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The Planet's Stressed River Basins: Too Much Pressure
or Too Little Adaptive Capacity?
Olli Varis"

, Maija Taka'(”), and Matti Kummu"

"Water and Development Research Group, Aalto University, Espoo, Finland

Abstract Freshwater is one of the most critical elements for sustainable development of ecosystems and
societies. River basins, concomitant with administrative zones, form a common unit for freshwater
management. So far, no comprehensive, global analysis exists that would link the ecological challenges of the
planet's river basins to the capacity of the societies to cope with them. We address this gap by performing a
geospatial resilience analysis for a global set of 541 river basins. We use the social-ecological systems
approach by relating three ecological vulnerability factors (human footprint, natural hazards, and water
scarcity) with three adaptive capacity factors (governance, economy, and human development), based on
temporal trajectories from 1990 to 2015. Additionally, we examine resilience by subtracting ecological
vulnerability from adaptive capacity. The most striking result is the fundamentally different patterns of
controlling factors of the resilience in different developing regions, particularly those of Africa and Asia.
Their root causes are particularly low adaptive capacity in Africa and high ecological vulnerability in Asia.
Alarmingly, the difference between those continents grew within the study period. Finally, this study
highlights the rapid dynamics of adaptive capacity in comparison to ecological vulnerability, the latter
having more inertia. Their fragile balance is of our interest; they can either support or counteract each other
depending on the geographic location.

Plain language Summary The ongoing global environmental change highlights the critical role
of freshwater for sustainable development of ecosystems and human societies. Resilience is the capacity to
absorb disturbance and reorganize while undergoing changes. In this study, we perform a spatial analysis for
541 watersheds to identify the drivers of this resilience. We define resilience of each basin by first examining
their adaptive capacity, which is a combination of governance, economy, and human development. We then
define ecological vulnerability by combining human footprint, natural hazards, and water scarcity into one
index. To conclude, resilience indicates the strength of community's adaptive capacity in the presence of
ecological vulnerability. Our results indicate the different patterns resilience across the globe, pointing out
how the similarly low resilience in Africa and Asia is caused by low adaptive capacity and high ecological
vulnerability, respectively. Our temporal analysis 1990-2015 shows how this difference has been increasing
over time. Interestingly, adaptive capacity was more dynamic over time, compared to more constant
ecological vulnerability. The examined balance between adaptability and vulnerability provides a useful tool
for managing the resilience of freshwater resources.

1. Introduction

Shortage of freshwater and degradation of aquatic ecosystems constitutes one of the key challenges for the
sustainability of the planet (Rockstrom et al., 2009; Sivapalan et al., 2012; Steffen et al., 2015). Since the
world's river basins represent a broad spectrum of natural and human conditions, the freshwater challenges
largely vary across river basins. The challenges typically constitute a mix of ecological, economic, and social
features, and hence, the tripod conception of sustainable development is relevant.

1.1. River Basins as Hydrological and Policy-Making Units

A river basin is one of the elementary units for investigating freshwater systems. This holds true when study-
ing water per se as a component of nature through the lenses of a hydrologist. This is equally true for diag-
nosing or finding solutions to the challenges facing these areas, caused either by humanity or natural
conditions. The river basin approach provides a pragmatic and functional link between hydrology and water
policies because river basins form a commonly used unit for policymaking in water sector, endorsed by
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organizations such as the United Nations through the concept of Integrated Water Resources Management
(Jonch-Clausen & Fugl, 2001; Rahaman & Varis, 2005; Sivapalan et al., 2014). Indeed, uses and other changes
upstream influence water quality and quantity downstream, having an impact on water uses and ecosystems
(Munia et al., 2016). Most countries adopt the river basin approach in one way or another as the basis for
their water resources management policy (Kazbekov et al., 2016; Kummu et al., 2018b). River basin manage-
ment is typically linked to two other spatial governance patterns, namely, administrative divisions and
economic zones and corridors, which quite often do not coincide with one another nor with river basin
boundaries.

River basins are systems in which humans must be able to adjust and adapt their behavior to the limits of the
basin ecosystems sustainably (Costanza et al., 2000; Folke, 2006). Accordingly, river basins can easily be
viewed through the lenses of social-ecological systems (SESs; Berkes & Folke, 1998). This concept is widely
used in Earth and sustainability sciences (Adger, 2006; Folke, 2006; Hinkel, 2011; Janssen & Ostrom, 2006;
Shahadu, 2016) as well as by the climate change community (Smit et al., 2001; Smit & Wandel, 2006). In addi-
tion, the terms socioecological systems (Gallopin, 1991) and coupled human-environment systems (Turner
et al., 2003) are also used in a largely synonymous manner. These terms emphasize the importance of study-
ing the dynamics and interconnections between societal and ecological systems (Janssen & Ostrom, 2006).

1.2. Contemporary Approaches to Freshwater Assessments

The advent of high-resolution geospatial data together with perennially refining global hydrological models
has led to an increasing number of assessments on various aspects of challenges concerning water manage-
ment at both river basin and global scales (Liu et al., 2017). In this regard, Vorosmarty et al. (2000) and
Vorosmarty (2002) have made important contributions by introducing global-scale spatial analyses into
the field. As a result, sophisticated analyses are increasingly available on the water availability per capita
and water use in relation to water availability (Kummu et al., 2016; Mekonnen & Hoekstra, 2016; Porkka
etal., 2016; Wada & Bierkens, 2014). Often, such studies have a multidisciplinary approach combining ana-
lyses for various purposes, including agricultural production (Kummu et al., 2014; Mekonnen & Hoekstra,
2014; Pfister & Bayer, 2014), water demand and climate change (Gosling & Arnell, 2016; Schewe et al.,
2014; Veldkamp, Eisner, et al., 2015; Veldkamp, Wada, et al., 2015; Vorosmarty et al., 2000; Wanders &
Van Lanen, 2015), ecosystems and biodiversity (Green et al., 2015; Vorosmarty et al., 2010), energy demand
(Holland et al., 2015), and upstream-downstream relations (Green et al., 2015; Munia et al., 2016, 2018).
These studies have demonstrated a relationship between the supply of freshwater and selected demand fac-
tors, including population pressure.

