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Abstract
We consider Social Distance Games (SDGs), that is cluster formation games in which the utility

of each agent only depends on the composition of the cluster she belongs to, proportionally to her
harmonic centrality, i.e., to the average inverse distance from the other agents in the cluster. Under
a non-cooperative perspective, we adopt Nash stable outcomes, in which no agent can improve
her utility by unilaterally changing her coalition, as the target solution concept. Although a Nash
equilibrium for a SDG can always be computed in polynomial time, we obtain a negative result
concerning the game convergence and we prove that computing a Nash equilibrium that maximizes
the social welfare is NP-hard by a polynomial time reduction from the NP-complete Restricted
Exact Cover by 3-Sets problem. We then focus on the performance of Nash equilibria and provide
matching upper bound and lower bounds on the price of anarchy of Θ(n), where n is the number of
nodes of the underlying graph. Moreover, we show that there exists a class of SDGs having a lower
bound on the price of stability of 6

5 − ε, for any ε > 0. Finally, we characterize the price of stability
of SDGs for graphs with girth 4 and girth at least 5, the girth being the length of the shortest cycle
in the graph.

1. Introduction

Coalition formation is a pervasive aspect of social life and it has been studied extensively in algo-
rithmic game theory using the natural model of Hedonic Games (HGs), introduced by Dreze and
Greenberg (1980) and further explored in several papers, such as Banerjee, Konishi, and Sönmez
(2001); Bogomolnaia and Jackson (2002); and Cechlárová and Romero-Medina (2001). An HG
consists of a set of selfish agents (humans, robots, software agents, etc.) having preferences over
coalitions that might include them, regardless of which other coalitions may or may not be present.
In other words, the utility of each agent only depends on the composition of the coalition she belongs
to, without any form of externality, that is, without caring about the structure of the other coalitions.
The outcome of an HG is a partition of the agents’ set into disjoint coalitions (or clusters), referred
to as a clustering or coalition structure.

Stability is the main criterion that has been used to analyze which coalition structures will arise:
an outcome should be resistant to individual/group deviations, with different types of deviations
giving rise to different notions of stability (such as core stability, individual stability, Nash stability).
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A significant stream of research (Aziz, Brandt, & Harrenstein, 2013; Aziz, Brandt, & Seedig, 2013;
Bogomolnaia & Jackson, 2002; Banerjee et al., 2001; Elkind & Wooldridge, 2009; Gairing &
Savani, 2010) characterizes the existence and the properties of stable clusterings in hedonic games.
For an overview, see the recent survey by Aziz and Savani (2016).

Under a non-cooperative perspective, we focus on Nash stable outcomes in which, unlike the
core, every agent cannot coordinate with the others in order to understand if she can improve her
utility. This notion of stability is better suited in settings in which it is not possible to assume
the ability of coordination, or the cost of coordination is excessively high, like in huge distributed
environments characterized by decentralization, autonomy, and general lack of cooperation among
the network entities. A clustering is Nash stable, or it is a Nash equilibrium, if no agent can improve
her utility by unilaterally changing her own coalition. In this setting, the outcome generated by
such uncoordinated selfish agents can be inferior to a centrally designed one. Hence, one of the
main issues is evaluating the induced degradation of the system performance. In particular, the
most popular measure of the inefficiency of equilibria is the price of anarchy (PoA) (Koutsoupias
& Papadimitriou, 1999; Papadimitriou, 2001), defined as the worst-case ratio between the social
welfare (i.e., the sum of the agents utilities) of a best clustering and the social welfare of a Nash
stable clustering. Notice that for this definition to make sense, a game should allow at least one
Nash equilibrium. Roughly speaking, a low PoA means that agents’ selfish behaviour has a small
impact on the system performance; a high PoA, instead, gives evidence that agents can really hurt
the system and some sort of coordination is useful. Since a game has an high PoA even if only one
of its multiple equilibria is highly inefficient, to differentiate between games in which all equilibria
are inefficient and those in which only some equilibria are inefficient, we adopt a related optimistic
measure, called the price of stability (PoS) (Anshelevich, Dasgupta, Kleinberg, Tardos, Wexler, &
Roughgarden, 2004), that is the best-case ratio between the social welfare of a best clustering and
the social welfare of a Nash stable clustering. In other words, the PoS is related to the best possible
outcome that selfish agents might accept. The PoS thus quantifies the necessary quality degradation
caused by imposing the game-theoretic constraint of stability.

Since the number of possible coalitions and coalition structures is exponential, the mere speci-
fication of the input with all the corresponding values is already intractable. Therefore, researchers
have focused on suitable subclasses allowing concise descriptions. Along this line, a growing in-
terest in HGs has concerned instances in which agents entertain preferences over the other agents,
which are then naturally lifted to preferences over coalitions. Additively Separable HGs (Banerjee
et al., 2001) are a corresponding natural class of HGs, that can be succinctly represented by means
of a preference graph of the agents. In these games, each agent has a value for any other one, and
her utility for being in a coalition is simply the sum of the values she ascribes to its members, or
analogously her degree centrality in the coalition. A related class of HGs is given by the Fractional
Hedonic Games (FHGs) (Aziz, Brandt, & Harrenstein, 2014), in which the utility of an agent is still
given by her degree centrality in the own coalition, but it is also divided by the size of her cluster.
Given that the utility of an agent is not simply defined as her total happiness, but as its ratio with the
coalition size, FHGs can model several natural behavioral dynamics in social environments, like the
well-known Bakers and Millers game.

In this paper we focus on Social Distance Games (SDGs), another important subclass of HGs
introduced by Brânzei and Larson (2011), still defined around the notion of node centrality. In
particular, they are based on the concept of social distance (i.e., the number of hops required to
reach one node from another), which has become famous since Milgram’s study on six degrees of
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separation. In SDGs the utility of an agent is given by the average inverse distance from all the
other nodes in her coalition, that is by her harmonic centrality, divided by the size of the coalition.
The basic idea is that each agent prefers to maintain stronger ties with closer ones, in such a way
that also non neighbor agents contribute to her utility in a decreasing way with respect to their
distance. The utility formulation is a variant of the closeness centrality and reflects the principle
of homophily, that similarity breeds connection and people tend to form communities with similar
others (McPherson, Lovin, & Cook, 2001). Namely, it is related to several other classical measures
from network analysis, such as degree, closeness, betweenness, and eigenvector centrality (Gomez,
Gonzlez-Arangena, Manuel, Owen, del Pozo, & Tejada, 2003), all of which are used to determine
how a node is embedded in the network. Among such notions, the harmonic centrality used in SDGs
has been identified as one of the best indexes, as it is the unique one satisfying a set of desirable
properties (Boldi & Vigna, 2014).

SDGs not only have the merit of being able to depart from the previous models that consider
only the direct social neighborhood, but also provide a suitable abstraction of the utility definition,
able to isolate the notion of node centrality in a modular way. Thus, they are capturing recent
research attention and will possibly lead to other interesting models related to different suitable
measures of social centrality.

1.1 Related Work

In the literature, an extensive research considered HGs from a strategic cooperative point of view,
with the aim of characterizing the existence and the properties of coalition structures such as, for
instance, the core (Bogomolnaia & Jackson, 2002; Banerjee et al., 2001; Elkind & Wooldridge,
2009; Gairing & Savani, 2010). A clustering is core stable if there is no group of agents who can all
be better off by forming a new deviating coalition. Non-cooperative studies on HGs in which self-
organized clusterings are obtained from the decisions taken by independent and selfish agents can be
found in Bloch and Diamantoudi (2011); Feldman, Lewin-Eytan, and Naor (2015); and Gairing and
Savani (2010). More precisely, Banerjee et al. (2001) study properties guaranteeing the existence of
core allocations for HGs with additively separable utilities, while Bogomolnaia and Jackson (2002)
consider several forms of clustering stability like the core and the Nash. Aziz, Brandt, and Seedig
(2011); Ballester (2004); and Olsen (2009) deal with computational complexity issues related to
HGs, also considering additively separable utilities. In particular, Olsen (2009) shows that the
problem of deciding whether a Nash stable clustering exists in an additively separable HG is NP-
complete, as well as the one of deciding whether a Nash stable clustering different from the grand
coalition exists in an additively separable HG with non-negative and symmetric preferences. Bloch
and Diamantoudi (2011) study non-cooperative games of coalition formation and identify conditions
for stable outcomes. In a similar way, Apt and Witzel (2009) study how certain proposed rules can
transform clusterings into other ones with specific properties. Feldman et al. (2015) investigate
some interesting subclasses of HGs from a non-cooperative point of view, by characterizing Nash
equilibria and providing upper and lower bounds on both the price of stability and the price of
anarchy.

