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Abstract
Organic dirt on touch surfaces can be

biological contaminants (microbes)

or nutrients for those but is often

invisible by the human eye causing

challenges for evaluating the need for

cleaning. Using hyperspectral scan-

ning algorithm, touch surface cleanli-

ness monitoring by optical imaging

was studied in a real-life hospital

environment. As the highlight, a human eye invisible stain from a dirty chair armrest

was revealed manually with algorithms including threshold levels for intensity and

clustering analysis with two excitation lights (green and red) and one bandpass filter

(wavelength λ = 500 nm). The same result was confirmed by automatic k-means clus-

tering analysis from the entire dirty data of visible light (red, green and blue) and filters

420 to 720 nm with 20 nm increments. Overall, the collected touch surface samples

(N = 156) indicated the need for cleaning in some locations by the high culturable bac-

teria and adenosine triphosphate counts despite the lack of visible dirt. Examples of

such locations were toilet door lock knobs and busy registration desk armchairs. Thus,

the studied optical imaging system utilizing the safe visible light area shows a promis-

ing method for touch surface cleanliness evaluation in real-life environments.

KEYWORD S

environmental monitoring, health-care associated infections, hyperspectral, infection control, optical

imaging

1 | INTRODUCTION

Touch surfaces are an important source of bacteria and many
pathogenic and opportunistic bacteria can persist on a surface
even for months, these contaminated surfaces can further con-
tribute to transmission of pathogens that can even cause hospi-
tal acquired infections [1, 2]. The important biological

contaminants vary depending on the environment; in the hospi-
tal environment, many antibiotic-resistant strains nowadays
pose challenges such as methicillin-resistant Staphylococcus
aureus, vancomycin-resistant Enterococcus and Clostridium
difficile [1, 3]. Despite these challenges, a real-time monitoring
system is still lacking to indicate biological contamination on
touch surfaces and current methods include fast but unspecific
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adenosine triphosphate (ATP) measurement and slow cultiva-
tion techniques. Despite its rapidity, commercial ATP swab
tests provide an estimate of total organic soil (food residues and
microbial cells) [4] and thus are unable to differentiate whether
the contamination is microorganism based or, for example,
organic food. A limiting factor in traditional microbiological
cultivation techniques in addition to long cultivation time is the
occurrence of viable but nonculturable bacteria that might
underestimate real microbial load in touch surfaces [5]. Given
that infectious doses can be extremely low, for example, less
than 10 spores or colony-forming units (CFU), the detection
limit of bacteria is crucial in the infection control in hospital
environment [6]. Analyzing also other nonbiological organic
materials is relevant as they may pose potential nutrients for the
bacteria enabling bacterial growth.

Visual inspection of a surface is not equal to microbiologi-
cal swabbing or ATP test to indicate unsatisfactory touch sur-
face cleanliness, and therefore cannot predict the risk of
microbial transmission from contaminated surfaces [7, 8].
The biological contamination detection even in real time is
possible using different intrinsic fluorescence properties of
the biological contaminants and has been mainly studied in
food industry applications [9–11] or monitoring the cleaning
efficiency in food processing facilities [12]. Hyperspectral
imaging has shown potential in biomedical applications, for
example, to distinguish tumorous and normal tissues, detect
changes in blood cells or mucosal surfaces, or to detect living
microorganisms such as Amoeba proteus [13–17]. In princi-
ple, depending on a target compound of the electromagnetic
radiation, different fluorescence emissions are detected from a
microorganism or food components. At excitation wave-
lengths of UV light, intracellular nucleic acids (DNA and
RNA) and amino acids such as tyrosine and phenylalanine
but especially tryptophan that is present in a cell wall of the
bacteria emit light in the UV to blue light range [18–21]. The
presence of the nucleic acids and amino acids as mentioned
above are not dependent on the metabolic state of the cell, for
example, these are found in the cell until cell death whereas
intracellular coenzymes (NADH, flavins) can give more
details about metabolic state of the cell such as growth

conditions [18]. In visible excitation wavelength of blue light,
flavins especially riboflavin (vitamin B2) emit green light
[18]. Many studies of bacteria present in varying food prod-
ucts have shown absorbance and/or reflectance in the higher
electromagnetic radiation wavelengths [10]. Only one study
has utilized hyperspectral imaging to detect clinical contami-
nation in a hospital [21]. In this study, tryptophan was
suggested as the most reliable fluorophore over, for example,
cellular metabolites such as NADH [21]. Surfaces electro-
magnetic spectrum is often analyzed with chemometrics, for
example, principal component analysis or artificial neural net-
work that are machine learning-based algorithms designed to
detect and identify possible surface contaminations where
every contamination has its own “fingerprint” in electromag-
netic spectrum [11]. Utilizing chemometrics and/or the intrin-
sic fluorescence spectra of microorganisms, even different
bacterial or fungal strains can be separated from each other
[22–24]. Further, live bacteria yield stronger fluorescence sig-
nal in most sensitive measurements can differentiate live and
dead bacteria [25].

