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Abstract

Human brain activity as measured by fMRI
exhibits strong correlations between brain re-
gions which are believed to vary over time.
Importantly, dynamic connectivity has been
linked to individual differences in physiol-
ogy, psychology and behavior, and has shown
promise as a biomarker for disease. The
state of the art in computational neuroimag-
ing is to estimate the brain networks as rela-
tively short sliding window covariance matri-
ces, which leads to high variance estimates,
thereby resulting in high overall error. This
manuscript proposes a novel Bayesian model
for dynamic brain connectivity. Motivated by
the underlying neuroscience, the model esti-
mates covariances which vary smoothly over
time, with an instantaneous decomposition
into a collection of spatially sparse compo-
nents – resulting in parsimonious and highly
interpretable estimates of dynamic brain con-
nectivity. Simulated results are presented to
illustrate the performance of the model even
when it is mis-specified. For real brain imag-
ing data with unknown ground truth, in ad-
dition to qualitative evaluation, we devise a
simple classification task which suggests that
the estimated brain networks better capture
the underlying structure.

1 INTRODUCTION

Human brain function is studied using a variety of
techniques in psychology, neurobiology and neuro-
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science. Researchers are motivated by the desire to
understand how brain function relates to behavior,
and to neurological disorders. Recent research in com-
putational neuroscience has shown that human brain
activity, as measured by fMRI exhibits strong cor-
relations between brain regions (Friston et al., 1993;
Biswal et al., 1995; van den Heuvel and Hulshoff Pol,
2010; Bastos and Schoffelen, 2015; Fingelkurts et al.,
2005; Li et al., 2009). Such correlations, known as
brain connectivity, are thought to represent commu-
nication between distant neural populations, which
is crucial to neural information processing. A more
recent paradigm shift is the observation that brain
connectivity exhibits dynamics – both in response to
task demands and at rest (Sakoğlu et al., 2010; Chang
et al., 2016). Importantly, time varying connectivity
has been linked to individual differences in physiology,
psychology and behavior (Shine et al., 2016a,b), and
has shown promise as a biomarker for disease (Fox and
Raichle, 2007; Calhoun et al., 2014).

From the statistical point of view, the measured fMRI
signal corresponds to a non-stationary multivariate
time series, and time varying connectivity corresponds
the sequence of associated covariances. By far the
most popular technique for time-varying connectivity
estimation is the sliding window approach and its vari-
ants (Hutchison et al., 2013; Damaraju et al., 2014;
Calhoun et al., 2014; Gonzalez-Castillo et al., 2015).
This involves dividing the time series into overlap-
ping sliding windows, then the connectivity is com-
puted as the covariance within each windowed tempo-
ral region. On one hand, the sliding approach is sus-
ceptible to high variance when computed with small
windows, and alternately large windows will tend to
smooth out dynamics. In practice, the window size is
often fixed a-priori between 10 - 100 samples based on
recommendations in published papers (Hindriks et al.,
2016). The next step of the sliding window analy-
sis is to cluster the covariance estimates to determine
a smaller set of canonical brain states (Allen et al.,
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2014; Gonzalez-Castillo et al., 2015) – thereby, implic-
itly assuming that the range of brain connectivity can
be summarized via a small set of states combined with
discrete switching dynamics. While the sliding window
remains the most popular approach in the literature,
several authors have shown how with or without the
clustering step, sliding window connectivity is suscep-
tible to noise, resulting in false detections of connectiv-
ity where none exists (Lindquist et al., 2014; Hindriks
et al., 2016; Laumann et al., 2016). It is clear that
learning time-varying functional connectivity is inher-
ently high dimensional, as it involves estimating many
more parameters than the number of samples avail-
able within a typical brain scan. For instance, data
with 100 time samples from 100 brain regions requires
O(1003) parameters! Thus, näıve techniques generally
result in noisy and inaccurate estimates. We explore
two ways to improve the quality of the dynamic con-
nectivity estimates, namely we (i) incorporate struc-
ture via neuroscience-inspired priors, and (ii) pool data
with shared information across multiple samples i.e.
hierarchical modeling.