Fractional Hedonic Games are the class of games most related to the Social Distance Games
considered in this paper. As already mentioned, they have been traditionally investigated under the
additively-separable property. Namely, the utility of an agent is given by the sum of her preferences
for each single member of her coalition, i.e. by her degree centrality, divided by the size of the
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coalition. FHGs have been investigated in Aziz et al. (2014); Aziz, Gaspers, Gudmundsson, Mestre,
and Täubig (2015); and Brandl, Brandt, and Strobel (2015) from a cooperative perspective and in
Bilò, Fanelli, Flammini, Monaco, and Moscardelli (2014); Bilò, Fanelli, Flammini, Monaco, and
Moscardelli (2015); and Olsen (2012) from a non-cooperative viewpoint. In particular, we point out
that Aziz et al. (2014) focus on core stable partitions and present a number of classes of graphs for
which the core is non-empty, including graphs with girth at least 5, the girth being the length of the
shortest cycle in the graph.

Olsen (2012) introduces a modified version of FHGs further investigated in Kaklamanis, Kanel-
lopoulos, and Papaioannou (2016); and Monaco, Moscardelli, and Velaj (2018), where the utility of
an agent is divided by the size of the coalition she belongs to minus 1. Authors study the existence,
complexity and performance of solutions that lead to Nash, strong Nash, and core stable outcomes.

Apart from examining standard stability notions, Aziz et al. (2013); and Elkind, Fanelli, and
Flammini (2016) investigate Pareto optimality in HGs and FHGs. Pareto optimal solutions have
been in fact considered in HGs as outcomes arising from the strategic interaction of the agents, as
they are stable under the deviation of the grand coalition. In fact, they do not permit a simultaneous
deviation by all the agents making all of them weakly better off and some strictly better off. In such
papers the authors give intractability results on the determination of Pareto optimal solutions and
suitable bounds on their price of anarchy, called price of Pareto optimality in this setting.

Flammini, Monaco, Moscardelli, Shalom, and Zaks (2018) study HGs where agents come in an
online fashion, one at a time. They consider additively separable HGs and FHGs and show tight
bounds in the cases where the edge-weights can be constant, positive, or unrestricted.

Flammini, Monaco, and Zhang (2017) study strategyproof mechanisms for additively separable
HGs and FHGs. More precisely, they show partitioning methods without payments such that agents
do not gain anything, utility wise, by lying about their true preferences.

To the best of our knowledge Social Distance Games have been considered in the cooperative
context of core stability by Brânzei and Larson (2011). As already observed, they are related to
FHGs in the sense that, in the definition of agents utilities, the degree centrality measure is substi-
tuted by the harmonic centrality. Brânzei and Larson (2011) claim that finding the best clustering
can be shown to be NP-hard on SDGs via a reduction from the NP-complete Partition into Triangles
problem, and provide an algorithm to approximate the optimal welfare within a factor of 2. They
analyze core stable solutions, determining their welfare and stability characteristics, and showing
that they possess the small world property.

Balliu, Flammini, and Olivetti (2017b) investigate Pareto stability in SDGs and show that, while
computing a Pareto stable solution maximizing the social welfare in bounded degree graphs is NP-
hard, a suitably approximating one can be determined in polynomial time. They also provide asymp-
totically tight bounds on the price of Pareto optimality for several classes of social graphs.

1.2 Our Contribution

In this paper we approach SDGs from the viewpoint of non-cooperative game theory with the aim
of understanding the existence, computability and performances of Nash stable clusterings. We first
focus on the existence of Nash stable clusterings: even if SDGs always admit a Nash equilibrium, we
show that they may not converge to Nash equilibria and then give a polynomial time reduction from
the NP-complete RESTRICTED EXACT COVER by 3-SETS (RXC3) problem (Gonzalez, 1985) to
prove that it is NP-hard to find a best Nash equilibrium. We then study the performances of the Nash
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equilibria and provide matching upper and lower bounds on the price of anarchy of Θ(n), where n
is the number of nodes of the underlying graph. Also, we show that there exists a class of SDGs
having a lower bound on the price of stability of 6

5 − ε, for any arbitrarily small ε > 0. Finally, we
characterize the price of stability of SDGs for graphs with girth 4 and girth at least 5, the girth being
the length of the shortest cycle in the graph. Our results are summarized in Tables 1 and 2.

Notice that graphs with limited girth, while generalizing known topologies such as bipartite
graphs and being among the classical ones investigated in this setting, seem to identify the SDGs
for which good stable solutions can be computed in polynomial time. In fact, for a girth greater than
4 we prove that, by partitioning the nodes into stars, it is possible to efficiently determine a stable
solution which has a social welfare at least equal to the optimal one divided by 1.207. On the other
hand, as we will show in the sequel, there are graphs with girth at most 4 that do not admit a stable
star partition.

We finally remark that, after the preliminary version of this paper appeared in Balliu, Flammini,
Melideo, and Olivetti (2017a), an improved lower bound of 2 of the price of stability for SDGs on
general graphs has been provided by Kaklamanis, Kanellopoulos, and Patouchas (2018). In that
paper, the authors have also proven that the price of stability in trees is 1; moreover, they have
studied the price of stability for a modified version of SDGs, where the utility is computed with
respect to the cluster size minus 1.

Existence of a Nash equilibrium Always

Convergence to a Nash equilibrium Not guaranteed

Finding a best Nash equilibrium NP-hard

Table 1: Nash equilibria in SDGs.

Lower Bound Upper Bound Graph Topology

PoS

6/5− ε ? general

169/160 ? girth 4

? 1/2 + 1/
√

2 girth greater that 4

PoA Ω(n) O(n) general

Table 2: Price of Stability and Price of Anarchy in SDGs.

2. Model and Preliminaries

Consider an undirected graph G = (V,E). A coalition or cluster is a non-empty subset of V . The
set of all nodes V is called the grand coalition, whereas a coalition of size 1 is said a singleton
coalition and its node singleton or isolated. For any integer n > 0 denote with [n] the set of integers
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{1, . . . , n} and with [k, n], for k ≤ n the subset {k, . . . , n} ⊆ [n]. A clustering or coalition
structure is a partition of V into k > 0 coalitions C = {C1, . . . , Ck} such that Ci ⊆ V for each
i ∈ [k] ,

⋃
i∈[k]Ci = V and Ci ∩Cj = ∅ for any i, j ∈ [k] with i 6= j. Given a coalition C ⊆ V , we

denote by G(C) the subgraph induced by C. For brevity, we will often identify G(C) directly with
the corresponding coalition C and we say that a coalition C is connected or disconnected if G(C)
is so.

Let the harmonic centrality of a node x ∈ V in an undirected graph G = (V,E) be defined as
µx(G) =

∑
y∈V \{x}

1
dG(x,y)

, where for any pair of nodes x, y ∈ V , dG(x, y) denotes the length of a
shortest path connecting x and y in G. The sum of the inverse of the social distances can be viewed
as the similarity of a node in its graph, and it indicates its centrality.

We consider coalition forming games in which each node x ∈ V is an agent. More precisely,
we focus on the following class of games.

Definition 2.1 (Brânzei & Larson, 2011) A Social Distance Game SDG(G), or SDG in short, is
represented as an undirected graph G = (V,E) where (i) V is the set of n agents and (ii) the utility
of an agent x ∈ V in a given coalition C is a suitable function of her harmonic centrality in the
subgraph induced by C and of the size of C, that is:

ux(C) =
µx(G(C))

|C|
=

 0 if C = {x}

1
|C|

∑
y∈C\{x}

1
dC(x,y)

otherwise

If x and y are disconnected in C, then dC(x, y) =∞.

We denote by C(x) the coalition of C including node x. Let us use ux(C) as a shorthand for the
utility ux(C(x)) of x in a given clustering C. Each agent chooses the coalition to belong to with the
aim of maximizing her utility. A solution or outcome of a SDG is a clustering C. The social welfare
SW (C) of a clustering C is the sum of the agents’ utilities, i.e., SW (C) =

∑
x∈V ux(C).

In the rest of this paper, we can assume that the input graph is non-singleton and connected,
since disconnected graphs can be analyzed componentwise.

For any pair of agents x and y, we denote with (C, x, y) the clustering obtained from C by
moving x from C(x) to C(y). A clustering C′ = (C, x, y) is an improving deviation for the agent x
in C if ux(C) < ux(C′). In this case we say that agent xmakes an improving move. An improvement
path is a sequence of improving deviations. A game has the finite improvement property (FIP) if
every improvement path of the game is finite.

An agent x is Nash stable in a clustering C if she cannot perform any improving move, that
is if ∀y ∈ V , ux(C) ≥ ux(C′), where C′ = (C, x, y). A clustering C is Nash stable, or a Nash
equilibrium, if every agent x is Nash stable in C. If an improvement path is finite then its last
clustering is a Nash equilibrium.