In addition to linking water resources availability to water demand and/or the size of the population, several
studies have linked water availability to nations' societal capacity to tackle water problems as well as future
development scenarios. For example, Kulshreshtha (1993) and Raskin (1997) used the national Gross
Domestic Product (GDP) for this purpose. The concept was refined by Seckler et al. (1999) to globally identify
the areas subject to physical or economic water scarcity and areas free from water scarcity. They found an
association between economic water scarcity and those countries which, according to their scenario analysis,
have sufficient water resources to meet their demand by 2025, but would “... need to embark on massive water
development programmes to actually utilize these resources” (see also TWMI, 2000).

One group of freshwater studies include multidisciplinary and transdisciplinary vulnerability analyses,
which incorporate social, economic, and environmental factors influencing either water resources govern-
ance or ecological status. These studies typically rely on the triple bottomline approach to sustainable devel-
opment, in which economic, social, and ecological factors are examined in conjunction. They, however, have
not yet adopted the SES concept. Nevertheless, the societal component is often included in a manner that is
broad enough and goes sufficiently beyond technicalities to allow a SES analysis. Geographically, water
resources vulnerability assessments have had either national (Chang et al., 2007), subnational (Qian et al.,
2016; Wan et al., 2015), or predominantly, a regional focus (Babel & Wahid, 2008; Cai et al., 2017; Huang
et al., 2008; Kattelus et al., 2015; Pascual et al., 2015; Varis & Kummu, 2012). Globally, only one freshwater
vulnerability analysis has been conducted thus far (Padowski et al., 2015). The developed vulnerability con-
cept combines water demand with available infrastructure, institutions, endowment capacity, and exogen-
ous factors, such as imports of water and virtual water. However, as it excludes economic and social
aspects, it does not address the tripod of sustainable development. The Water Poverty Index approach
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(Sullivan, 2002) includes social and economic aspects, as it combines indicators from five aspects of water
poverty, which are Resources, Access, Capacity, Use, and Environment. Although it is targeted to measure
water stress at the household and community levels, and not vulnerability nor resilience, it has plenty of rele-
vance to our present study.

1.3. River Basins as Social-Ecological Systems (SESs)

Currently, no systematic, global-scale SES framework (as defined by Berkes & Folke, 1998; Gallopin, 1991;
Turner et al., 2003) is available for river basins, which would be based on the tripod of sustainable develop-
ment. Despite its widespread acceptance, the SES methodology remains largely nonoperational with many
voices calling for further development (Ostrom et al., 2007). In fact, river basins, particularly the North
American Great Lakes basin (i.e., the upper part of the Saint Lawrence River basin), have been among the
pioneering geographical areas for the development of the SES concept as early as in the 1980s (Rapport et
al., 1985; Steedman & Regier, 1987). Despite this, the approach has not yet been generalized for systematic
analysis of river basins with global coverage.

In the past three decades freshwater studies have manifested a growing tendency for including social and
human aspects into specific fields such as hydrology (Xu et al., 2018). Although the number of published
scientific papers was at first low, the number increased exponentially thereafter. Over the last two decades,
large-scale hydrological models have increasingly included components describing human influence on
water resources, yet Wada et al. (2017) maintain that “ ... the representation of human activities in hydrological
models remain challenging.” Sociohydrology, a subfield of hydrology, has recently been launched to improve
understanding of the processes linking human activities to hydrology (Sivapalan et al., 2012, 2014). This con-
cept is highly welcome, yet the published studies are still centered at a local to regional scale (Xu et al., 2018),
and as stated by Wada et al. (2017) “... still requires more detailed parameterizations of human behavior and
process-oriented modelling frameworks.” A bold shift to transdisciplinarity is pivotal (Melsen et al., 2018).

Accordingly, major challenges still exist in the detailed parameterization of SES for the field of human-water
systems (Wada et al., 2017; Xu et al., 2018), and there is a need to move toward increasing transdisciplinarity
when addressing such systems (Melsen et al., 2018). Therefore, we propose an indicator-based, gridded
approach for analyzing the global interaction of humanity and freshwater as a SES. The indicators for this
analysis were designed to be transdisciplinary and to represent the social, economic, and ecological systems
as comprehensively, parsimoniously, and coherently as possible. For the sake of transparency, our approach
allows repeatability and extendibility, based on the principle of parsimony, followed by keeping the number
of assumptions (indicators) at the minimum. Moreover, our requirement for the indicators is that (1) they
need to be the dominant ones in current use in the policy domain by global and regional governance actors
as well as by the scientific community, (2) they need to be available globally with full coverage of the Earth's
land surface area, and (3) to be continuously updated, historical trajectories being available for several
past decades.

Due to the diversity in hazards, Dilley et al. (2005) consider them as an additive composite. We are consistent
to their approach in our formulation of ecological vulnerability (EV), as it is composed of natural hazards
(Dilley et al., 2005), human footprint (Venter et al., 2016), and water scarcity (Kummu et al., 2016). Those
are of primary importance on the ecological state of the system. Data sets of governance effectiveness
(WGI, 2018), economy, and human development are used for adaptive capacity (AC) assessment. The differ-
ence between of AC and EV is interpreted as resilience.

In a series of analyses from major Asian river basins, we have developed for this purpose a multidisciplinary
approach (Kattelus et al., 2015; Varis et al., 2014, 2012), which is here extended to the global level and aligned
with the SES concept. For climate change analysis, the University of Notre Dame, Illinois, has developed an
approach with some similarities to our own (Chen et al., 2017). This Notre Dame Global Adaptation Index
also shares a vulnerability-resilience approach but targets vulnerability solely to climate change and readi-
ness to improve adaptation.

Our analysis is crucial in two ways. First, it provides a global overview of the magnitudes and relations of an
array of key factors that have influenced the resilience of river basins through developments in AC and EV
globally. Second, it offers a platform for targeting scholarly and policy-related activities, as well as studies on
geographic areas that are the most critical ones in terms of freshwater-related challenges and their resilience
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to potentially increased future pressures. Third, we address the concern of Ostrom et al. (2007) on the lack of
operationalization of the key SES concepts (resilience, AC, and vulnerability): “The caveat is, ... that it is dif-
ficult to translate the concept in practice, causing resilience researchers to resist systematically measuring or
characterizing adaptive capacity ... operationalization and generalization are discouraged.” (Engle, 2011).

