the one
for the up-link. They are populated by the values computed
for the previous fuzzy sets.

To decide if a user is considered to belong to fuzzy set
H, M, or L, we consider the following conditions. The
membership of a user depends on the probability P(x); the
probability that the user’s generated data x exceeds a given
threshold 7" (i.e., high usage), comprised between % and T
(i.e., medium usage), or under % (i.e., low usage).

Formally, in case of high usage:

iz () =Pla > Ty)

Rd:(Al XHd)U(A1><H) (2)

Applying the same rule for each fuzzy set, we can obtain R,
the relation matrix characterizing the service usage for the up-
link as follows:

R.={((z,y.2), g (x,y,2)) | (v,y,2) € Hy x My x La}
3)

UH(%%Z) = 'uHiuXTquLiu (l‘,y,Z) (4)
= min{pg—(v), pgr- (Y) , bz (2)}

And R, the relation matrix characterizing the service usage

for the down-link as follows:

E: {((x,y,z), /-j/ﬁ(xvyaz)) ‘ (x7yaz) € Fd>< ﬁd X fd}
®)

/J'Rid(m7y7z) = /J’I?demxfd (ac,y,z) (6)
= min{pg (x), pg; () pg; (2)}

It would have been a straight forward process to decide
where to place the needed resources if we could obtain the
probabilities needed for relation matrices (4) and (6) which
reflect each user’s activity (i.e., service requests, data usage,
etc.) during the overall time of their activity. But since we
cannot obtain such values, we opted for a workaround using
a — cuts. Basically, a — cuts are used to map each number
a from the interval [0, 1] into an interval as follows: &(a) =
{ : p(a) > a}. We define our o — cuts in the following.

DEFINITION 1.1

A trapezoidal fuzzy number Y can be expressed as [a, b, c,
d] and its membership function is defined as:

e, a<zT<b
Lbv<z<e @)

diiv c<z<d

py (x) =

QU

Y reflects fuzzy numbers for a user activity (i.e., service
requests, data usage for up-link, etc.) and [a, b, c, d] the
threshold values we defined using experts values (e.g., low,
good/medium, and high number of service requests). However,
since such values are not computed for only one snapshot of
time but as a set of snapshots (i.e., whence the use of spatio-
temporal), we should be able to obtain a sum of memberships
for the user activity using o — cuts as follows.

DEFINITION 1.2

Let Y=[a, b, ¢, d] and Z= [p, q, 1, s] be two fuzzy numbers
whose membership functions are:

e, a<zT<b

py () = ,b<z<ec (8
%7 c<x<d
z—p
—p P=T<q

pz(@)=4 1, q<z<r ©)
Z:i, r<xz<s

ThenY =[(b—a)a+a,d—(d—b)a] and Y = [(¢ —p)a+
p,s — (s — q)a] are the a — cuts of fuzzy numbers Y and Z
respectively, and will permit to calculate the addition of fuzzy
numbers Y and Z. To do so, we first add the o« — cuts of Y
and Z using interval arithmetic. If Y reflects the activity of a
given user in time 77, and Z reflects the activity of the same
user but in time 75, the sum will reflect his total activity in
T1 and T5. The membership function of sum of “Y + “Z is
given as follows:

Y + “Z =[(b-—a)a+a, d—(d—Db)a]

(10)
+ [(g—platp, s—(s—qa]
Y+ “Z =la+p+(b—a+q—p)a, d+s (11
—(d—b+s—q)a]
By equating left and right sides to x, we obtain:
r= a+p+(b—a+q—pa (12)
z= d+s—(d—b+s—q (13)

The expression of « in terms of x, by setting « to its border
limits O and 1, becomes:

a:@fQ@EQM’“+M<x<“+” (14)
and
a:m, b+q)<z<(d+s) (15
Thus,
umzw%:{“%i@?’m+M<x<w+q
@ oty 0+ a) <z < (d+s) 6

We apply Equation (16) to be able to compute the temporal
membership values for each user. This will be used by the
virtual resources placement agent, detailed in the following
sub-section.