We are interested in bounding the performances of Nash equilibria with respect to the social
optimum OPT, i.e. the social welfare of a best clustering C∗ that maximizes SW (C∗), that is such
that OPT = SW (C∗) = maxC SW (C). Notice that C∗ is not necessarily an equilibrium. If N
denotes the set of the Nash equilibria, a best (worst) Nash equilibrium is a Nash equilibrium C ∈ N
that maximizes (minimizes) SW (C). The best (worst) social cost is the social welfare of a best
(worst) Nash equilibrium. The price of anarchy (PoA) is the ratio between the social optimum and
the worst social cost in a game i.e., PoA = maxC∈N

OPT
SW (C) ; the price of stability (PoS) is the ratio

between the social optimum and the best social cost, i.e., PoS = minC∈N
OPT

SW (C) .
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3. Nash Equilibria: Existence, Convergence and Complexity of their Finding

In order to establish the existence of Nash equilibria for SDGs and to prove that determining a Nash
equilibrium can be done in polynomial time, it is sufficient to notice that the grand coalition is Nash
stable. In fact, no agent can have any improving move by deciding to form a singleton coalition on
her own. Thus, on the basis of these considerations, we can state the following:

Proposition 1 A SDG always admits a Nash equilibrium and it can be computed in polynomial
time.

3.1 Convergence to Equilibrium in SDGs

In the sequel of this section we investigate if, starting from an arbitrary initial clustering, an im-
provement path is always guaranteed to converge to a Nash equilibrium, and we provide a negative
answer. In fact, Theorem 1 shows that SDGs may admit an infinite sequence of improving devia-
tions (i.e., the FIP property is not guaranteed).

Theorem 1 SDGs may not converge to Nash equilibria.

Proof. Consider the instance SDG(G) where G is the bipartite graph depicted in Figure 1 with
vertex set V = X ∪ Y ∪ Z, where X = {xi|i ∈ [20]}, Y = {yi|i ∈ [15]} and Z = {z1, z2}.
In the following, for i ≤ j, we write Xi,j and Yi,j as a shorthand for {xi, . . . , xj} ⊆ X and
{yi, . . . , yj} ⊆ Y , respectively.

Figure 1: A SDG not converging to a Nash equilibrium.

Starting from the clustering C = {X1,10 ∪ {z1}, Y,X11,20 ∪ {z2}} depicted in Figure 2, we
prove the existence of a cyclic sequence of improving deviations which shows the claim.

Namely, we consider the following improvement path:

• C(1) = (C, z1, y1) = {X1,10, Y ∪ {z1}, X11,20 ∪ {z2}} (see Figure 3) is the improving devi-
ation obtained from C by moving z1 to C(y1). Since uz1(C) = 10

11 and uz1(C(1)) = 15
16 >

10
11 ,

agent z1 can really make an improving move.

• C(2) = (C(1), z2, z1) = {X1,10, Y ∪ Z,X11,20} (see Figure 4) is the improving deviation
resulting from C(1) by moving agent z2 in C(1)(z1). In fact z2 can improve her utility from

uz2(C(1)) = 10
11 to uz2(C(2)) = uz2(Y ∪Z) =

15+ 1
2

17 = 31
34 by moving to C(1)(z1) = Y ∪{z1}.
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Figure 2: The initial clustering C, where uz1(C) = uz2(C) = 10
11 .

• Since ∀x ∈ X , ux(C(2)(x)) = 0, agents x1, . . . , x5 and x11, . . . , x15 can increase their utility
by moving one after another to the coalition including agents in Y ∪ Z. Thus starting from
C(2), we consider 10 improving moves inducing the clustering C(12) = {X6,10, Y ∪Z∪X1,5∪
X11,15, X16,20} depicted in Figure 5.

• Notice that uz1(C(12)) =
20+ 1

2
+ 5

3
27 = 133

162 and thus agent z1 can increase her utility to 5
6 by

moving back to X6,10. Thus C(13) = (C(12), z1, x6) = {X6,10 ∪ {z1}, Y ∪ {z2} ∪ X1,5 ∪
X11,15, X16,20} (see Figure 6).

• Since uz2(C(13)) = 10
13 , agent z2 induces an improving deviation by moving back to X16,20,

that is C(14) = (C(13), z2, x16) = {X6,10 ∪ {z1}, Y ∪ X1,5 ∪ X11,15, X16,20 ∪ {z2}} and
uz2(C(14)) = 5

6 >
10
13 (see Figure 7).

• Agents x1, . . . , x5 and x11, . . . , x15 have now utility zero in C(14) and thus they can increase
the utility by moving back one after another to the cluster containing z1 and z2, respectively.
Then C is again reached and therefore the claim follows.

Figure 3: C(1) = (C, z1, y1), where uz1(C(1)) = 15
16 >

10
11 .

�

3.2 NP-completeness of Finding a Best Nash Equilibrium for SDGs

While determining the existence of a Nash equilibrium can be trivially done in polynomial time,
as the grand coalition is stable, in the sequel of this section we show that unfortunately computing

632



ON NON-COOPERATIVENESS IN SOCIAL DISTANCE GAMES

Figure 4: C(2) = (C(1), z2, z1), where uz1(C(2)) = uz2(C(2)) =
15+ 1

2
17 = 31

34 >
10
11 .

Figure 5: C(12) = {X6,10, Y ∪ Z ∪X1,5 ∪X11,15, X16,20}, where uz1(C(12)) = 133
162 .

a best Nash equilibrium for SDGs is NP-hard. To this aim, we provide a polynomial time reduc-
tion from the NP-complete RESTRICTED EXACT COVER by 3-SETS (RXC3) problem (Gonzalez,
1985) which is defined as follows.

RESTRICTED EXACT COVER BY 3-SETS (RXC3) problem. Let m = 3p for some inte-
ger p ≥ 1. An instance of the RXC3 problem consists of a universe set U = {u1, . . . , um} of
m elements and a collection B = {B1, . . . , Bm} of 3-elements subsets of U (triples) such that⋃m
j=1Bj = U and each element of U appears exactly in three triples. The problem is to decide if
B contains an exact cover for U , i.e. a subcollection F ⊆ B such that every element of U occurs in
exactly one triple of F .

In the following we show how to transform an instance of RXC3 to a suitable instance of SDG
with the technique of local replacement. Roughly speaking, we use a subgraph to represent every
triple in B (see Figure 8) and we show that the composition of these subgraphs is a graph with
certain properties that has a Nash stable clustering with social welfare at least 257

20 p if and only if B
contains an exact cover.

NP-hardness Reduction from RXC3 to SDG. Suppose we are given an instance I = (U,B)
of RXC3. We can define an instance of SDG by specifying the underlying undirected graph GI =
(V,E) as follows:

• For each of the m elements u ∈ U , we have a node y ∈ V . For convenience, for all i ∈
[m] we denote by Yi = {yi,1, yi,2, yi,3} the set of nodes associated with the triple Bi =
(ui,1, ui,2, ui,3) ∈ B. Thus, let Y = ∪mi=1Yi be the set of the m nodes associated with U . For
each triple Bi ∈ B, with i ∈ [m], we consider a set of four nodes Ki = {zi,1, zi,2, zi,3, zi,4}
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Figure 6: C(13) = (C(12), z1, x6) = {X6,10 ∪ {z1}, Y ∪ {z2} ∪ X1,5 ∪ X11,15, X16,20} where
uz1(C(13)) = 5

6 >
133
162 .

Figure 7: C(14) = (C(13), z2, x16) = {X6,10 ∪ {z1}, Y ∪ X1,5 ∪ X11,15, X16,20 ∪ {z2}} where
uz2(C(14)) = 5

6 >
10
13 .

and one additional node xi. Therefore, if X = {x1, . . . , xm} and K = ∪mi=1Ki, we have that
V = K ∪X ∪ Y , with |V | = 6m.

• For what concerns the set of edges E, for each i ∈ [m], GI contains one 4-clique K4(Ki)
which includes all vertices in Ki (i.e., six edges), a set of three edges {(xi, zi,2), (xi, zi,3),-
(xi, zi,4)} and a set of further three edges {(xi, yi,1), (xi, yi,2), (xi, yi,3)}. Consequently, it
must be |E| = 12m.

As an example, a triple Bi = (ui,1, ui,2, ui,3) ∈ B of RXC3 corresponds to the subgraph of
GI depicted in Figure 8. We notice that, since each element of U appears exactly in three
triples, each y ∈ Y has exactly three incident edges.

Clearly such a reduction can be done in polynomial time. In order to complete the proof and
prove the hardness, we show that the constructed SDG instance GI has a Nash stable clustering
with social welfare at least 257

20 p if and only if the RXC3 instance I has an exact cover.
Before proving the main theorem, let us analyze some fundamental properties of Nash stable

clusterings for GI .
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Figure 8: Subgraph of GI associated with a triple Bi = (ui,1, ui,2, ui,3) ∈ B of RXC3.

3.2.1 STRUCTURAL PROPERTIES OF STABLE CLUSTERINGS FOR ANY INSTANCE GI OF SDGS.

In the following we discuss some structural properties of Nash stable clusterings for GI . In partic-
ular, Lemma 1 stresses that agents of Ki (for i ∈ [m]) must always belong to the same coalition,
whereas Lemmas 2 and 3 deal with the cases in which agents of Ki must belong to the same coali-
tion as xi.