2. Materials and Methods

We analyze the recent temporal evolution of EV, AC, and the resilience of the SES by country and river basin
for all of the 309 large river basins in the world (i.e., areal extent >50,000 km?). The smaller basins are aggre-
gated into 232 units based on the coastal area of discharge by modifying the method of Meybeck et al. (2006).
Accordingly, the study encompasses 541 geographical entities, which are analyzed using annual data span-
ning the period between 1990 and 2015.

2.1. The Composite Index Approach for Social-Ecological System (SES)

Our approach to SES is based on the concepts of resilience, vulnerability, and adaptation, which have been
widely adopted for use in climate change, Earth systems, and sustainability sciences (Adger, 2006; Gallopin,
2006; Janssen & Ostrom, 2006). We apply the concept of EV to indicate the status of the ecological system and
AC to indicate the ability of the social system to aid in balancing the ecological system. Resilience indicates
the strength of AC in the presence of EV. All these key concepts have a plurality of definitions in scientific
literature. Below we specify how we approach them in our study.

We use the Equal Weight Composite method for constructing the numerical indices for AC and EV. This is a
common method in fields such as finance, economy, environment, and society when constructing composite
indices from elements that are in wide policy-related use as such (e.g., Ding et al., 2018). Ideally, a composite
index should be based on a theoretical definition, which allows individual factors to be selected, combined,
and weighted in a manner which reflects the dimensions or structure of the phenomena being measured.
Such an index is decomposable to its elements directly and is maximally transparent and parsimonious.
Examples of such indices include the Human Development Index (HDI; UNDP, 2018), which is widely used
in the United Nations system, and the World Bank's Governance indicators (WDI, 2018). When developing
our approach, we are challenged by the trinity of parsimony, representativeness, and pragmatism. We aim at
covering as much of the sphere of AC and EV with as few indicators as possible, while ensuring the wide use
of our indicators for policy support and even in public communication.

As indices derived from several fields are not expressed in commensurable units, a rescaling is needed in
order to make the indices scale independent. We eliminate the potential outliers from the data by using
the observations between the 95™ and 5™ percentiles and thereafter use the min-max normalization method
(e.g., Theodoridis & Koutroumbas, 2008) for rescaling all indices and their components globally into the
range [0, 1]. Using that rescaling, the value 0.5 in AC and EV indicates that the entity under concern is at
the midrange of the sample minimum and maximum. Resilience is min-max normalized to the range [—1,
1], the value 0 indicating the global mean range value, for reasons described below. Before the normalization,
we create a harmonized gridded data set with 5 arc min-resolution (~9 km at the equator) with a unified land
mask. The composite indices for AC and EV are calculated as the arithmetic mean value of their three fac-
tors, and we thus consider the three factors to be equally important for resilience (with the economy getting
slightly more emphasis as it also constitutes one third of HDI). All of our input indicator data are published
and available in openly available data repositories (Table 1). Output data derived from our analysis is avai-
labe at https://doi.org/10.5061/dryad.h2v2398.

We also cluster the world basins spatially into seven groups, characterized by the trend patterns in AC, EV,
and resilience from the Mann-Kendall trend test and the sign of the resilience (negative/positive) for the
years 1990-2015. Hence, we use five parameters for the clustering.

2.2. Adaptive Capacity (AC)

For AC, we use the following definition (Adger et al., 2011): “Adaptive capacity refers to the preconditions
necessary to enable adaptation and the ability to mobilize these elements. It is represented by the set of available
resources and the ability of the system to respond to disturbances and includes the capacity to design and imple-
ment effective adaptation strategies to cope with current or future events. Resources include physical capital,
technology and infrastructure, information, knowledge, institutions, the capacity to learn, and social capital.”
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Table 1

Introduced Indicators and Their Input Data Sets With Their Spatial Resolution and Key Statistics

Overall indicator Indicator Input indicator Source Spatial resolution

Resilience (AC — EV) Adaptive capacity (AC) Government Effectiveness WGI (2018) National
Gross Domestic Production Kummu et al., 2018a, 2018b) 5 arc min

per capita PPP (USD)
Human Development Index Kummu et al., 2018a; Kummu et al., 2018b) 5 arc min
Ecological vulnerability (EV) Human footprint Venter et al. (2016) 1 km?

Natural hazards Dilley et al. (2005) 2.5 arc min
Water scarcity Kummu et al. (2016) and Wada et al. (2016) 30 arc min

Note. PPP = purchasing power parity.

AC, in our terminology, thus encompasses the social part of the SESs; both the reactive and proactive facets
as articulated by many scholars (e.g., Engle, 2011; Tompkins & Adger, 2005) and quoting Lutz and Muttarak
(2017): “... includes societies' important aspects of societal change that affects adaptive capacity.”

Our Equal Weight Composite Index for AC is derived from the classical political economy concept of List
(1851). This concept, in comparison to the often used classical economic model (which focuses on economic
output), includes also the capabilities of the human individual as well as institutions, law, and their imple-
mentation (Rdssner, 2018). The global indicators used for the operationalization of the concept are govern-
ance, economy, and human development (Figure 1). These three indicators—alike those that we use to
indicate EV—are those used dominantly by both governance and scholarly communities globally; they are
openly available, continuously updated, and historical time series are available for several decades.