Neuroscience-inspired statistical modeling: Our
model is inspired by a variety of neuroscientific phe-
nomena. We provide a brief outline, with further de-
tails in the text. Our model decomposes the connec-
tivity into a weighted combination of sparse low rank
components. Our approach is based on the scientific
hypothesis that brain function can be decomposed into
a small number of cognitive components (Posner et al.,
1988). For similar reasons, we incorporate sparse pri-
ors for each component which encourage spatial local-
ization into distinct brain regions. This approach also
follows the success of interpretable sparse decomposi-
tion methods for describing brain function (Dohmatob
et al., 2016). The time-varying weights are modeled
as Gaussian processes to enable complex non-linear
and long range correlations, which is based on the hy-
pothesis that brain connectivity exhibits complex but
temporally smooth non-linear dynamics (Shine et al.,
2016a,b), and motivated by empirical evidence which
suggests that brain dynamics are continuous rather
than discrete switching (Smith et al., 2012). Further,
the model also encourages sparsity of the component
weights to automate model selection.

Hierarchical Modeling: Post-hoc analysis of func-
tional connectivity in both task data and rest data
from the same individual suggests that they involve
similar sub-components, albeit with individual tem-
poral activation (Arbabshirani and Calhoun, 2011;
Di et al., 2013; Schultz and Cole, 2016). Similarly,
static and time-varying functional brain structures are
known to be preserved across participants (Zalesky
et al., 2012; Preti et al., 2016; Calhoun et al., 2014),

with shared temporal dynamics when the participants
are all involved in the same task with the same task
temporal design. Such information are discarded by
common methods such as sliding window connectiv-
ity. Instead, our approach incorporates the shared
structure to improve the quality of estimates. Taken
together, these ideas result in a novel Bayesian struc-
ture learning model for dynamic brain connectivity.
In summary, our main contribution is a novel hierar-
chical model for time-varying brain functional connec-
tivity – inherently a high dimensional statical infer-
ence, which combines neuroscience-inspired statistical
modeling with hierarchical modeling and data pool-
ing for improved estimates as compared to standard
approaches. We design and implement scalable mean-
field variational inference algorithm for the model and
evaluate the resulting performance using both syn-
thetic data and real functional brain imaging data.
Our results show improved quantitative and qualita-
tive performance as compared to standard approaches.

2 Related work

Related work includes sliding window methods
(Hutchison et al., 2013; Damaraju et al., 2014; Cal-
houn et al., 2014; Gonzalez-Castillo et al., 2015), which
have been described in the introduction. Further-
more, state-space models (Yang et al., 2016; Olsson
and Hansen, 2006), dictionary learning models Ea-
vani et al. (2012), and independent component analy-
sis models (Dyrholm et al., 2007; Hyvarinen and Oja,
2000) are also popular within neuroimaging. Hidden
Markov models (Rabiner, 1989) are easily adapted to
the task of estimating functional connectivity. How-
ever, such models assume that the underlying latent
space is discrete. As we show, while such an approach
can improve performance as compared to the sliding
window, it does not seem well adapted to neuroimag-
ing applications, and achieves worse performance. Dy-
namic factor models, somewhat related to our dynamic
connectivity approach have been explored the statis-
tics and machine learning literature (Fox and Dunson,
2015; Kastner, 2016), but with differences in the mod-
eling assumptions which are less well adapted to neu-
roscience data e.g. strong autoregressive assumptions
on the temporal dynamics. Further, as we employ vari-
ational inference instead of MCMC, our model is able
to scale up to realistic brain imaging parcellated time
series with hundreds of regions and hundreds of time
points, and where the number of regions often exceeds
the time series length. To our knowledge, our proposal
is the first Bayesian continuous dynamic model with
such high dimensional scalability.
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3 GENERATIVE MODEL

Let xn
t ∈ RD be the D-dimensional observed time

series at time t ∈ {1, 2, . . . , T} for subject n ∈
{1, 2, . . . , N} and let D be the collection of the all ob-
served time series for all subjects. The sampling distri-
bution of xn

t is assumed to be xn
t ∼ N (0,Σn

t ) , where
Σn

t is the instantaneous covariance matrix time at t for

subject n. Let S =
{
Sk |Sk ∈ RD×D}K

k=1
represents

the dictionary of covariance matrix components. Our
model decomposes Σn

t into a non-negative weighted
sum of components as:

Σn
t = β−1I +

K∑
k=1

αn
k,tSk, (1)

where the coefficients αn
k,t ≥ 0 are a set of non-negative

real mixing weights. It is clear that that αn
k,t, where

An =
{
αn
k,t

}
also govern the dynamics, by controlling

the contribution of each Sk towards the instantaneous
covariance Σn

t at time t for the n’th subject. The pa-
rameter β−1 > 0 is a positive real number controlling
the amount of additive white noise.