Lemma 1 Let C be any Nash stable clustering for an instance GI of SDG. For all i ∈ [m], agents
in Ki are always included in the same coalition.

Proof. For any i ∈ [m], denote by C1 = C(zi,1) the coalition containing zi,1 in the stable clustering
C. We show that, in order to guarantee stability, it must be Ki ⊆ C1. Arguing by contradiction,
assume that there exists an agent in Ki which is not included in C1. Without loss of generality, let
zi,4 6∈ C1 such an agent and let C4 = C(zi,4).

A case analysis shows that such an assumption leads to a contradiction. We can distinguish
different cases based on the cardinality of C1 and C4. Since in a stable clustering an agent cannot
be isolated, C1 and C4 must contain at least an agent adjacent to zi,1 and zi,4, respectively, and
therefore |C1| ≥ 2 and |C4| ≥ 2.

• First of all, assume that |C1| = 2, and let C1 = {zi,1, zi,2}. We can distinguish three cases
depending on the cardinality of C4:

– |C4| = 2. If C4 = {xi, zi,4}, zi,3 cannot be Nash stable as it is disconnected, i.e.,
uzi,3(C) = 0, and therefore she can improve her utility by moving to C1 or C4. If
C4 = {zi,3, zi,4}, all agents in Ki are not Nash stable, as each of them can make an
improving move to the other coalition and achieve a utility of 2

3 >
1
2 . Both cases lead to

a contradiction. Clearly, zi,4 would be disconnected and not stable in any other coalition.

– |C4| = 3. The only coalition without disconnected agents is C4 = {zi,3, zi,4, xi}.
Nevertheless, agents zi,1 and zi,2, with uzi,1(C1) = uzi,2(C1) = 1

2 , can improve by

moving to C4, as they would achieve utilities uzi,1((C1, zi,1, zi,4)) =
2+ 1

2
4 = 5

8 and
uzi,2((C1, zi,2, zi,4)) = 3

4 : a contradiction.
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– |C4| > 3. In such a case it must necessarily be {zi,3, zi,4, xi} ⊂ C4. Since uzi,4 =

uzi,3 ≤
2+
|C4|−3

2
|C4| = |C4|+1

2|C4| = 1
2 + 1

2|C4| <
1
2 + 1

6 = 2
3 , agents zi,3 and zi,4 can make an

improving move to C1 achieving a utility of 2
3 : a contradiction.

• Assume now that |C1| = 3. If C1 = {zi,1, zi,2, zi,3}, any possible coalition C4 without

disconnected agents must include xi. In such a case, since uzi,4(C4) <
1+
|C4|−2

2
|C4| = 1

2 , zi,4
can improve her utility by moving toC1. On the other hand, ifC1 = {zi,1, zi,2, xi}, it must be
C4 = {zi,3, zi,4}. Agents zi,3 and zi,4 can move to C1, whereas zi,1 and xi can move to C4,
improving their utilities from 1

2 to 3
4 and 2

3 , respectively. Both cases lead to a contradiction.

• Finally, in order to conclude the proof, let us consider the case |C1| ≥ 4. Since by assumption
C1 6= Ki, we have that xi ∈ C1. Thus, it must be {zi,1, zi,2, xi} ⊆ C1 and C4 = {zi,3, zi,4}.

Since uzi,1(C1) ≤
1+ 1

2
+
|C1|−3

3
|C1| = 6+3+2|C1|−6

6|C1| = 3+2|C1|
6|C1| = 1

2|C1| + 1
3 <

1
6 + 1

3 = 1
2 , agent

zi,1 can make an improving move to C4, by achieving a utility of 2
3 : a contradiction.

�

Lemma 1 guarantees that in any Nash stable clustering for an instance GI of SDG, all the four
agents in Ki are always included in the same coalition, for all i ∈ [m]. However, a 4-clique Ki

may be together with some other Kj in a coalition C. The remaining structural properties, aiming
at characterizing conditions under which a stable coalition can include one or more Ki, depend on
how many agents xi ∈ X are included in a same connected coalition. Namely, Lemmas 2 and 3
distinguish the two cases where a Nash stable coalition C contains one or more agents of X . We
will refer to the coalitions containing at most one agent xi ∈ X as basic coalitions or (basic) xi-
coalitions to emphasize that they just contain xi. On the other hand, coalitions including at least
two agents of X are called composed coalitions.

Lemma 2 Let C be any Nash stable clustering for an instance GI of SDG. For any basic xi-
coalition C ∈ C containing at most two agents of Yi, agents in Ki must belong to C as well,
i.e., Ki ⊂ C. On the other hand, if C contains exactly three agents of Yi, then Ki may not be
included in C.

Proof. Let C be a Nash stable basic xi-coalition in C including at most two agents of Yi (just like
coalitions t0, t1, t2 depicted in Figure 9). By Lemma 1, since in C all the agents in Ki are within
the same coalition, the cases are two: either Ki ⊆ C (as we want to prove) or Ki 6⊂ C. Assume
by contradiction that Ki 6⊂ C. In such a case |C| ≤ 3, and thus uxi(C) ≤ 2

3 . Therefore, agent xi
could improve her utility by moving to Ki, as she would achieve utility uxi(Ki ∪ {xi}) = 7

10 >
2
3 :

a contradiction. Thus, in order to guarantee stability, it must be Ki ⊂ C.
On the other hand, we can notice that if C = {xi, yi,1, yi,2, yi,3}, coalition Ki is actually stable

even if Ki 6⊂ C (see the two coalitions corresponding to type t4 in Figure 9). In fact, no agent in
Ki can make an improving move by moving to C, because agent zi,1 would obtain a null utility,
whereas agents zi,2, zi,3, zi,4 would decrease their utility from 3

4 to 1
2 . Moreover, by moving to any

other coalition in C, all agents in Ki would be disconnected and would obtain a utility zero. We
can also stress that, by moving from C to Ki, agent xi would decrease her utility from 3

4 to 7
10 , and

agents yi,1, yi,2, yi,3 would get utility zero. �
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It is worthwhile underlining that by Lemmas 1 and 2, Nash stable basic coalitions can take only
the forms depicted in Figure 9, where the subfigure t4 actually shows a pair of coalitions, i.e., Ki

and Yi ∪ {xi}.

Figure 9: Nash stable basic coalitions for any instance GI of SDG.

The following structural result holds for composed coalitions.

Lemma 3 Let C be any Nash stable clustering for an instance GI of SDG. If two agents xi and xj
of X belong to a same connected composed coalition C = C(xi) = C(xj), then agents in Ki and
Kj must belong to the same coalition as well, i.e., Ki ∪Kj ⊂ C.

Proof. First of all we notice that if xi and xj belong to the same Nash stable connected coalition
C, there must exist a path between them. Thus, there exists at least a node y ∈ Yi ∩ Yj such that
{xi, xj , y} ⊆ C (see Figure 10).

Figure 10: A stable connected composed coalition containing xi and xj .
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It is worth recalling that by Lemma 1 all the four agents in Ki (resp. Kj) must be together in
a same coalition. Arguing by contradiction, assume that Ki 6⊂ C. A case analysis shows that, in
order to guarantee stability, agents in Ki must be in C.

Let νi = |Yi ∩ C| ≥ 1 and νj = |Yj ∩ C| ≥ 1 denote the number of agents adjacent to xi and
xj which are in Yi and Yj , respectively. We stress that, if Ki 6⊂ C, agent xi has νi ≤ 3 agents at
distance 1, 1 + α agents at distance 2 (included xj), for α ≥ 0, and all the other β ≥ 0 agents at
distance at least 3. Namely:

uxi(C) ≤
νi + 1+α

2 + β
3

νi + 2 + α+ β
=

6νi + 3 + 3α+ 2β

6(νi + 2 + α+ β)
. (1)

Assume first that νi ≤ νj . We notice that when νi = νj = 3 there must be at least one agent in
Yj ∩ C adjacent to xj at distance 3, and then β ≥ 1. Thus, Equation (1) implies that:

uxi(C) ≤



9+3α+2β
6(3+α+β) ≤

3(3+α+β)
6(3+α+β) = 1

2 if νi = 1

15+3α+2β
6(4+α+β) <

4(4+α+β)
6(4+α+β) = 2

3 if νi = 2

21+3α+2β
6(5+α+β) ≤

4(5+α+β)+1
6(5+α+β) = 2

3 + 1
6(5+α+β) ≤

2
3 + 1

36 = 25
36 <

7
10 if νi = 3

(2)

All these cases lead to a contradiction, since agent xi could always improve her utility by moving

from C to Ki. In fact, uxi(Ki ∪ {xi}) =
3+ 1

2
5 = 7

10 > uxi(C) (see Equation (2)) and therefore, if
νi ≤ νj , agents in Ki must be included in C.