To describe the quality of governance, we use the World Bank's national level data set of “Government
Effectiveness” (WGI, 2018) for 1996-2015 (Table 1). This index indicates “... the quality of public and civil ser-
vices and the degree of their independence from political pressures, together with the quality of policy formula-
tion, implementation, and the credibility of the government's commitment to them” (WGI, 2018). For the years
1990-1995, the value for 1996 is used. Due to its definition, the index is country specific and not gridded. To
represent economy and human development, we use subnational data of GDP per capita purchasing power
parity (purchasing power parity in USD) and HDI, respectively, from Kummu et al. (2018a). The missing
years in the subnational data were filled by temporal interpolation using national data. The GDP values were
log transformed to allow scale independence of the indicator: It is common in econometrics to consider GNP
as an outcome of an exponential process (Gelman & Hill, 2007; UNDP, 2018). For instance, a scale-invariant

measure is typically used when referring to economic changes, pro-

gress or volatility, or many basic economic policy instruments such

Adaptive capacity — Ecological vulnerability as the interest rate. Using a logarithmic scale for GDP allows compat-
Serna, <20 foo, ibility of our approach with mainstream econometric analyses.
<) N
I 3

2.3. Environmental Vulnerability (EV)

Whereas our definition of AC encompasses the active component of a
SES, our take for vulnerability then is understood as the latent, pas-
sive part of it. This is why we call it EV. Adger (2006) reviewed the
various research traditions of vulnerability to environmental change
and noted that there are too many different formulations and
research needs to allow universally acceptable formulations for the
concepts of vulnerability and resilience (see also Berkes & Folke,
1998). It is also worth understanding, as several studies (Adger,
2006; Cutter, 1996, 2003; Engle, 2011; Janssen & Ostrom, 2006) point
out, that different research traditions draw demarcation lines in very
different ways between the concepts of resilience, vulnerability, and
AC, and therefore, case-specific specifications are needed.

Figure 1. A schematic of the factors included in our analytical approach to river ~Among the many traditions of defining the concept of vulnerability,

basin resilience analysis.

Adger (2006) sees two principal research directions relevant to SES,
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namely, those stemming from the social and those from the ecological side. He sees the classical pressure-
release model (Blaikie et al., 1994) as one of the bridging approaches between those traditions. The pressure
side is in alighment with our “latent” definition of vulnerability, whereas the release side falls to our AC,
since it encompasses an actor-centric part of a SES. With this division, we follow the interpretation of “vul-
nerability as exposure,” as classified by Cutter (1996), who also sees two traditions in vulnerability research:
the one being “vulnerability as exposure” and the “vulnerabilty as a social condition” being the other. This
division is close to the division of Adger (2006), mentioned above.

The reason to demarcate between the latent and actor-centric parts of a SES along the dividing line of the
ecological and social parts of a SES is the following. We want to have a clear demarcation between the social
and ecological systems, which tends to be subject to confusion and inconsistency in the literature (Engle,
2011; Janssen & Ostrom, 2006; Lang et al., 2017). Moreover, in a long-term macroscale study, it is appropriate
in our view to consider the society as a whole as an active part of a SES and the ecological system as the latent
one. Nevertheless, since the interpretation of the concept of vulnerability is highly context and scale-depen-
dent (Adger, 2006; Berkes & Folke, 1998), we do not want to undermine the concept of social vulnerability in
general. In contrast, in many conditions this term is of high worth, such as when addressing societal dispa-
rities within a society and groupings of people who are not empowered or otherwise capable of improving
their conditions and building their capacity.

Our composite index for EV is derived from the disciplines of natural capital and ecosystem health. That lit-
erature is highly diverse, but one typical approach is to analyze natural capital stock together with the degra-
dation of ecosystems, given a certain management context (see, e.g., Costanza & Daly, 1992). As we use river
basin as the basic geographic unit for our analysis, we use water scarcity as an indicator for natural capital.
Degradation of ecosystems is indicated by human footprint, and the management context is included as the
variability of the resource. The latter is not included in the water scarcity nor the human footprint indices, yet
it is instrumental in any management of a river basin.

For water, several concepts exist for sustainability. For example, water security has very specific definitions
reflecting the user's own agendas and perspectives (Cook & Bakker, 2012; Grey & Sadoff, 2007; UNU/
INWEH, 2013; van Beek & Arriens, 2014; Zeitoun et al., 2016). To ensure a reliable index of sustainability
of water resources, we included water scarcity into EV to reflect available freshwater resources (for both nat-
ure and humans) and anthropogenic water use, representing the hydrological complexity of a given area
(Wada et al., 2016). Water scarcity is calculated as a combination of water stress (ratio of water use to avail-
ability) and water shortage (per capita water availability), as shown in equation (1). This formula is based on
Falkenmark matrix (Falkenmark, 2013, among her other articles), in which both of these indicators are pre-
sent. Water stress and water shortage represent different kinds of pressures on water resources (see more
details in Kummu et al., 2016, and Falkenmark, 2013) and this way we are able to take both of them into
account. The original data (Kummu et al., 2016; Wada et al., 2016) include both surface waters and ground-
water aquifers. They were modified to take into account spatially explicit environmental flow requirements,
based on “variable monthly flow” method by Pastor et al. (2014). Before calculating water scarcity, both
water stress and shortage were scaled so that the extreme water stress and shortage get a value of 1.
Annual values were interpolated from decadal values over the study period.

Wscamity = \/Wsmz + I"I"’.:zhn:»rta,tgve2 (1)

where Wearciry IS water scarcity index, Wires is water stress, and Wporiage is water shortage.

Human footprint—aggregating the extent of built environments, crop land, pasture land, human population
density, nighttime lights, railways, roads, and navigable waterways—is included in EV as it indicates the
cumulative impact of anthropogenic pressures to nature (Venter et al., 2016). The data exist for years 1993
and 2009, which we use for linear interpolation and extrapolation to get continuous time series for our study
period. It is complemented by natural hazards because the human footprint does not include extreme events,
which are important factors in the interplay of a SES. The used natural hazards indicator (Dilley et al., 2005)
measures a combination of multiple hazards for a given area, combining the following data: cyclones,
drought, floods, earthquakes, volcanoes, and landslides. As no reliable time series exists at grid scale, we
use a long-term average.
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d: Human footprint

a-c: Adaptive capacity factors (2015) d-f: Ecological vulnerability factors (2015)
N - I .. I .
04 06 08 09 10 0 01 02 04 06 08 09 10

Capacity increases v Vulnerability increases

Figure 2. (a-f) Geographic distribution of adaptive capacity and ecological vulnerability indicators in 2015. All indicators are scaled globally; the value 0 represents
the lowest value and a value of 1 the highest value in the data set after censoring 5% of the lowest and highest values as outliers. The scale is arithmetic, showing
equal spacing of the units. GDP = Gross Domestic Product; PPP = purchasing power parity. Data availabe at https://doi.org/10.5061/dryad.h2v2398.