The dictionary of covariance matrix components, S is
shared across both time and subjects. Loosely speak-
ing, S is a common basis of covariance matrices for
all time points and all subjects, where (αn

1,t, . . . , α
n
K,t)

are the coordinates for the specific covariance matrix
at time t for the n’th subject. This shared representa-
tion allows us to pool data across multiple subjects to
estimate each Sk. As we show, estimating each covari-
ance matrix component, Sk, using data from multiple
subjects simultaneously rather than estimating them
independently for each subject leads to more robust
estimates. From the neuroscience perspective, each
element of S represents the connectivity matrix of a
particular cognitive process, so that the instantaneous
brain connectivity is a combination of these processes.
Thus, our model assumes that the cognitive compo-
nents are shared among individuals, and individual
differences are due to dynamics. That the cognitive
components are shared is a basic assumption in cogni-
tive neuroscience and is considered a weak assumption.

In this work, we choose the prior distribution for A
based on the following three desired properties: spar-
sity, temporal smoothness and non-negativity. The
properties of temporal smoothness and sparsity are in-
spired by the neuroscience as discussed in the introduc-
tion, and also serve as a way to regularize the model.
Sparsity ensures that only a small subset of elements
from the dictionary S contribute to the instantaneous
covariance Σn

t at any given time t. This follows the as-
sumption that only a subset of the cognitive processes
are requires to represent instantaneous connectivity.

Temporal smoothness of αn
k = (αn

k,1, α
n
k,2, . . . , α

n
k,T ) ∈

RT implies that Σt will change slowly in time, i.e. two
samples xn

t and xn
t′ are more likely to have similar sec-

ond order moments, if t and t′ are close in time. This
encodes the assumption of smoothly varying cognitive
process dynamics. Finally, non-negativity is a techni-
cal condition to ensures that the instantaneous covari-
ance matrix Σn

t remains positive definite for all time
points and for all subjects. We find that the positive
constraint also simplifies interpretability of the overall
covariance as a sum of parts. We model the set of mix-
ing coefficients using Gaussian processes (Rasmussen
and Williams, 2005) as follows

αn
k,t = max

(
0, ank,t

)
, an

k ∼ GP (mn
k ,C

n
k ) . (2)

That is, we model each αn
k as a truncated Gaussian

process with prior mean mn
k ∈ RT and prior covari-

ance Cn
k ∈ RT×T . Using this construction, we can

explicitly control the smoothness properties of αn
k us-

ing the prior covariance matrix Cn
k . Furthermore, the

marginal probability of a given weight αn
k,t being non-

zero is given by

p(αn
k,t > 0) = p(ank,t > 0) = Φ

 µn
k,t√
Cn

k,tt

 , (3)

where Φ : R → (0, 1) is the standardized normal cu-
mulative distribution function.

Each Sk is assumed to be sparse, symmetric and of
rank one, i.e. Sk = vkv

T
k , where vk is a sparse vec-

tor – thus encoding the assumption that each cognitive
process is ”simple”, and spatially localized. To encour-
age sparsity of vk we impose the spike-and-slab prior
(Mitchell and Beauchamp, 1988) on vk as follows

vk = sk ◦ uk, (4)

sk ∼
D∏
i=1

Bernoulli (pk) , uk ∼
D∏
i=1

N (0, τk) ,

where ◦ is the element-wise Hadamard product, sk,i ∈
{0, 1} is a binary support variable for vk,i, and pk ∈
(0, 1) is a hyperparameter controlling the degree of
sparsity, i.e. the expected fraction of non-zero entries
in vk is pk.