E. Virtual resources placement agent

In this sub-section, we define the main function of FL-
QUEME, which is the service requests dispatcher and virtual
resources placement agent. The algorithm for this function (see
Algorithm 2) can be split into two parts:

o The first part consists of fetching data of previous sim-
ulations, and generate the linguistic values for each UE,
in eNB level (e.g., low number of service requests of
UFE4, high number of service requests of U Fs5, etc.),
and the needed resources for each UE, in EC level (high
data usage of UFEj33, low CPU needed by UE, etc.).
These outputs, calculated using the previously detailed
membership functions and rule base, can be seen as a
service oriented cartography of the previous simulations
and will be used by the second part.

o As depicted in Algorithm 2, the second part bases the
placement decisions with respect to the linguistic values
generated in the first phase. After every placement deci-
sion, these linguistic values are updated, accordingly.

Algorithm 2 Algorithm of the main function of FLQUEME
Require:
FE: Set of events.
Each event contains entries about the type of
requested service, UE ID, UE position, the concerned
ENodeB ID, ENodeB position, the concerned EC ID,
EC position, Data size, and service duration.
M: The set of linguistic values.
Ensure:
ALs: The set of allocated resources.
1: for all ¢; € E do

2: Mimp< —Fetch_Lunguistic_Values();
32 ECiymp< —Get (Best_Choice(Mimyp));
4: if ECyp,), contains_enough_resources()) then
5: Allocate_resources(E£ Cty,p);

6: Update_lunguistic_values(M¢mp);

7. else

8: Create_new_resources(&Cyy,p);

9: Update_lunguistic_values(Mj,,y,);
10: end if

11: Update(ALs);

12: end for

13: return ALs;

IV. EXPERIMENTATION AND RESULTS

In this section, we evaluate the performance of our proposed
solution against that of existing base-line approaches, namely
the BestFit [21], [22] and conformal mapping [19]. NSP is
used to simulate the network and users’ behavior, interchange-
ably UEs, in terms of service consumption and mobility. The

TABLE I: Simulation parameters

Parameters Value
Simulation duration (hours) 25
Number of UEs 500
Percentage of walking users (%) 50
Percentage of driving users (%) 35
Percentage of biking users (%) 15
Number of ECs 15
Number of Tracking Areas 5
Number of eNodeBs 45
Range of eNodeBs (m) 5000
Instant Messaging usage probability | 0.2
Video streaming usage probability 0.45
Social networks usage probability 0.3

simulation parameters used in NSP are given in Table I. The
solutions are evaluated in terms of the following metrics:

o End-to-End delay: This metric is defined as the end-to-
end delay of signaling messages between variant UEs and
the chosen host server. Formally, the end-to-end delay
is computed in terms of the haversine distance between
two longitudes and latitudes positions (i.e., UE and host
server) by the speed of signal propagation.

o Number of instantiated VMs: This metric is defined as a
sum of instantiated VMs.

e Carbon footprint: This metric is defined as the carbon
footprint of a VM calculated as follows: Cy = X x P,
with X is the number of instantiated VMs, and P, is
the carbon emission of one VM (see [32]). P, becomes
higher when the resource is farther from the service
request generation.

o Percentage of used virtual resources: This metric is de-
fined as the percentage of CPU used in a given time-span.

o Execution time: This metric is defined as the time needed
to execute each algorithm.

Fig. 3 illustrate the results computed in each time-span of
the simulation, which in our case is hourly-based. For a clear
analysis of the results, we make a comparison of the three
algorithms in the following sub-sections.

A. End-to-End delay:

As depicted in Fig 3.a, FL-QUEME outperforms the base-
line solutions in terms of delay, with the conformal mapping
being second. This can be explained by the fact that FL-
QUEME bases its placing decisions with regards to the inputs
given of previous simulation data, recorded on the eNB local
controller level. This results in placing virtual resources in
closer proximity to end users. The gap in total delay becomes
more important as the simulation goes by reaching 0.13s for
FL-QUEME, 0.17s for the ConformalMapping, and 0.26s for
the BestFit.