2.4. Resilience

For resilience, we use the definition from the same source as for AC (Adger et al., 2011): “the capacity of a
system to absorb disturbance and reorganize while undergoing change so as to retain essentially the same func-
tion, structure, identity, and feedbacks.” Accordingly, EV is related to AC; the higher the EV, the more AC is
needed to yield a certain level of resilience. The numerical range of the resilience is from —1 to 1. The value 0
indicates that the resilience value is at the global midrange, and it does not imply that AC is in “balance” with
EV. This normalization approach permits us not to fix any commensurable scale between EV and AC; we
merely express how they fall in the frequency distribution of global data of 2015.

To sum up, the formula for resilience introduced in this study can be seen as a parsimonious approach to
relate AC to EV and to analyze their spatial and temporal characteristics on a basin-scale resolution.

3. Results
3.1. Factors of Adaptive Capacity (AC)

The results of the governance analysis for 2015 are shown in Figure 2a. The figure shows that the lowest
values (<0.1) are apparent mainly in several basins within Africa and the Arabian peninsula between the
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tropics. In contrast, Western Europe, North America, Japan, and Australia show the highest values. In terms
of economy, Sub-Saharan Africa is even more clearly the weakest area with the lowest AC (Figure 2b). In
Asia, a belt extending from central Asia to Indonesia is well below the midrange (<0.4), and the same applies
to South America's eastern parts. Areas with the strongest economy are found in North America, Western
Europe, parts of the Arabian Peninsula, the southernmost parts of South America, and parts of Arctic
Russia. On a global scale, the HDI is clearly the lowest in Sub-Saharan African basins and in southern parts
of the Arabian Peninsula (Figure 2c). Challenges in human development were mostly found in the same
areas as in the case of the economy (Figure 2b).

When calculating the composite index of the three AC factors (governance, economy, and HDI) for 2015
(Figure 3a), most of Sub-Saharan Africa appears to be the world's weakest area in terms of AC, accompanied
by Afghanistan and parts of Yemen. The highest AC is found in basins in North America, Australia, Europe,
parts of Russia, and coastal basins of East Asia. AC is currently the lowest in the zone between the tropics,
and it increases toward polar areas (Figure 4).

3.2. Factors of Environmental Vulnerability (EV)

The highest human footprint values are located in very few basins, namely, in densely populated basins in
central-western India and in China close to Beijing. Areas with increased values are concentrated on a
coastal belt from Japan to Pakistan, as well as in continental Europe. Certain areas in other continents also
show high human footprint, mainly in coastal regions (Figure 2d).

Natural hazards are particularly high in coastal areas of Central America and eastern Asia. These regions,
together with many eastern parts of other continents, portray high hazard risk related to tornados, winter
storms, and wildfires (Figure 2e). In terms of water stress, a distinct belt of significant scarcity stretches from
Morocco to Arabian Peninsula and central Asia to North China Plain (Figure 2f). Most water-stressed areas
are mainly located on both sides of the tropic of cancer (from 15° to 45°N). There is an asymmetry since the
Southern Hemisphere does not show such a water-scarce band. This is due to the essentially higher concen-
tration of population to the Northern Hemisphere (7/8) in comparison to the Southern Hemisphere (1/8;
Kummu & Varis, 2011).

The composite index for EV for the year 2015 (Figure 3b) points out that there is a particularly challenging
zone around and north of the tropic of cancer. This zone includes most areas between Japan, Vietnam, and
the Mediterranean coast. North of this zone, the EV is much less pronounced. In the Southern Hemisphere,
no such concentration of areas with increased EV can be detected. The latitudinal variation in EV is modest,
with the highest EV between 25 and 50°N (Figure 4).

3.3. Resilience

Globally, Asia (excluding Russia and Japan), Arabian Peninsula, and Africa include large areas in which the
resilience falls below the world's midrange. Interestingly, there is a concentration of low-resilience areas
around the Indian Ocean, both on the Asian and African sides (Figure 3c). In addition, the North China
Plain is partly in this category, and parts of Morocco and parts of Peru belong to the world's least resilient
areas. Globally, the areas with the highest resilience are somewhat similar with those on the AC maps.
The only difference occurs in the belt of higher EV, but otherwise, resilience increases toward poles.

Those areas may not be the most surprising ones to fall in that category but perhaps more astonishing is to
realize that the drivers to that are fundamentally different in Africa and Asia. In Africa (except for Morocco),
the weak resilience is due to low AC (Figure 3a), whereas in Asia it derives from high EV (Figure 3b). In Asia,
EV is mostly very high, but at the same time, AC is essentially higher than in Africa.

3.4. Temporal Development

The world has seen plenty of changes with regard to the different components of EV within the relatively
short period from 1990 to 2015. We summarize those changes in the maps of the temporal evolution of com-
bined indicators for AC (Figure 3d), EV (Figure 3e), and resilience (Figure 3f). AC has been in the increase in
most parts of the world (Figure 3d). Most notable growth has taken place in China and in certain parts of
northern Russia (Yamalo-Nenets autonomous area, which produces 90% of Russia's natural gas). Other fast
growers include the areas from Turkey, Southern Caucasus, and Iran to the central Asian shores of the
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Figure 3. Results for the world's river basins: composite indices. (a) Composite index for adaptive capacity (AC; governance, economy, and human development
index), (b) ecological vulnerability (EV; water scarcity, human footprint, and natural hazards), and (c) resilience (difference between AC and EV, negative resili-
ence meaning that EV is higher than AC) index maps for 2015, and their trends, significance of the trend evaluated with Mann-Kendall trend test, between 1990 and
2015 (d-f). Data availabe at https://doi.org/10.5061/dryad.h2v2398.

Caspian Sea and some parts of South and Southeast Asia. AC has decreased in only a few individual basins in
Africa and East Timor.