Adaptation for Task data: We note that neu-
roimaging task data has the advantage of temporal
synchronization i.e. it is reasonable to expect that
all subjects will be in similar brain states at similar
time-points during the experiment. Thus, we model
each subject as i.i.d. observations of the same underly-
ing spatio-temporal process. In particular, we assume
that both the spatial maps and dynamic weights are
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shared, i.e. αk,t = αn
k,t for all n. The simplified model

becomes:

Σn
t = β−1I +

K∑
k=1

αk,tSk ∀ n. (5)

Inference and Learning: We estimate the covari-
ance matrix components S and the dynamic mixing
weights, A = {An}Nn=1, simultaneously from the ob-
served time series D via mean-field variational in-
ference (Blei et al., 2016). To estimate the quanti-
ties of interest, we use the posterior expectation of
the random variables conditioned on the data, e.g.
Ŝk = EQ [Sk|D], where expectations are with respect
to the variational distribution Q. A graphical repre-
sentation of both the full and simplified model, and
details of the inference are deferred to the Appendix.

4 EXPERIMENTAL EVALUATION

To study and quantify the performance of the model
and the inference algorithm, we conducted a series of
numerical experiments using both synthetic data and
real fMRI data. In all experiments, we choose the
mean function to be a constant, i.e. mk = mk1 ∈ RT ,
and we choose the covariance function for Ck to be the
Matérn covariance (Rasmussen and Williams, 2005)
function plus a scaled identity matrix so that Ck(t, t′)
is given by:

ck

[
1+

√
5|t− t′|
`k

+
5|t− t′|2

3`2k

]
exp

[√
5|t− t′|
`k

]
+dkI.

Hyperparameterssuch as mk, ck, dk, & `k for each com-
ponent are estimated from the training data using a
maximization step i.e. the overall model is estimated
via variational EM. Observe that due to the spatial
sparsity on the mixing weights, our model automat-
ically implements model selection (see figure 2c), so
we only need to set an upper bound on the number of
components K.

4.1 Simulated Data

First we investigate the performance of the model us-
ing simulated data. As we are interested in recovery of
the covariance matrices (and not just likelihood), we
use the Log-Euclidean Riemannian Metric (LERM) –
a metric on the manifold of symmetric positive definite
matrices (Vemulapalli and Jacobs, 2015; Huang et al.,
2015). For a sequence of estimated covariance matri-
ces, we compute the time-averaged LERM-distance to
the ground truth sequence. Details of the LERM met-
ric are provided in the Appendix.

4.1.1 Continuous mixing data set

In the first experiment, we generated time series for
a number of subjects using the model in eq. (5) as-
suming that all subjects share the same time-varying
covariance structure. In particular, we generated a se-
quence of ground truth covariance matrices Σt using
four components and 145 time points, i.e. K = 4 and
T = 145. We ran the experiment for three different
dimensions, D = 10, 30, 50, respectively. The ground
truth mixing weights for the four components are cho-
sen to be a linear function, a constant function, and
two sinusoidal functions with different frequencies (see
Figure 1(a)).

As expected, we found that the sparsity-promoting
priors are capable of pruning unnecessary covariance
components. To demonstrate this, we initialized the
model using K = 20 random covariance components.
The amount of energy that the k’th component con-
tributes to the total energy depends on both Sk andαk

and for each k, we computed the energy contribution
for each component point-estimate as the expectation
of Ek = Trace (Sk)

∑T
t=1 αk,t. Figure 1(c) shows the

energy contribution of each component along with the
corresponding estimated component after fitting the
model to a data set with N = 5 subjects. It is seen
that the model correctly identifies four true non-zero
components. Figure 1(b) shows the mean of the poste-
rior distribution for αk superimposed with 2 standard
deviations (left panel) and the corresponding non-zero
covariance components (right panel). There is a scal-
ing ambiguity in the model, i.e. in eq. (5) we can
scale αk with some non-zero constant and divide Sk

with the same constant to obtain the same covariance
matrix Σt. To facilitate comparison with the ground
truth values, we scale each estimate of αk such that
the maximum value is 1.