Assume now that νi > νj . By applying the previous arguments to xj , agents in Kj must be in
C. If by contradiction Ki 6⊂ C but Kj ⊂ C, agent xi has νi ≤ 3 agents at distance 1 (notice that
νi ≥ 2 since νj ≥ 1), 1 + α agents at distance 2 (included xj), for α ≥ 0, 4 agents at distance at
least 3 (zi,1, zi,2, zi,3, zi,4) and further β ≥ 0 agents at distance at least 3. That is:

uxi(C) ≤
νi + 1+α

2 + 4+β
3

νi + 6 + α+ β
=

6νi + 11 + 3α+ 2β

6(νi + 6 + α+ β)
<

3(νi + 6 + α+ β) + 3νi
6(νi + 6 + α+ β)

=
1

2
+

νi
2(νi + 6 + α+ β)

≤ 1

2
+

3

2(2 + 6)
=

1

2
+

3

16
=

11

16
<

7

10
,

which is a contradiction since xi could improve her utility to 7
10 by moving fromC toKi. Therefore,

if νi > νj , agents in Ki must be in C as well.
The claim follows by applying symmetric arguments to xj . �

3.2.2 STABILITY PRESERVING TRANSFORMATIONS OF INSTANCES GI OF SDGS.

In the following we provide some transformation rules for coalitions in Nash stable clusterings,
which obtain a strictly higher social welfare. Indeed, we first prove that every composed coalition
in a stable clustering forGI can be split in basic coalitions leading to a new clustering with a strictly
higher social welfare (Proposition 4). Then, in Lemma 4, we prove that starting from such a (not
necessarily stable) clustering, the game tends to converge to a stable clustering with at least the
same social welfare, still composed only of basic coalitions. Splitting every resulting coalition of
type t3 in two subcoalitions corresponding to type t4 preserves stability and further increases the
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social welfare (Corollary 1). Therefore, we can finally state that a best Nash equilibrium for an
instance GI of SDG can always be found among clusterings including only basic coalitions of type
t0, t1, t2, t4 (Corollary 2).

Let us preliminarly compute a lower bound on the average utility of the agents in any basic
coalition of type t0, t1, t2, t4 (Proposition 2) and an upper bound on the agents’ utilities in any
stable composed coalition (Proposition 3).

Proposition 2 In any basic coalition of type t0, t1, t2, t4 the average utility of the agents in the
coalition is at least 0.639.

Proof. With reference to the coalitions depicted in Figure 9, we can compute the social welfare as
follows:

SW (t0) =
3 · 4 + 2(3 + 1

2)

5
=

19

5
= 3.8; (3)

SW (t1) =
(3 + 1

2 + 1
3) + 4(4 + 1

2) + (1 + 3
2 + 1

3)

6
=

23
6 + 18 + 17

6

6
=

37

9
≈ 4.1; (4)

SW (t2) =
(3 + 1

2 + 2
3) + 3 · 5 + (5 + 1

2) + 2(1 + 4
2 + 1

3)

7
=

25
6 + 15 + 11

2 + 20
3

7

=
94

21
≈ 4.47;

(5)

SW (t4) = (4 · 3

4
) + (

3

4
+ 3 ·

1 + 2
2

4
) = 3 +

9

4
=

21

4
= 5.25. (6)

The claims follows by noting that by Equations (3-6), the average utility ū of agents in basic

coalitions of type t0, t1, t2, t4 is: ū(t0) =
19
5
5 = 19

25 = 0.76, ū(t1) =
37
9
6 = 37

54 > 0.68, ū(t2) =
94
21
7 = 94

147 > 0.639, ū(t4) =
21
4
8 = 21

32 > 0.656. �

Proposition 3 Let C be any Nash stable clustering for an instance GI of SDG. In any connected
composed coalition the utility of all the agents in the coalition is strictly less than 0.635.

Proof. Let C = C(xi) = C(xj) be a connected composed coalition including agents xi, xj ∈ X .
By Lemma 3, we know that Ki ∪Kj ⊆ C and that there must be a path between xi and xj . Thus,
we can give an upper bound to the utility of all agents in C as follows (see Figure 10).

• Each zi,1 has at least 3 agents at distance 1 (zi,2, zi,3, zi,4), one agent at distance 2 (xi), one
agent at distance 4 (xj), 3 agents at distance 5 (zj,2, zj,3, zj,4), and one agent at distance 6
(zj,1). All the other α agents (including the ones in Yi ∪ Yj) have distance at least 3, so that

uzi,1(C) ≤ 3+ 1
2
+α

3
+ 1

4
+ 3

5
+ 1

6
10+α < 0.46.

• Each zi,2 (and symmetrically zi,3 and zi,4) has at least 4 agents at distance 1 (zi,1, zi,3, zi,4, xi),
one agent at distance 3 (xj), 3 agents at distance 4 (zj,2, zj,3, zj,4), and one agent at distance

5 (zj,1). All the other α agents have distance at least 2, and thus uzi,2(C) ≤ 4+α
2
+ 1

3
+ 3

4
+ 1

5
10+α ≤

317
600 < 0.53.
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• Each xi can have at most 6 agents at distance 1 (zi,2, zi,3, zi,4, yi1 , yi2 , yi3), 2 agents at distance
2 (zi,1, xj), 3 agents at distance 3 (zj,2, zj,3, zj,4), and one agent at distance 4 (zj,1). All the

other α nodes have distance at least 2, so that uxi(C) ≤ 6+α+2
2

+ 3
3
+ 1

4
13+α ≤ 33

52 < 0.635.

• Each y ∈ Y ∩ C has at most 3 agents at distance 1 (xi,xj ,xk), 6 agents at distance 2
(zi,2, zi,3, zi,4, zj,2, zj,3, zj,4), and 2 agents at distance 3 (zi,1, zj,1). All the other α nodes have

distance at least 2. This gives an upper bound to the utility of y of 3+ 6+α
2

+ 2
3

12+α ≤ 5
9 < 0.56.

�

Based on the above results, Proposition 4 analyzes how the social welfare of a stable clustering
C changes when partitioning every disconnected coalition into connected subcoalitions, and then
splitting every resulting connected composed coalition in basic coalitions of type t0, t1, t2, t4.

Proposition 4 Let C be any Nash stable clustering for an instance GI of SDG. All the composed
coalitions C ∈ C can be split in basic coalitions of type t0, t1, t2, t4, obtaining a new (non neces-
sarily stable) clustering C̄ with a strictly higher social welfare.

Proof. Consider any clustering C̄ obtained from C by first partitioning every disconnected coalition
C ∈ C into connected subcoalitions, and then later splitting every connected composed coalition in
subcoalitions of type t0, t1, t2, t4.

First of all, let C ∈ C be a disconnected coalition and let k > 1 denote the number of connected
subcoalitions C1, . . . , Ck in C, such that C1∩ . . .∩Ck = ∅ and C = C1∪ . . .∪Ck. Moreover, let C′
be the clustering obtained from C by partitioning C into the k connected subcoalitions C1, . . . , Ck,
i.e., C′ = C ∪ {C1, . . . , Ck} \ {C}.

Clearly, ux(C′) = ux(C) for all x ∈ V \ C. On the other hand, since µx(G(C)) = µx(G(Ci))

for every x ∈ Ci, it must be ux(C′) = µx(G(Ci))
|Ci| > µx(G(C))

|C| = ux(C), ∀x ∈ C. This proves
that the clustering obtained from C by partitioning every disconnected coalition C into connected
subcoalitions has a strictly higher social welfare.

Now, let C̄ be any clustering obtained by further splitting every resulting connected composed
coalition in basic coalitions of type t0, t1, t2, t4. Therefore, since the worst average utility 0.639 of
the agents in any basic coalition of type t0, t1, t2, t4 (see Proposition 2) is greater than the best utility
0.635 of all the agents in the composed coalitions (see Proposition 3), the social welfare actually
strictly increases in any C̄ as well. This proves the claim. �

Notice that all the coalitions of type t3 possibly contained within the Nash stable clustering C
remain unchanged in C̄ after the abovementioned transformations. Therefore, such clustering C̄ can
actually include only coalitions of the five types t0, . . . , t4 depicted in Figure 9.

In the following, with a little abuse of language, sometimes we will refer to coalitions of type ti
directly as coalitions ti, for i ∈ {0, . . . , 4}.

Lemma 4 Let C̄ be any clustering for an instance GI of SDG containing only basic coalitions of
the five types t0, . . . , t4. Starting from C̄, the game admits a Nash equilibrium with at least the same
social welfare.

Proof. In order to prove that the game admits a Nash equilibrium starting from any C̄, we can define
a suitable potential function which strictly increases each time an agent makes an improving move.
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Therefore, we argue that the game has the finite improvement path property, and thus it admits a
Nash equilibrium.