B. Number of instantiated VMs:

As illustrated in Fig. 3.b, the number of instantiated VMs
reaches its peak value in the first 5 hours of the simulation,
with 40 VMs created to meet UEs service usage for the
BestFit, and 29 VMs for FL-QUEME. The ConformalMapping

BestFit —x— FL-QUEME —&—

BestFit —<— FL-QUEME —&—

BestFit —x— FL-QUEME —&—

03 ConformalMapping —&— 40 250 ConformalMapping —&—
35 VI
0.28) N "‘\K
0.26 > 30 200
: % 3% 5
0.24 E sy <
o € \ £ 150
L 022 S 0L 2
5 2 & £ \ a
g o N 5 15 \ & 100 I
0.18 Loy <] ! a T
o 16[} = € 10 B 8
0v14‘:‘ - 2 s ﬁ\u \ 50
. = P G - s = R S
© O—se —8_
0.12 0 e 0

0 B 10 15 20 25 0 5 10
Time (h)

(a) QoS in terms of delay.

BestFit —x¢—
ConformalMapping —&—

FL-QUEME —&—
60

55

R w
45 =

Percentage

40

35

30

0 5 10 15 20 25
Time (h)

(d) Percentage of used resources.

Time (h)

(b) Number of instantiated VMs.

15 20 25 0 5 10 15 20 25
Time (h)

(c) Carbon Footprint.

BestFit —x— FL-QUEME —5—

o

1400

1200

1000
800 <

600

Execution Time (ms)

g —a—e—8—1-

0 5 10 15 20 25
Time (h)

(e) Execution time (s).

Fig. 3: Spatio-temporal results.

obtained very close values to those of FI-QUEME with a
difference of 4—6 VMs. As the simulation goes by, the number
of instantiated VMs decreases which is explained by the fact
that the virtual resources in place are meeting users’ require-
ments. Since FL-QUEUME permits to dispose resources in
closer proximity to end-users by making placement decisions,
with regards to the inputs given of previous simulation data
recorded on the EC local controller level, its overall number
of created VMs outperforms BestFit and ConformalMapping
by approximately 30%.

C. Carbon footprint:

Due to the fact that this metric depends on the number of
instantiated VMs (i.e., the higher is the number of created
VMs, the higher C'O, emission values are reached) as well
as the distance between a UE position where the service
request was generated and where the resource is made avail-
able, it is justified that FL-QUEME outperforms the baseline
approaches, with the ConformalMapping being in the second
position, in terms of CO, emission with more than 50% (see
Fig. 3.c). The gap becomes more important as the simulation
goes by, mainly after 15 hours of simulation.

D. Percentage of used virtual resources:

As depicted in Fig. 3.d, the percentage of used CPU in the
created VMs of the three algorithms are overall good, which
reflects how much the created VMs are enough to answer to
user requirements and justifies the results obtained in terms
of instantiated VMs. Nevertheless, FI-QUEME achieves better
resource utilization with a lower percentage obtained mainly
between hours 5 and 8 and after hour 23. As future work, it
would be interesting to investigate new ways to select given

VM flavors rather than others to fit the requirements of end-
users and get the most of their performance and utilization.

E. Execution time:

In addition to the very good results obtained for each metric
as aforementioned, the execution time of FL-QUEME is very
low in comparison to the baseline approaches (see Fig. 3.e),
with the BestFit being in the second position, due to the fact
that FI-QUEME relies on the computation at the levels of
eNB and EC controllers, while the other approaches rely on a
central controller which creates the need for more computation
time.

V. CONCLUSION

To cope with the dynamic nature of users’ service usage
and mobility, we proposed in this work a new approach for
the evaluation of service requests generated in a given area
and for the placement of the needed virtual resources (i.e.,
CPU) accordingly. The approach is based on two fuzzy logic
controllers, one at the level of eNBs and the other at the
level of ECs. This separation enables a robust and efficient
management of virtual resources, different workloads, and
mobility patterns.

The experimentation results demonstrated the efficiency of
our approach in comparison to the baseline solutions, in terms
of QoS, created virtual resources, energy consumption, and
execution time. However, this framework is applied in the case
of general network functions placement. We intend to extend
this solution in order to satisfy the requirements of specific
network functions, such as the relocation cost for Serving
Gateways, and latency to Packet Data Network Gateways,
considering the EPC case.

ACKNOWLEDGEMENT

This work was partially supported by the European Unions
Horizon 2020 research and innovation programme under the
5G'Pagoda project with grant agreement No. 723172, the
European Union’s Horizon 2020 research and innovation pro-
gramme under the MATILDA project with grant agreement

No.