We also compared the performance of the proposed
model to competing methods from the neuroimaging
literature. Specifically, we consider the sample covari-
ance estimator (completely ignoring any dynamics),
the sliding window estimator and the hidden Markov
model using multivariate Gaussian emission distribu-
tions (HMM) (Rabiner, 1989). We considered three
different window sizes for the sliding window estima-
tor, i.e. L = 10, 20, 30, where L ≈ 20 is optimal w.r.t.
parameter recovery. We note that the sliding window
results shown reflect window sizes chosen to highlight
the strongest baseline conditions. In practice, window
selection is a notoriously hard problem that leads to
radically different and non-reproducible results. For
training of the HMMs, we choose the number of states
based on log likelihood of data from one hold out sub-
ject.
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(a) Ground truth weights & compo-
nents

(b) Estimated weights & components (c) Component Energy

Figure 1: Ground truth and model estimates for simulated experiment using continuous mixing dynamics for
D = 10 and for N = 5 subjects. The leftmost panel in figure (a) shows the true mixing weights, while the
rightmost panel in figure (a) shows the corresponding ground truth components. The left and right panel in
figure (b) show the estimated mixing weights αk and the estimated covariance components Sk from the model.
(c) Energy contribution for each component normalized wrt. total energy for continuous data set.

The three rows in Figure 2(a) show the performance of
each method as a function of number of training sub-
jects for three different values of number of regions,
i.e. D = 10, 30, 50, averaged over R = 20 realizations
of the data. First, it is seen that the proposed method
performs uniformly better than the reference meth-
ods. Furthermore, it is also seen that as the dimen-
sion of data D increases, the performance of the ref-
erence methods drop significantly. In particular, when
the number of training subjects N < 10 and D > 10,
the sliding window estimators and the HMMs performs
equal or worse than the sample covariance estimator.

4.1.2 Simulated data with discrete switching

Inspired by the simulated experiments of Calhoun
et al. (2014), we performed simulated data where the
ground truth covariance switches instantaneously be-
tween a set of discrete states (rather than continuous
mixing). As in (Calhoun et al., 2014), we considered
four states with four different covariance matrices as
shown in Figure 4. Using the same fixed state sequence
of 1 → 2 → 3 → 4 → 2 for each subject, we gener-
ated time series for each subject such that the samples
within each state are drawn i.i.d. from a multivariate
Gaussian distribution with a state-specific covariance
matrix, i.e. the emission model of the HMM. Figure 3
shows the posterior mean for each αk for the non-zero
components and the corresponding covariance compo-
nents after training the model on N = 5 subjects.
It is seen that the model captures the dynamics and
the covariance matrices for all states correctly, even
though the estimated mixing weights are temporally
smoothed. This is due to the fact that step functions
are not well-modeled by the Gaussian process priors on
ak using generic stationary kernels. The bottom-most
panels in Figure 3 show how the model decomposes
the four unique covariance matrices into 8 rank one
components, where some of the components are used

in multiple states. For example, state 1 is decomposed
into components S16 and S13, while state 3 is decom-
posed into components S13,S10, and S1. Thus, the
samples from states 1 and 3 both contribute to the es-
timation of S13 even though the complete covariance
matrices for the two states are different. The decom-
position of distinct states into a set of shared com-
ponents aligns well with the neuroscientific hypothesis
that brain function is decomposable into a set of el-
ementary cognitive processes (Posner et al., 1988) as
discussed in the introduction. The model also pro-
duces accurate estimates of the instantaneous covari-
ance matrices as weighted sums of the estimated co-
variance components Ŝ as evidenced in Figure 2b. The
proposed model is mis-specified in this experiment,
however we observe that for D = 10, the proposed
model outperforms the reference methods for N < 4,
while it achieves the same level of performance as the
HMM for N ≥ 4. For D = 30, 50, the proposed model
performs uniformly better than the reference meth-
ods. We explain this by observing that our model en-
joys additional shrinkage from the priors that are not
available to HMM. The effect is especially stark in high
dimensions (as one expects in neuroimaging data). We
conjecture that one could improve the HMM estimates
by including additional shrinkage, but this is beyond
the scope of this paper.