EV, in turn, has been growing, too, although in majority of the basins the changes have been modest
(Figure 3e). North China Plain, parts of India and Turkey, coastal areas of Morocco, Algeria, and Tunisia,
as well as parts of the Nile Basin have shown the most drastic increase. The stripe from China through
India, Iran, and West Asia to the Mediterranean region and all the way to central Africa has been growing
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Figure 4. Latitudinal view on the composite indices (left) and their trend (right) over 1990-2015. Capacity refers to adap-
tive capacity and vulnerability to ecological vulnerability.

in EV but more modestly. So have done the crowded coastal parts of South America and Mexico. Some
smaller areas in Europe, North and Central America, Asia, and Africa have experienced decreasing EV.

As the EV has stayed relatively stable over time, the trend in resilience (Figure 3f) is globally strongly con-
trolled by the temporal trend of AC (Figure 3d). Yet certain positive development in AC has been outset
by increasing EV in areas such as China, Southeast Asia, India, Iran, and Turkey. Africa, Yemen, and East
Timor include areas where resilience has been decreasing. Globally, EV has experienced modest changes
compared to AC and resilience. The latter ones have increased especially in the belt from 25°N and 50°N
(Figure 4), indicating that the index values in these regions have recently undergone improvements.
Additionally, this belt is inhabited by the majority of the global population (see also Kummu & Varis,
2011). To conclude, we demonstrated the latitudinal sensitivity of the indices and their trend in time, which
derives from the continental differences of the examined indices.

3.5. Spatial Clustering

We performed a K-Means clustering in order to identify and classify the main development trends in AC, EV,
and resilience, over the period from 1990 to 2015. The following seven clusters were identified (Figure 5):

A Areaswith a very fast increase in AC and growth in EV, leading to improved resilience. Nevertheless, the
base level of resilience remains low. North China Plain and the Yangtze Delta and surroundings, plus
some smaller areas in China and South India, are included in this category.

B Areaswhere both AC and EV have increased but less rapidly than in the Cluster A. The AC development
has been faster, and the resilience has improved. These areas include large parts of China, some basins in
the Philippines and Indonesia, and a few basins in every continent except in Australia.

C Areas with a moderate increase in AC without changes in EV belong to this category. Resilience has
remained above the world's midrange over the study period. Basins from all regions, particularly
Europe, central Asia, and South America, are included.

D Similar past and present resilience as in Cluster A but less progress in AC. The basins of Syr Darya, Yalu,
Mekong, and Irrawaddy are examples of this cluster and so are a major part of basins in South Asia, Iran,
Indonesia, and the Philippines; coastal areas of the western Maghreb; and a few smaller basins in Africa
and Latin America.

E A modest increase in AC combined with no significant changes in EV, which lead to a modest improve-
ment in resilience. The base level of resilience is high. Approximately 40% of the basins belong to this
group, covering most parts of North and South America, Europe, Australia, Russia, and Mongolia,
together with some parts of Africa, the Arab Peninsula, and Southeast Asia.

F Slow improvement in AC, combined with increased EV. Resilience is on the decrease. Most of Sub-
Saharan Africa belongs to this category, together with small parts of West Asia and Latin America.
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Figure 5. Spatial clustering of the world's river basins on their trend between 1990 and 2015. Capacity refers to adaptive
capacity, while vulnerability to ecological vulnerability.

G This cluster shows a decrease of resilience, with an alarming combination of increasing EV and stagnant
AC. A few African basins belong to this cluster.

4. Discussions
4.1. Social-Ecological System (SES) Approach

We provide the first global analysis of vulnerability, AC, and resilience of the world's river basins, using the
SES approach (as defined by Adger, 2006; Berkes & Folke, 1998; Gallopin, 1991; Janssen & Ostrom, 2006).
The SES concept proved to be appropriate to the analysis of river basins in which the human population
needs to harness the ecological and natural resources base in a sustainable way. In other words, river basin
provides a plausible platform for the analysis of a symbiosis of ecological and social systems. We include the
social factors under the concept of AC and the ecological factors under the concept of EV. The reason for this
approach is the following: we consider social systems as principally active systems, which are (or should at
least be) driven to a considerable degree by conscious actors. This is examined with the temporal analysis
over a few decades. Within the process of societal development and progress, there is a fundamental, active
component of building capacity for mitigation and coping better with changes, not solely for adapting to
those (cf. Lutz & Muttarak, 2017). The term of adaptation, which is behind the idea of AC, has its roots in
biology, where it refers to the Darwinian response of an organism to its surrounding environment (Engle,
2011). In social sciences, particularly in anthropology, adaptation is a reaction of changing conditions,
usually in a long term (Smit & Wandel, 2006). However, in contemporary societies, this overly passive eco-
logical view is too one sided. Societies are, or at least should be, capable to build actively their capacity in
terms of human development, governance, economy, and in other relevant aspects (Lutz & Muttarak, 2017).

We show that even in the time frame of a quarter of a century (1990-2015), the world has undergone remark-
able development in all the regards that we include in AC, and those changes have not been distributed
evenly (Figure 3d). Certain parts of the planet, particularly in East and South Asia, have been very com-
mitted, conscious, and successful in improving their economy and development processes at the national
level. In contrast, large areas, particularly in Africa and West Asia, have not been able to build their AC in
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a similar way. On the other hand, EV appears to be more stable in time, due to the input factors that are not
sensitive to sudden year-to-year changes, such as climate, infrastructure, and land use pattern.

Resilience is an ancient word used for many meanings (Alexander, 2013). Within SES literature, its conven-
tional, ecologically rooted interpretation remains quite frequent, although the social part of a SES follows dif-
ferent principles than the ecological one (Berkes, 2007). The groundbreaking work by Holling (1973) on
adaptive management was based on the ecological resilience concept, in which the system has an equili-
brium state, to which it bounces back after a perturbation. A voluminous conversation took place whether
a system may have more than one equilibrium state (Connell & Sousa, 1983; Folke, 2006). As defined, a tip-
ping point was reached if a system did not bounce back to its original equilibrium but instead was driven to a
different equilibrium state. Engle (2011) continued on the same theme: “perhaps it is the human nature to
resist change and to maintain status quo, because decision makers often use the concept of resilience to evoke
a sturdy, robust or stalwart state of affairs; one that can quickly bounce back to its initial conditions.” This view
may hold best for operational and tactical, short-term, responsive policymaking, ifit holds at all to social sys-
tems in situations other than single accident type of incidents. Yet for societal settings that encompass longer
time perspectives such as decades, this interpretation is fundamentally misleading.