761898, and the Academy of Finland’s Flagship pro-

gramme 6Genesis under grant agreement No. 318927.

[1]

[2]
[3]
[4]
[5]

[6]
[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

REFERENCES

H. Chang, A. Hari, S. Mukherjee, and T. V. Lakshman, “Bringing the
cloud to the edge,” in Proc. IEEE Conference on Computer Communi-
cations Workshops, Toronto, ON, 2014, pp. 346-351.

A. Chandra, J. Weissman, and B. Heintz, “Decentralized Edge Clouds”,
IEEE Internet Computing, vol. 17, no. 5, pp. 70-73, Sep. 2013.

T. T. P. Guanrong Chen, “Introduction to Fuzzy Sets, Fuzzy Logic, and
Fuzzy Control Systems,” in CRC Press, ISBN. 9780750676052, 2000.
A. Ibrahim, “Fuzzy Logic for Embedded Systems Applications,” in
Newnes, ISBN. 9780750676052, 2003.

E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis
with a fuzzy logic controller,” in International Journal of Man-Machine
Studies, vol. 7, no. 1, pp. 1-13, 1975.

L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp.
338-353, 1965.

J. Gil-Herrera and J. F. Botero, “Resource Allocation in NFV: A
Comprehensive Survey,” IEEE Trans. on Net. and Service Manag., vol.
13, no. 3, pp. 518-532, Sep. 2016.

H. Moens and F. D. Turck, "VNF-P: A model for efficient placement of
virtualized network functions,” in Proc. 10th International Conference
on Network and Service Management (CNSM) and Workshop, Rio de
Janeiro, Brazil, Nov. 2014, pp. 418-423.

B. Ahmad, T. Taleb, A. Vajda, and M. Bagaa, “Dynamic Cloud Resource
Scheduling in Virtualized 5G Mobile Systems,” in Proc. 2016 IEEE
Global Communications Conference (GLOBECOM), Washington, DC,
USA, Dec. 2016, pp. 1-6.

B. Ahmad, A. Vajda, and T. Taleb, “Impact of Network Function
Virtualization: A Study based on Real-Life Mobile Network Data,” in
Proc. 2016 IEEE Int. Wireless Communications and Mobile Computing
Conf. (IWCMC), Paphos, Cyprus, Sep. 2016, pp. 541-546.

A. Baumgartner, V. S. Reddy, and T. Bauschert, “Mobile core network
virtualization: A model for combined virtual core network function
placement and topology optimization,” in Proc. Ist 2015 IEEE Conf.
on Net. Softwarization (NETSOFT), London, UK, April 2015, pp. 1-9.
R. Riggio, A. Bradai, T. Rasheed, J. Schulz-Zander, S. Kuklinski,
and T. Ahmed, “Virtual Network Functions Orchestration in Wireless
Networks,” in Proc. 11th Int. Conf. on Network and Service Management
(CNSM). IEEE, Barcelona, Spain, Nov. 2015, pp. 108-116.

F. Ben Jemaa, G. Pujolle and M. Pariente, “QoS-Aware VNF Placement
Optimization in Edge-Central Carrier Cloud Architecture,” in Proc. 2016
IEEE Global Communications Conference (GLOBECOM), Washington,
DC, USA, Dec. 2016, pp. 1-7.

A. Laghrissi, T. Taleb, M. Bagaa, and H. Flinck, “Towards Edge Slicing:
VNF Placement Algorithms for a Dynamic & Realistic Edge Cloud
Environment, in Proc. 2017 IEEE Global Communications Conference
(GLOBECOM), Singapore, Singapore, Dec. 2017, pp. 1-6.

F. Z. Yousaf, J. Lessmann, P. Loureiro and S. Schmid, “SoftEPC
Dynamic instantiation of mobile core network entities for efficient
resource utilization,” in Proc. 2013 IEEE International Conference on
Communications (ICC), Budapest, Hungary, June 2013, pp. 3602-3606.
S. Oechsner and A. Ripke, “Flexible Support of VNF Placement
Functions in OpenStack,” in Proc. of the 2015 Ist IEEE Conference
on Network Softwarization (NetSoft), London, UK, April 2015, pp. 1-6.
X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement,” in Proc.
of the 29th Conf. on Information Communications (INFOCOM’10), San
Diego, CA, USA, Mar. 2010, pp. 1154-1162.