4.2 Analysis of fMRI motor task data

In this experiment, we applied the proposed model to
the fMRI motor task data set from the Human Con-
nectome Project (HCP) (Van Essen et al., 2013). All
models are evaluated after standard preprocessing –
to simplify comparison to baseline models (Poldrack
et al., 2011). The multivariate time series for each
subject was parcellated into D = 333 regions using
the Gordon Atlas (Gordon et al., 2016). Each subject
time series has length T = 284. Unfortunately, ground
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(a) Continuous mixing dynamics (b) Discrete mixing dynamics

Figure 2: Estimator performance as a function of the number of training subjects for two different simulated
data sets. The left-most panel shows the results for the data sets with continuous mixing, while the right-most
panel shows the results for the data sets with discrete switching. Furthermore, the three rows show the results
using D = 10, 30, 50 number of regions, respectively. The proposed model outperforms baselines even thought it
is mis-specified with discrete switching data.

truth covariance estimates are unknown for real data.
Instead we devise a simple classification test based on
task data. IN particular, we validate our approach by
showing that the task labels can be predicted using the
sequences of estimated covariance matrices. We wish
to emphasize that the point of evaluating task data is
that it provides us with the closest thing we have to
ground truth for real data. We present an evaluation
of the resting state version for our model (i.e. eq. (1))
on simulated data in the Appendix. Additional ex-
periments evaluating resting state data are necessarily
more subjective, and are left for an extended version
of this manuscript tailored to a neuroscience audience.

We analyzed data from subjects participating in a mo-
tor task experiment. Here, the subjects were asked to
perform 5 different motor tasks: left/right hand tap-
ping, left/right foot tapping and tongue wagging at
different time points. We divided the data set into a
training set and a test set with Ntraining = Ntest = 50
subjects. We fitted the model to the training set and
for each time point, we used the posterior expectation,
Σ̂t = EQ [Σt|D], as an estimate of the instantaneous
covariance matrix at time t. Next, we computed the
time-averaged covariance matrix for each task

Σ̂task i =
1

|Ti|
∑
t∈Ti

Σ̂t, (6)

where Ti is the set of time points for the i’th task

and |Ti| is the number of volumes within task i.
This way, we obtain a covariance matrix estimate,
Σ̂left hand tapping, ..., Σ̂tongue wagging, for each task. Us-
ing a flat prior for the task label, p(task i), we classi-
fied the label of each task block of each held-out test
subject using Bayes’ rule

p(task i|X∗) ∝
T ′∏
t=1

N
(
x∗t |0, Σ̂task i

)
, (7)

where X∗ ∈ RD×T ′
is the block of data from the test

subject to be classified and N
(
x∗t |0, Σ̂task i

)
is the

likelihood of task i for the t’th sample x∗t . We com-
pared the proposed method with three reference meth-
ods: a regularized covariance matrix estimator, the
sliding window approach and random guessing (uni-
formly). The regularized covariance matrix estimator
denoted the shrunk covariance estimator given by

Cshrunk
taski

= (1− γ)Ŝtaski + γ
Tr
[
Ŝtaski

]
D

I, (8)

where Ŝtaski
is the sample covariance matrix of the

samples within task i across all training subjects and
γ ∈ [0, 1] is a shrinkage parameter. This estimator
is basically a (regularized) sample covariance matrix
of all data point belonging to a given task across all
training subjects. In addition to providing shrinkage,
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Figure 3: The topmost panel shows estimated mixing weights αk for each of the non-zero components and the
bottommost panel shows the corresponding estimated covariance components Sk.

Figure 4: True states for simulated experiment with in-
stantaneous switching dynamics. The proposed model
accurately recovers the dictionary elements and mix-
ing weights.

the regularized estimator enable invertibility of the co-
variance matrix estimate, required in order to evalu-
ate the classification likelihoods in eq. (7), since the
number of regions is larger than the number of time
points within each task. Furthermore, we also con-
sider the sliding window estimator (also based on the
above shrunk estimator rather than the sample esti-
mator) with window sizes of 20, 30, & 40. We use a
fixed value for the shrinkage parameter γ = 0.85 for
both Cshrunk

taski
and Csliding

taski
and for the proposed model,

we fixed the upper bound on the number of compo-

Figure 5: Macro (across all tasks) ROC curves for mo-
tor task classification for Ntrain = Ntest = 50 subjects.
The results indicate improved performance of the pro-
posed model compared to all baselines.