The present analysis is a good example. Population growth, urban development, and educational improve-
ments together with changing human footprints have modified the world's river basins tremendously over
the study period. It would be naive to think that most of the river basins of the planet could somehow
“bounce back” to the state in which they were in the year 1990. Ecologically, this might be desirable in many
cases but not by far universally. Socially, this way of thinking does not hold. Human demographics have
undergone changes in terms of population size, age distribution, life expectancy, education level, and spatial
distribution, and the economic and industrial systems have evolved vastly. There may be several cases in
which the policy makers and/or scholars have been prone to “resist change and maintain status quo,” requot-
ing Engle (2011). Yet those countries may be among those that have collapsed, become sources of interna-
tional refugee problems, or been driven to conflicts due to excessive stagnation within the social and
economic scene (Varis, 2010, 2014).

Our recommendation, particularly to countries that show low AC (see Figure 3a), would be the full opposite.
Those countries, in most cases, may suffer from conditions of societal stagnation in which the resilience
shortcomings accumulate fast due to population growth (which is partly due to underdeveloped social and
economic conditions, following often from stagnation) and inadequate governance capacity. The higher
the EV, the more stringent investment into AC is needed to people and to the social system as a whole.

4.2. Global Resilience Analysis

Our purely data-based global analysis is able to identify many of the areas with largest challenges in sustain-
able development and peace (Figures 3a-3c). Such areas include Syria, Iraq, Afghanistan, Pakistan, the Horn
of Africa, and Mozambique (cf., e.g., UCDP, 2018). Large areas of India, Bangladesh, and Myanmar, as well
as Eastern part of the North China Plain show also particularly low in resilience. In terms of AC alone,
majority of African basins fall into the lowest 10th percentile (Figure 3a), while only the analysis of resilience
(Figure 3c) highlights the most critical areas, namely, Somalia and parts of Nigeria as well as Yemen in
Middle East, that suffered from severe food insecurity in 2017 according to the United Nations Office for
the Coordination of Humanitarian Affairs (OCHA).

‘Whereas the temporal resilience development across the planet is toward positive direction, the development
in Africa is in many parts alarmingly reverse to this. This underlines the concerns related to the low resili-
ence areas of that continent. Our analysis includes no predictive features, and it is purely diagnostic in nat-
ure, being based on globally observed conditions of the years 1990-2015.

When looking at the AC and EV jointly, it is crucial to understand that these two factors are not commensur-
able, and both are globally scaled. If, for instance, a particular area has a value of 0.5 for both, it does not indi-
cate that AC is necessarily sufficient to the tackle the EV. It means simply that this area is at the world's
statistical midrange in terms of AC, EV, and resilience.

Perhaps the most striking result globally is the profoundly different vulnerability-capacity profile of Africa
and Asia (excluding the northern part of Asia). They both have low resilience but due to different root causes.
Africa is dominantly subjected to low AC, while Asia is particularly troubled by high EV due to water stress,
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natural hazards, and human footprint, with areas suffering from weak AC (Figure 2). This is alarming espe-
cially in densely populated basins in India and central Asia.

Most of the global-regional freshwater assessments have not detected this pattern. However, the water sup-
ply and demand scenarios by the International Water Management Institute (TWMI, 2000; Seckler et al.,
1999) indeed made a distinction between physical and economic water scarcity. Their scenarios share certain
features with our observations. Yet they put most of Australia, Southern part of China, Southeast Asia,
Indian coastal areas, Latin America, and Sub-Saharan Africa to a single category—dominated by economic
water scarcity—whereas our results give very different and far more diverse results for those areas (Figure 3).
For instance, our analysis suggests that Australia is in an essentially more favorable position in terms of resi-
lience than Africa. These areas have similarities in EV, but the AC of Australia is remarkably higher than
Africa's which in our methodology yields higher resilience for Australia.

The identification of the different root causes for water problems in Africa and Asia is visible also in the maps
of the analysis of The Notre Dame Global Adaptation Initiative (Chen et al., 2017), although the authors do
not particularly mention it. In the analysis of Vorosmarty et al. (2010), we can see this phenomenon, too, but
neither there is explicitly noticed by the authors. The results show how Africa is mostly a low-threat area
within a global analysis of “human water security and biodiversity,” but it stands more out after “accounting
for water technology benefits.” Although the study of Vorosmarty et al. (2010) only addresses water sector
technologies, it gives results that have some aligned features in the Africa-Asia comparison with ours.

Instead, Padowski et al. (2015) analyzed vulnerability of selected countries across the globe with regard to
endogenous and exogenous factors that affect the water sector. They propose that Yemen, Jordan, and
Djibouti are the most vulnerable nations. Our resilience results (Figure 3c) are more comparable to theirs
than our EV results (Figure 3b). We identify larger areas in the least resilient category (Figure 3c). They also
identify countries such as Chile and Argentina among the top 25 vulnerable nations—in the same category
with Chad and Tunisia. Our results propose the two latter ones as weak in resilience but not the two first ones
—they are above the world's midrange in resilience. Compared to our novel approach, which is able to iden-
tify the differences between Asia and Africa, Padowski et al. (2015) do not propose any clear systematic dif-
ference between these continents.

The Water Poverty Index (Sullivan, 2002; Sullivan et al., 2003) has been used extensively in locally targeted
studies, yet some global results are available. Those results tend to dominantly rank economically and
socially disadvantaged (“poor”) countries and/or areas lowest and the “rich” countries highest (Cho et al,,
2010; Lawrence et al., 2002).

Gain et al. (2016) addressed water security globally, in relation to United Nations Sustainable Development
Goals. They have an aggregated variable called accessibility of water services. With regard to Africa and Asia,
most of Sub-Saharan Africa, Afghanistan, East Timor, Korean Peninsula, and some other areas show parti-
cularly low accessibility. This map has certain similarities to our AC map (Figure 3a) but does not incorpo-
rate the EV feature of freshwater systems. Accordingly, like the other studies referred to above, it does not
include the pairing of social and ecological systems. This is a major shortcoming of those analyses.