Given any clustering C̄ including only coalitions of the types t0, . . . , t4, and denoted by αi
the number of coalitions of type ti included in C̄, we consider the following potential function,
coincident with the social welfare:

φ(C̄) = SW (C̄) =
4∑
i=0

αiSW (ti). (7)

First of all we can notice that agents in Ki ∪ {xi} are stable in every coalition in C̄:

• Any agent z ∈ Ki would be disconnected in any other coalition tj ∪{z}, and thus by moving
her utility would decrease to zero.

• Any agent xi would obtain a utility zero by moving from ti to tj whenever the new formed
coalition tj ∪ {xi} is disconnected. This happens for instance when xi moves from ti, for
i ∈ {3, 4}, or when xi moves to tj = t0. On the other hand, for i ∈ {0, 1, 2}, agent xi has

utility uxi(ti) =
3+i+ 1

2
5+i ≥ 7

10 , and she would decrease her utility by moving to any other
basic coalition tj with j ≥ 1 even if tj ∪ {xi} is connected. In fact:

– uxi(t1 ∪ {xi}) =
1+ 1

2
+ 3

3
+ 1

4
7 = 11

28 <
7
10 ≤ uxi(ti);

– uxi(tj ∪ {xi}) ≤
2+ 1

2
+

3+(j−2)
3

+ 1
4

7+(j−1) ≤ 15
32 <

7
10 ≤ uxi(ti), for j ∈ {2, 3};

– uxi(t4 ∪ {xi}) ≤
2+ 1

2
+ 1

3
5 = 17

30 <
7
10 ≤ uxi(ti).

It remains to examine agents y ∈ Y included in any ti. In every basic coalition we can compute
the following utilities uy(ti):

uy(ti) =
1+

3+(i−1)
2

+ 1
3

6+(i−1) =


17
36 ≈ 0.472 if i = 1

10
21 ≈ 0.476 if i = 2

23
48 ≈ 0.479 if i = 3

uy(t4) =
1+ 2

2
4 = 1

2 = 0.5.

(8)

Since no agent y can move to t3 or t4 without decreasing her utility to zero, we can focus only on
possible moves from ti to tj with j ≤ 2. Moreover, since if y moves from ti to tj we either obtain
tj+1 or a coalition where y is disconnected, by Equation (8) it is evident that t3 and t4 are already
stable, because every y in t3 and t4 would not increase her utility by moving to tj with j ≤ 2, and
that every y ∈ ti for i ∈ {1, 2} can improve her utility only by moving to a coalition of type tj for
i ≤ j ≤ 2.

Therefore, in a clustering C̄ all the coalitions of type t0, t3 and t4 are already Nash stable,
whereas if C̄ is not Nash stable it necessarily depends on the unstability of some agent y in t1 or
t2. In the following we prove that when such an agent y performs an improving move to tj , for
i ≤ j ≤ 2, the social welfare strictly increases, and the new coalitions are still of types t0, . . . , t4.

For the sake of simplicity, let us denote by (C̄, ti, tj) the improving deviation of an agent y from
a cluster of type ti to a cluster of type tj , in C̄. Since we know that y can move only from ti to tj ,
for i ∈ {1, 2} and i ≤ j ≤ 2, we can distinguish three cases:
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1. if ti = tj = t1, i.e., y moves from a coalition of type t1 to another coalition of type t1, from
two coalitions of type t1 we obtain two coalitions respectively of type t0 (stable) and t2, and
therefore: φ((C̄, t1, t1)) − φ(C̄) = SW (t0) + SW (t2) − 2SW (t1) = 19

5 + 94
21 − 2 · 379 =

869
105 −

74
9 ≈ 8.27− 8.22 = 0.05;

2. if ti = tj = t2, i.e., y moves from a coalition of type t2 to another coalition of type t2, from
two coalitions of type t2 we obtain two coalitions of type t1 and t3 (stable), and therefore:
φ((C̄, t2, t2))− φ(C̄) = SW (t1) + SW (t3)− 2SW (t2) = 37

9 + 39
8 − 2 · 9421 = 647

72 −
188
21 ≈

8.98− 8.95 = 0.03;

3. if ti = t1, tj = t2 i.e., y moves from a coalition of type t1 to a coalition of type t2, from
two coalitions of type t1 and t2 we obtain two coalitions of type t0 and t3 (both stable), and
therefore: φ((C̄, t1, t2))− φ(C̄) = SW (t0) + SW (t3)− (SW (t1) + SW (t2)) = 19

5 + 39
8 −

(379 + 94
21) = 347

40 −
541
63 ≈ 8.675− 8.587 = 0.088.

In every case the social welfare strictly increases. Since the number of possible clusterings is
finite, this implies that starting from any clustering C̄ consisting of coalitions of type t0, . . . , t4, there
exists a finite improvement path converging to a Nash stable clustering (still containing coalitions
of type t0, . . . , t4) with a strictly higher social welfare. �

We can now prove the following corollary.

Corollary 1 Let C be any Nash stable clustering for an instance GI of SDG including only basic
coalitions. Every xi-coalition C = Ki ∪ {xi} ∪ Yi of type t3 can be split in two sub-coalitions
C ′ = Ki and C ′′ = {xi} ∪ Yi, obtaining a new stable clustering C′ = C \ {C} ∪ {C ′, C ′′} with a
strictly higher social welfare.

Proof. Consider the clustering C′ obtained from C by splitting a coalition C of type t3 (see Figure
9) in two sub-coalitions C ′ = Ki and C ′′ = {xi} ∪ Yi corresponding to type t4. The stability of
C′ directly arises from the proofs of Lemmas 2 and 4. Moreover, we can easily verify that C′ has a
strictly higher social welfare. In fact:

SW (t3) =
(3 + 1

2 + 3
3) + 3(4 + 3

2) + (6 + 1
2) + 3(1 + 5

2 + 1
3)

8
=

9
2 + 33

2 + 13
2 + 23

2

8

=
39

8
= 4.875

(9)

and therefore, by Equations (6) and (9), SW (t4)− SW (t3) = 21
4 −

39
8 = 3

8 = 0.375. �

On the basis of these considerations, we can state the following result.

Corollary 2 Any best Nash equilibrium for an instance GI of SDG must include only basic coali-
tions of the 4 types t0, t1, t2, t4.

We are now ready to claim the following main theorem, whose proof comes directly from the
following Lemmas 5 and 6 below.

Theorem 2 Computing a best Nash equilibrium for SDGs is NP-hard.
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Lemma 5 If there is an exact cover for the input instance I of RXC3, then there exists a Nash
equilibrium for the instance GI of SDG with social welfare at least 257

20 p.

Proof. If there is an exact cover, then there is a clustering consisting of exactly p coalitions of type
t4 associated to the triples of the cover, and (m − p) = 2p remaining coalitions of type t0. By
Lemma 4 such a clustering is stable and the claim follows by simply summing up the utilities of all
the agents, i.e., 21

4 p+ 19
5 (2p). �

Lemma 6 If there is not an exact cover for the input instance I of RXC3, then every Nash equi-
librium for the instance GI of SDG has social welfare strictly less than 257

20 p.

Proof. Assume then that there is not an exact cover. By Corollary 2, the stable clusterings achieving
the best social welfare include only basic coalitions of the 4 types t0, t1, t2, t4. Consider any such
stable clustering C. For each i ∈ [m], we rearrange the social welfare of each coalition of C in
such a way that 19

5 is always accounted to the nodes zi,1, zi,2, zi,3, zi,4, xi, and the surplus is equally
shared among the agents y ∈ Yi belonging to the coalition. We have three cases for charging such
y agents, depending on how many of them are contained in each coalition: in case of t1 there is a
single y agent and we account to her all the remaining social welfare, that is 14

45 ≈ 0.31; in the case
t2 there are two y agents, and we account 71

210 ≈ 0.338 to each of them; in the case t4 there are three
y agents, and we account to each 29

60 ≈ 0.483. Notice that, since 29
60 >

71
210 >

14
45 , a clustering with

social welfare equal to 29
60m+ 19

5 m = 257
60 m = 257

20 p can be obtained if and only if 29
60 is accounted

to all the y nodes, which would imply the existence of an exact cover: a contradiction. �

4. Price of Anarchy and Price of Stability

In this section we first provide matching upper and lower bounds on the price of anarchy of SDGs.
We then focus on the price of stability, and prove that there exists an instance of SDGs for which
the lower bound on the PoS is 6

5 − ε, for any ε > 0. Finally, we study the PoS for graphs with girth
4 and girth at least 5, the girth being the length of the shortest cycle in the graph. In the sequel we
call star a tree consisting of one vertex (the center) adjacent to all the other vertices (the leaves).

Theorem 3 There exists a class of SDGs having price of anarchy Θ(n).