nents to K = 25 as it was found to be sufficient based
on a separate preliminary experiment using a subset of
3 subjects not part of the evaluation. Figure 5 shows
the macro ROC curves (Sokolova and Lapalme, 2009)
for the multi-class classification problem with N = 50.
The fact that all methods perform better than random
suggests that covariance structure of the data are in-
deed time-varying and contain information about the
task labels. Visualizations of the estimated task co-
variance matrices as well as confusion matrices for the
classification problem are included in the supplemen-
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(a) Right hand tapping (b) Left foot tapping (c) Tongue wagging (d) Right foot tapping (e) Left hand tapping

Figure 6: Classification accuracies for each task as a function of the number of training subjects averaged over
20 random splits of the data.

(a) Right hand tapping (b) Tongue wagging (c) Left hand tapping

Figure 7: Top panels: Dynamic mixing weights superimposed with task activation pattern. Bottom panels:
Visualization of corresponding covariance matrix component. All plots are extracted from a random split with
50 subjects. Estimated connectivity matrices closely match known motor regions associated with each subtask.

tary material. To mimic the fact that the vast majority
of fMRI datasets are acquired from only a few of sub-
jects, Figure 6 shows the classification accuracy for the
individual tasks as a function of the number of train-
ing subjects. To compensate for the small sample size,
the results are averaged over R = 20 random splits
of the data. It is seen that for 4 out of 5 tasks, the
proposed method performs as well or better than the
reference methods and that the performance in general
increases as a function of number of training subjects
as expected. Furthermore, the classification accuracies
for the two finger tapping tasks are in general higher
than accuracies of the remaining three tasks. However,
the performance for the proposed model for the tongue
wagging task is worse than the reference method.

Finally, we also compared the set of estimated mixing
weights to the task onset sequences of the experimen-
tal paradigm. The top-most panels in Figure 7 show
the task activation sequences for three different tasks
superimposed with the posterior mean of the αk that
matches the support of the specific task activation.
The bottom-most panels visualizes the corresponding
covariance matrix components. Interestingly, the re-
sults show that the networks expected to be associated

with left and right hand movements (right and left
motor cortex, respectively) have indeed non-zero mix-
ing weights near the task-onsets of the relevant tasks.
Additional results provided in the supplement show
that the recovered connectivity matrices closely match
known motor regions associated with each subtask.

5 CONCLUSION

We have described a Bayesian model for dynamic func-
tional connectivity estimation, where the dynamics
are captured by a set of Gaussian processes, and the
covariance components are regularized to be simple
and sparse – both properties informed by the neuro-
science. The proposed model was evaluated on sim-
ulated data and shown to accurately recover model
components even when mis-specified, and while out-
performing baseline approaches. While ground truth
is unknown for real fMRI data, a simple classification
test using task fMRI data also indicate the efficacy
of the model. Future work will include extending the
model to capture additional prior knowledge of spatial
dependencies using structured spike and slab priors
(Smith and Fahrmeir, 2007; Andersen et al., 2014).



Michael Riis Andersen, Ole Winther, Lars Kai Hansen

References

Elena A Allen, Eswar Damaraju, Sergey M Plis, Erik B
Erhardt, Tom Eichele, and Vince D Calhoun. Track-
ing whole-brain connectivity dynamics in the resting
state. Cereb. Cortex, 24(3):663–676, March 2014.

Michael R Andersen, Ole Winther, and Lars K Hansen.
Bayesian inference for structured spike and slab pri-
ors. In Z Ghahramani, M Welling, C Cortes, N D
Lawrence, and K Q Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
1745–1753. Curran Associates, Inc., 2014.

Mohammad R Arbabshirani and Vince D Cal-
houn. Functional network connectivity during rest
and task: comparison of healthy controls and
schizophrenic patients. In Engineering in Medicine
and Biology Society, EMBC, 2011 Annual Interna-
tional Conference of the IEEE, pages 4418–4421.
IEEE, 2011.
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