F. Machida, M. Kawato, and Y. Maeno, “Redundant virtual machine
placement for fault-tolerant consolidated server clusters,” in 2010 IEEE
Network Operations and Management Symposium (NOMS), Osaka,
Japan, Apr. 2010, pp. 32-39.

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

A. Laghrissi, T. Taleb and M. Bagaa, “Conformal Mapping for Optimal
Network Slice Planning based on Canonical Domains,” IEEE Journal
on Selected Areas in Communications, vol. 36, no. 3, pp. 519-528, Mar.
2018.

E. V. Broekhoven, B. D. Baets,“Fast and accurate center of gravity
defuzzification of fuzzy system outputs defined on trapezoidal fuzzy
partitions,” Fuzzy Sets and Systems, vol. 157, no. 7, pp. 904-918, Apr.
2006.

M. Guazzone, C. Anglano, and M. Canonico, “Exploiting VM migration
for the automated power and performance management of green cloud
computing systems,” in Proc. of the Ist International Workshop on
Energy Efficient Data Centers, Springer, Madrid, Spain, 2012, pp. 81-92.
L. Tomas and J. Tordsson, “An autonomic approach to risk-aware data
center overbooking,” IEEE Transactions on Cloud Computing, vol. 2,
no. 3, pp. 292-305, Jul. 2014.

A. Laghrissi, T. Taleb, and M. Bagaa, “Canonical domains for Optimal
Network Slice Planning,” in Proc. of the 2018 IEEE Wireless Commu-
nications and Networking Conference (WCNC), Barcelona, Spain, Apr.
2018, pp. 1-6.

A. Laghrissi and T. Taleb, “A Survey on the Placement of Virtual
Resources and Virtual Network Functions,” in IEEE Communications
Surveys Tutorials. (to appear)

J. Prados-Garzon, A. Laghrissi, M. Bagaa, T. Taleb, and J. M. Lopez-
Soler, “A Complete LTE Mathematical Framework for the Network Slice
Planning of the EPC,” in IEEE Transactions on Mobile Computing.
Ericsson AB., Ericsson Mobility Report On the Pulse of the Networked
Society, Stockholm, Sweden, Nov. 2013 http://www.ericsson.com/res/
docs/2013/ericsson-mobility-report-november-2013.pdf.

Cisco, Global Mobile Data Traffic Forecast Update, 2012 - 2017, from
Visual Network Index (VNI) White Paper, Cisco Systems, California,
USA, Feb. 2013 http://www.cisco.com/en/US/solutions/collateral/ns341/
ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf.

J. Prados, A. Laghrissi, M. Bagaa, and T. Taleb, “A Queuing based
Dynamic Auto Scaling Algorithm for the LTE EPC Control Plane,” in
IEEE Globecom18, Abu Dhabi, UAE, Dec. 2018.

M. Bagaa, T. Taleb, A. Laghrissi, A. Ksentini, and H. Flinck, “Coali-
tional game for the creation of efficient virtual core network slices in 5g
mobile systems,” IEEE Journal on Selected Areas in Communications,
vol. 36, no. 3, pp. 469484, Mar. 2018.

Cisco, The Zettabyte Era - Trends and Analysis,from Visual
Network Index (VNI) White Paper, Cisco Systems, California,
USA, May 2013 http://www.cisco.com/en/US/solutions/collateral/ns341/
ns525/ns537/ns705/ns827/VNI_Hyperconnectivity_WP.pdf.

P. Cingolani and J. Alcald-Fdez, “jFuzzyLogic: a Java Library to Design
Fuzzy Logic Controllers According to the Standard for Fuzzy Control
Programming”, International Journal of Computational Intelligence
Systems, vol. 6, no. supl, pp. 61-75, Jun. 2013.

A. Nadkarni, E. Sheppard, B. Casemore, “Data Center Energy and Car-
bon Emission Reductions Through Compute, Storage, and Networking
Virtualization,” IDC, Sep. 2017.