Proof. We recall that, by the remark made in Section 2, we can focus on SDGs for non-singleton
and connected graphs. By the definition of the game, the social welfare of any clustering is upper
bounded by n − 1 (and therefore OPT ≤ n − 1), as every agent has utility at most n−1n . Such an
upper bound can be attained only by the grand coalition in complete connected graphs. On the other
hand, since in any equilibrium C every agent has at least one neighbor in her coalition, thus having
utility at least 1

n , it is SW (C) ≥ 1.
It remains to show that there exists a class of SDGs having price of anarchy Ω(n). To this end,

for any positive integer n′, consider the graph of n = 8n′ nodes depicted in Figure 11. In the Nash
stable solution C illustrated in Figure 12,

SW (C) =
n

4
·

2(1 + 1
2 + 1

3) + 2(2 + 1
2)

4
=
n

4
·
26
3

4
=

13

3
n′.
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Another Nash stable solution C′ is shown in Figure 13. In this case, the social welfare is

SW (C′) = 2 ·
[2(1 + 1

2 + 1
3) + 2(2 + 1

2)] ·
n
2
4

n/2
= 2 ·

26
3 n
′

4n′
=

13

3

and therefore

PoA ≥
13n′

3
13
3

= n′ = Ω(n).

Thus, the claim follows. �

...

Figure 11: A SDG with n agents having PoA = Ω(n).

...

Figure 12: A Nash stable solution with SW = 13n
24 for the SDG depicted in Figure 11.

...

Figure 13: A Nash stable solution with SW = 13
3 for the SDG depicted in Figure 11.

Let us now turn our attention to the PoS. A first general lower bound is established in the
following theorem.

Theorem 4 There exists a class of SDGs having PoS at least 6
5 − ε, for any arbitrarily small ε > 0.

Proof. For any integer ν ≥ 3, consider a graph of 2ν+2 nodes consisting of a clique of ν+1 agents
Kν+1 = {zi|i ∈ [ν + 1]}, each connected to the center x of a star of ν leaves Y = {yi|i ∈ [ν]}. An
example of the graph for ν = 3 is depicted in Figure 14(a).

Let S = {x} ∪ Y be the set of the agents in the star. Consider the clustering C = {Kν+1, S}
(see Figure 14(b)), with social welfare

SW (C) = ν +
ν

(ν + 1)

(ν + 3)

2
=
ν(3ν + 5)

2(ν + 1)
.
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Figure 14: A SDG (a) and a corresponding clustering which is not Nash stable (b).

C is not Nash stable, since agent x can increase her utility from ν
ν+1 to ν+1

ν+2 by moving to Kν+1.
We now prove that the grand coalition (Figure 14(a)) is the only (and consequently, the best)

Nash stable solution.
First of all, in any stable clustering, each agent yi ∈ Y cannot be isolated, and thus must be

connected to x, otherwise she would have utility 0. Therefore, all agents in S must be in the same
coalition. Moreover, there can be no pair of coalitions containing only agents of Kν+1, otherwise
all agents in one coalition of minimum cardinality would move one after the other to the other
coalition to increase their utility (even starting from two subsets of Kν+1 of the same size). As a
consequence, any stable clustering cannot contain more than two coalitions, as being all the agents
of S in a same coalition, the remaining two coalitions should be contained in Kν+1. Thus, in order
to prove that also all agents in Kν+1 must be in the same coalition of x, it remains to show that any
clustering consisting of two different coalitions C1 ⊂ Kν+1 and C2 = V \ C1 (i.e., C2 includes
S and the remaining agents of Kν+1) is not stable. Arguing by contradiction, assume that there
exists such a stable clustering C = {C1, C2}. Let ν1 = |C1| > 1 (C1 cannot be singleton) and
ν2 = |Kν+1 ∩ C2| ≥ 1 (as mentioned above, if ν2 = 0 the clustering is not stable) be the number
of agents of Kν+1 belonging to C1 and C2 respectively, with ν1 + ν2 = ν + 1.

Let z1 be an agent in C1 and z2 be an agent in Kν+1 ∩ C2. The utilities of z1 and z2 are the
following:

• uz1(C1) = ν1−1
ν1

: if z1 moves, her utility becomes uz1(C2 ∪ {z1}) =
ν2+

ν
2
+1

ν+ν2+2 ;

• uz2(C2) =
ν2+

ν
2

ν+ν2+1 : if z2 moves, her utility becomes uz2(C1 ∪ {z2}) = ν1
ν1+1 .

We want to prove that (i) if agent z1 does not want to move, then z2 prefers to move, and (ii) if
agent z2 does not want to move, then z1 prefers to move.

It is easy to see that, for any choice of ν1 and ν2:

• uz1(C1) < uz2(C1 ∪ {z2}), and

• uz2(C2) < uz1(C2 ∪ {z1}).
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Now, z1 does not want to move when uz1(C1) ≥ uz1(C2 ∪ {z1}). This implies that uz2(C2) <
uz1(C2 ∪ {z1}) ≤ uz1(C1) < uz2(C1 ∪ {z2}), that is z2 wants to move. Similarly, when z2 does
not want to move, that is when uz2(C2) ≥ uz2(C1∪{z2}), we obtain uz1(C1) < uz2(C1∪{z2}) ≤
uz2(C2) < uz1(C2 ∪ {z1}), that is z1 wants to move. In both cases we can conclude that the
clustering would not be stable. Therefore, the grand coalition is the only Nash stable solution.
Its social welfare is SW (V ) = (ν + 1) · uzi(V ) + ux(V ) + ν · uyi(V ) = ν(5ν+11)+4

4ν+4 , where

uzi(V ) =
ν+1+ ν

2
2ν+2 for all i ∈ [ν + 1], ux(V ) = 2ν+1

2ν+2 and uyi(V ) = 1+ν
2ν+2 for all i ∈ [ν].

Hence, the ratio SW (C)
SW (V ) = 2ν(3ν+5)

ν(5ν+11)+4 tends to 6
5 as ν tends to infinity, proving the theorem. �

The following lower bound on the PoS for graphs of girth 4 holds.

Theorem 5 There exists an instance of SDGs, in which the underlying graph has girth 4, that has
PoS at least 169/160 = 1.05625.

Figure 15: A SDG with PoS ≥ 169
160 .

Proof. Consider the graph in Figure 15 and let us denote Z = {z1, . . . , z5}, Y = {y1, . . . , y5} and
S = {x,w1, w2}. We first show that there exists an unstable clustering that achieves high social
welfare, and then that any stable solution achieves quite less.

More precisely, consider the clustering C̄ = {Y ∪ Z, S}. Since uzi(C̄) = uyi(C̄) = 7
10 for all

i ∈ [5], ux(C̄) = 2
3 and uw1(C̄) = uw2(C̄) = 1

2 , it has social welfare SW (C̄) = 10 · 710 + 2
3 +1 = 26

3 ,
but it is not stable, as x can move and increase her utility from ux(S) = 2

3 to ux(Y ∪ Z ∪ {x}) =
5+ 5

2
11 = 15

22 by switching coalition.
We now prove that the best stable solution is the grand coalition, that has SW (V ) = 5uzi(V ) +

5uyi(V ) + ux(V ) + 2uwi(V ) = 320
39 , where uzi(V ) =

5+ 5
2
+ 2

3
13 = 49

78 and uyi(V ) =
6+ 6

2
13 = 9

13 for

i ∈ [5] , ux(V ) =
7+ 5

2
13 = 19

26 and uwi =
1+ 6

2
+ 5

3
13 = 17

39 for i ∈ {1, 2}. The result then derives by the
ratio between the above two social welfares.

Notice first that, in any stable clustering,w1 andw2 must be in the same coalition of x, otherwise
they would have utility 0 and could improve their utility by moving.

Let C be a stable clustering not being the grand coalition. In the remainder of the proof we will
make use of the following properties of C:

• connection-property: every coalition of C containing an agent z ∈ Z (resp. y ∈ Y ) must
contain at least one agent y ∈ Y (resp. z ∈ Z ∪ {x}). In fact, otherwise z (resp. y) would
have utility 0 and could improve her utility by moving.
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• half-property: an agent z ∈ Z (resp. y ∈ Y ) has utility strictly greater than 1/2 if and only
if it is in a coalition with at least two agents of Y (resp. of Z ∪ {x}). In fact, recalling the
definition of the utilities of SDGs, if z ∈ Z (resp. y ∈ Y ) is connected with one agent of Y
(resp. Z ∪ {x}) (by the connection-property at least one must be in her coalition), she would
have only one agent at distance 1 and eventual other ones at distance at least 2, so her utility
would be at most 1/2. On the other hand, if z (resp. y) is connected with two agents of Y
(resp. of Z ∪ {x}), then she has at least 2 nodes at distance 1, eventual nodes at distance 2
and at most 2 nodes at distance 3, so her utility would be strictly greater than 1/2.

Having in mind the above properties, we distinguish two cases depending on whether C does
not contain or contains a coalition C with at least two agents of Z ∪ {x}.

In the former case, by the connection-property and the fact that agents w1 and w2 must always
be with x, up to symmetries the only possibility for C is that C = {{z1, y1}, . . . , {z5, y5}, S}. Such
a clustering has social welfare SW (C) = 5+ 5

3 = 20
3 , which is strictly less than the 320

39 one obtained
by the grand coalition.