The apparent difference between Africa and Asia is a topic, which would deserve further research and policy
alert. This observation shows clearly how much more potential—and urgent need—there is for capacity
building in Africa than in any other continent and how the gap between Africa and other continents has
been widening rapidly (Figures 3d and 3f). Africa is subjected to an evident danger of stagnation in terms
of social progress, which may lead to an increasing gap between AC of the societies to tackle the challenges
that they are facing.

4.3. Ways Forward

River basins are systems that are deeply intertwined with their surroundings, having a variety of societal and
ecological links from local to global systems. Whereas a river basin is a natural unit of freshwater, in practice,
freshwater is governed in a mix of river basins, administrative units, and economic areas such as economic
corridors and food production units. Technical solutions typically create impact on a basin level, whereas
policies are often done by administrative regions. The present analysis is easily extendable to include also
the latter (Varis et al., 2014). Further extensions of the analysis would include combinations of ecological-cli-
matic zones, ecological hot spot areas, climate change, urban areas, and/or economic reference units with
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river basins. These would provide marked extensions to the understanding of the vulnerability, AC, and resi-
lience of freshwater in the global and regional perspectives.

In terms of used indicators, we see several avenues to develop our approach further. In particular, AC factors
should be developed side by side with the analyses of water scarcity and those that combine agricultural pro-
duction, ecosystems, climate change, and other aspects, as was described in the introduction. We see that the
combination of AC and EV forms a crucial component in relating such analyses to sustainable development.
In addition, natural hazards could be easily looked in more details. We used the multihazard index (Dilley et
al., 2005), and it is readily decomposable to six categories (cyclones, drought, earthquakes, floods, landslides,
and volcanoes), which all are interesting components of vulnerability per se. Similarly, the approach could
be extended to more elaborate social analyses including factors such as Gini Index for income distribution
and inequality-related extensions of the HDI (UNDP, 2018). Transboundary water questions would suit par-
ticularly well to the method. One further idea for future studies would be to investigate whether some of the
indicators used by Padowski et al. (2015) and Gain et al. (2016) were useful to be incorporated in
our approach.

Regional analyses of critical areas such as Sub-Saharan Africa, Middle East, and North Africa would be thril-
ling. The contrasting drivers of resilience in Africa and Asia indicate that they need to be studied individu-
ally. We performed already a geographically focused analysis for China (Varis & Kummu, 2019) and
revealed the spatial heterogeneity of China's resilience map as well as the ongoing polarization of the country
with regard to AC, EV, and resilience. With the earlier development versions of the same methodology, we
have addressed some targeted areas including central Asia (Varis & Kummu, 2012), the Asia-Pacific Rim
(Varis et al., 2012), and China (Kattelus et al., 2015; Varis et al., 2014).

The availability and spatial resolution of global databases on all the aspects that we include in this analysis is
in rapid growth. Therefore, the approaches to the geospatial analyses of the character that we present are
timely. The analysis of gridded, high-resolution data which represent several disciplines calls for operational,
numeric approaches such as the one that we present. Transparent, policy-relevant indicators provide one
promising approach to investigate such complex SESs.

5. Conclusions

We present for the first time a global analysis of AC, EV, and resilience of world's river basins, which is based
systematically on the SES approach and the three pillars of sustainable development: economic, social, and
ecological factors. We do this by using spatial mapping and analysis and analyzing the development trajec-
tories during the period 1990-2015.

The approach allows new insight into resilience of the planet's river basins to present and future ecological
stresses that they are facing and relates those to the AC of societies. Our analyses can be concluded on a con-
tinent-scale into the following findings:

1. Globally, the areas with the lowest resilience can be found in the Asian and African continents. In Asia,
the most challenging areas are in the South, Central, and western Asia. In Africa, most of the continent
has notable resilience shortcomings and particularly challenging are the Horn of Africa and some other
coastal areas of east Africa as well as in Morocco. Our findings underline that the root causes of the resi-
lience challenges differ profoundly between those continents.

2. Most of Africa is not significantly water scarce nor has a very high human footprint. However, the swift
accumulation of many parallel social factors brings down its resilience. Consequently, Africa suffers lar-
gely from low AC, which does not improve intact with the relatively low but increasing EV. This makes
the continent’s river basin management increasingly challenging.

3. Asia includes a zone from China and Vietnam to the Mediterranean which is among the world's most
troublesome areas in terms of EV. This belt also covers most of the other Mediterranean coastal areas
as well as parts of Mexico. The AC of that zone varies largely, being the lowest in South and central
Asia, particularly Afghanistan. However, it is mostly much higher than in Africa, and it has seen remark-
able improvement during the study period. EV is very high, but AC is catching up gradually.

4. Asia (excluding northern Asia) and Africa differ thus fundamentally from each other as Africa has
dominantly a low AC, while Asia has principally far higher EV yet includes also areas with deficien-
cies in AC.
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5. Since 1990 large areas of the world have become more resilient vis-a-vis freshwater and river basin man-
agement challenges. This is mainly due to the growth of AC. Such areas can be found in all continents but
most remarkably in eastern parts of Asia, China in particular. This is largely due to quite fast and coun-
try-/region-specific societal changes in the study period. We claim that this is too often overlooked in
common discussions and also in scholarly work on natural resources.

The basic question is whether this increasing capacity will be used to mitigate the further degradation of the
ecological systems or for turning the tide toward ecologically more sustainable development. Our recom-
mendation is to pay increased attention to reversing globally the increasing EV, particularly in areas which
show already high vulnerability and those which show deficient in AC. Equally, we recommend dramatic
increase in the attention on shortages and too slow growth of AC in the African continent as well as other
areas that manifest obvious deficiencies on that side.

Investigating the planet's freshwater challenges and river basins through the SES framework provides plenty
of new insight and opportunities both for scholarly and for policy-related analyses. Freshwater management
is an interplay of human and ecological systems, and looking systematically at them both, their interplay pro-
vides crucial, policy-relevant insight in the rapidly advancing global-scale freshwater resources studies
which in our view are today still far stronger in physical-ecological aspects than in the societal side.
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