So let us assume then that C contains a coalition C with at least two agents of Z ∪ {x}. In the
remaining part of the proof we show that under this assumption C cannot be stable.

Notice first that in C there cannot be any coalition C1 with only one agent in Z∪{x}. In fact, by
the connection-property, C1 should have at least one agent y ∈ Y , that by the half-property would
be interested in moving to C. This also implies that C can contain at most 3 coalitions, so let us
assume there is also a coalition C2 with at least two agents of Y . Therefore, in a similar way, there
cannot be a coalition containing a single agent y ∈ Y and at least one agent z ∈ Z, because by the
half-property z would be interested in moving to C2.

As a consequence of the above observations, every coalition not containing x must have at least
two agents of Z and at least two agents of Y .

If C has two coalitions C1 and C2 not containing x, then recalling that C has at most 3 coalitions
and that by the connection-property the remaining coalitionC3 containing x either has both an agent
of Z and Y or none of them, up to symmetries the following cases can hold:

i. C1 = {z1, z2, y1, y2}, C2 = {z3, z4, y3, y4}, C3 = {z5, y5, x, w1, w2},

ii. C1 = {z1, z2, z3, y1, y2}, C2 = {z4, z5, y3, y4, y5}, C3 = {x,w1, w2},

iii. C1 = {z1, z2, y1, y2}, C2 = {z3, z4, z5, y3, y4, y5}, C3 = {x,w1, w2}.

In case i. by the half-property z5 is interested to move to C1 or C2. In case ii. z3 can improve her

utility from uz3(C1) =
1+1+ 1

2
+ 1

2
5 = 3

5 to uz3(C2 ∪ {z3}) =
1+1+1+ 1

2
+ 1

2
6 = 2

3 >
3
5 . Finally in case

iii. z2 can improve her utility from uz2(C1) =
1+1+ 1

2
4 = 5

8 to uz2(C2 ∪ {z2}) =
1+1+1+ 1

2
+ 1

2
+ 1

2
7 =

9
14 >

5
8 .

Therefore, since C cannot have two coalitions C1 and C2 not containing x, the only possibility
left is that C consists of just two coalitions (recall that we are under the assumption that C is not the
grand coalition).

By exploiting symmetries and the above constraints, we can describe all possible clusterings
containing exactly two coalitions using just two parameters, α and β. All such clusterings (up to
symmetries) are:

{{{z1, . . . , zα, y1, . . . , yβ}, {zα+1, . . . , z5, yβ+1, . . . , y5, x, w1, w2}} | 2 ≤ α ≤ 4, 2 ≤ β ≤ 3}.
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By means of a case analysis we show that they are all unstable, as there is always at least one
agent that has an improving move.

Let C1 = {z1, . . . , zα, y1, . . . , yβ} and C2 = {zα+1, . . . , z5, yβ+1, . . . , y5, x, w1, w2}. Then:

• If α = 2 agent y1 moves. In fact, her original utility is uy1(C1) =
2+β−1

2
2+β , while her new one

is uy1(C2 ∪ {y1}) =
4+ 7−β

2
12−β , and for any β in our domain, uy1(C1) < uy1(C2 ∪ {y1}).

• If β = 3 agent z5 moves. In fact, her original utility is uz5(C2) =
2+ 5−α

2
+ 2

3
10−α , while her new

one is uz5(C1∪{z5}) =
3+α

2
4+α , and uz5(C2) < uz5(C1∪{z5}) for any α such that 3 ≤ α ≤ 4.

• The remaining case is 3 ≤ α ≤ 4 and β = 2. Under this assumption y5 moves. In fact, her
original utility is 8−α

11−α , while her new one is α+1
α+3 , which is strictly greater for any α such that

3 ≤ α ≤ 4.

In conclusion, there cannot neither be any stable clustering consisting of two coalitions, hence the
claim. �

Finding an upper bound on the price of stability in SDGs seems to be a challenging task. How-
ever, we can make progress in this direction by considering more restrictive settings. More precisely,
we provide an upper bound of 5

4 on the price of stability on graphs with girth at least 5. Notice that
this result is not comparable with the lower bound on PoS obtained in Theorem 4, since the lower
bound is given by a construction having girth less than 5. Before proving such a lower bound, we
also show that if we have the promise that the graph has girth 4, then there exists an instance of
SDGs in which the only stable solution is the grand coalition.

Lemma 7 There exists an instance of SDGs in which the underlying graph has girth 4 and the only
stable solution is the grand coalition.

Proof. Consider the graph in Figure 16 and let us analyze all possible ways for partitioning the
nodes in a stable way.

Figure 16: A graph with girth 4.

First of all, notice that an agent cannot be isolated and that, if a coalition is not connected,
an agent will move because her utility would be zero. So, besides the grand coalition, we can
only partition V in two connected coalitions of size 2 and 3. We only consider the case C =
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{{z1, z2}, {z3, z4, z5}}, as all the others are symmetric. C is not stable, since z1 can increase her
utility from 1

2 to 5
8 . This implies the theorem. �

For a greater girth the following result holds.

Lemma 8 Given any graph with girth greater than 4, it is possible to obtain a stable solution C
with SW (C) ≥ n

2 by partitioning the graph into stars.

Proof. The following simple procedure allows to determine a partition of the graph into stars, each
of at least 2 nodes, together with the corresponding stable clustering. Once constructed a rooted
spanning tree T of the graph G, let x be one of the deepest leaves and y be her parent in T . Put y
and all her children (x included) in the same coalition and iterate the procedure on the residual tree,
until either the tree becomes empty or only the root is left. In this last case insert the root in the last
formed coalition. Notice that every coalition induces exactly a star subgraph, as such a subgraph
has all the leaves connected to a center and, by the assumption on the girth, there can not be edges
between leaves.

It is easy to check that in a star all the leaves have utility 1
2 , while the center has utility at least

1
2 . For what concerns the stability, consider any agent in a star. Since the girth is greater than 4, she
can have only one neighbor in a different star, hence she cannot achieve utility greater than 1

2 by
moving, hence the claim. �

Hence, we can finally state the following upper bound on the PoS for graphs of girth greater
than 4.

Theorem 6 The upper bound on the PoS of SDGs in which the underlying graph has girth strictly
greater than 4 is 1

2 + 1√
2
≈ 1.207.

Proof. Consider any clustering C and let C1, . . . , Ck be the non-singleton coalitions in C, that is
such that |Ci| ≥ 2 for i ∈ [k].

Let ni = |Ci|,Ei be the subset of the edges induced byCi, and δx be the degree of agent x in the
subgraph induced by her coalition. We can give an upper bound to the utility of x by considering her
neighbors in her coalition Ci at distance 1 and all the other agents in Ci as if they were at distance
2. Hence, the contribute SW i of any coalition Ci to the social welfare for i ∈ [k], is

SW i ≤
∑
x∈Ci

δx + ni−δx−1
2

ni
=

∑
x∈Ci

ni−1
2 + δx

2

ni
=

=
ni − 1

2
+

∑
x∈Ci

δx
2ni

=
ni − 1

2
+

2|Ei|
2ni

=

=
ni − 1

2
+
|Ei|
ni

.

Since the subgraph induced by Ci cannot have a girth lower than the one of G, and thus has
girth greater than 4, from Dutton and Brigham (1991) we know that |Ei| ≤ ni

√
ni−1
2 . Thus,

SW i ≤
ni − 1

2
+

√
ni − 1

2
,
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and

SW (C) =
∑
i∈[k]

SWi ≤
∑

i∈[k](ni − 1) +
∑

i∈[k]
√
ni − 1

2
=

=
n− k +

∑
i∈[k]
√
ni − 1

2
≤
n− k + k

√
n
k − 1

2
.

From Lemma 8, we can guarantee a social welfare of at least n2 , hence

PoS ≤
n−k+k

√
n
k
−1

2
n
2

≤ 1

2
+

1√
2
,

where the last inequality comes from standard maximization arguments, thus proving the theorem.
�

5. Conclusions

We investigated Nash stability in SDGs.Several issues remain open. First of all, we have shown
that there is a class of SDGs for which a 6

5 lower bound on the price of stability holds; it would
be nice to provide a corresponding upper bound. Another relevant question that naturally emerges
is whether there exists a polynomial time algorithm for determining the existence of a Nash stable
clustering for SDGs different from the grand coalition. As we have seen, this is not guaranteed
for graphs with girth less or equal to 4. We notice that, besides this computational issue, a deeper
understanding of the conditions for the existence of such non trivial equilibria would be particularly
important for providing better bounds on the price of stability. A related open question is that
of identifying special graphs in which a best equilibrium or a best non stable clustering can be
computed in polynomial time. Finally, it would be interesting to generalize our results to weighted
graphs and to consider classes of hedonic and fractional hedonic games induced by other classical
centrality measures, like the ones presented by Gomez et al. (2003). On this respect, it would be
particularly worth to consider models in which being a singleton is not the worst choice.
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