Differentiating Gram-negative Escherichia coli and Gram-
positive Bacillus subtilis from the background and from each
other with varying concentrations was performed in labora-
tory by hyperspectral imaging [24]. The aim of this study was
to study hyperspectral imaging further in real-life environ-
ment and to confirm the usability of this system (AutoDet)
for detecting visible and invisible stains to the human eye on
touch surfaces in a hospital. Both manual algorithms/methods
as well as machine vision algorithms were used.

2 | METHODS

2.1 | Studied touch surfaces and sampling sites

Real-life touch surface sampling was performed in a hospital
located in Finland (Figure 1). Touch surfaces from common
lounge areas and toilets as listed in Table 1, including tradi-
tional products without antimicrobial properties as well as
commercially available products with antimicrobial silver-
based coatings. During March to April 2019, 156 samples

FIGURE 1 Studied real-life
hospital environment, that is,
(A) an emergency waiting area
and (B) a toilet where the optical
device is imaging a studied door
handle
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were collected in five sampling days on Mondays at prior
first cleaning of the week that represented presumably the
worst-case scenario by surface dirtiness. From each surface,
either culturable bacteria (total plate count, TPC) or micro-
bial biomass and organic dirt (ie, ATP) was analyzed. In
addition, 66 samples were collected for optical measure-
ments (AutoDet). For these ATP and optical measurements,
the similar images after cleaning (with a wet microfiber cloth
and 80% ethanol solution) were compared to dirty samples
to confirm the occurrence of dirt. In the hospital, toilets were
routinely cleaned daily by cleaning professionals with
nondisinfecting and nonionic detergent (Yleispesu Joutsen,
Berner, Finland) and once per week on Mondays with alka-
line detergent especially designed for greasy dirt (C4 max,
KiiltoClean Oy, Finland). The emergency room personnel
cleaned emergency room common areas during the week-
ends with nondisinfecting and nonionic detergent (Yleispesu
Joutsen, Berner, Finland). In all cases of secretions,
chlorine-based disinfecting detergent was used for cleaning.

2.2 | Touch surface sampling and
microbiological analyses

Microbiological sampling and microbiological analyses were
described in more detailed elsewhere [26]. In short, sampling
was performed as a swap wiping method. Bacterial aerobic
plate counts were analyzed using Trypticase Soy Agar plates
using the mean value of parallel plates. Indicator bacteria
occurrences (positive or negative finding) were confirmed
from an enriched sample onto a selective plates, that is,
Enterococcosel Agar-plate (BD) (Enterococci), Mannitol Salt
Agar plates (Labema Oy) (coagulase-positive Staphylococcus
and the presence of Staphylococcus aureus that are later in the
manuscript referred as S. aureus) and MacConkey II Agar-
plate (BD) (Enterobacteriaceae and other Gram-negative rods
that are later in the manuscript referred to as Gram-negatives).
ATP as relative light units (RLU) was collected with a dry
swab sample (Ultrasnap) and were read with the portable
luminometer (Hygiena SystemSURE PLUS) following manu-
facturer's instructions (Hygiena International Ltd., Watford,
UK). Total plate count (TPC) value ≥2.5 CFU cm−2 was used
as surface hygiene benchmark as commonly used in hospitals
[7, 27]. In this study, we determined ATP ≥1 RLU cm−2 as
an unacceptable (ie, dirty) guideline value based on 100 RLU
limit [4, 27] that corresponds to limits 23 to 100 RLU/surface
and thus is close to new guidelines of the manufacturer <25
for near-patient areas and <50 for hospital public areas [28].

2.3 | Optical measurements and equipment

Hyperspectral imaging system is described more detailed in our
other study in a laboratory environment with Escherichia coliT
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and Bacillus subtilis [24]. In short, three color light source
LEDs (red, green and blue [RGB]) were used as the excitation
source. Digital Multiplex mode interface connected to com-
puter and lighting networks, and enabled automatic changes
of lights. Filter controller (ThorLabs Kurious) enabled only
selected wavelengths from 420 to 720 nm to pass the filter.
For each light, a continuous 20 nm increment was used in this
study, resulting 48 raw images (as 1393 × 1040 pixels PNG
images) per sample. JAI UV camera model CM-140GE-UV
was used for imaging. Camera and light operated 40 to 80 cm
away from the sample. Focus was adjusted for green light
(wavelength λ = 525 nm) with camera using NiMaX inter-
face. Data (images) collection was performed with LabVIEW
program (version 2017). Operating parameters included only
one light (RGB) with relative light intensities (Irel) from 50 to
255 while the other two lights were set to zero. Lower Irel was
chosen when the light source wavelength was close to filter
wavelength to avoid overexposure.

2.4 | Downstream clustering analysis of raw
images

Microbial and dirt levels information were compared with
the images of AutoDet to evaluate the cleanliness of the
surface and to evaluate the real need for additional
cleaning. Raw figures were cropped to smaller size figures
with GIMP picture operating tool and Python (version
2.7.15) scripts for further analyses. Python NumPy and
PyLab programs were used in cropping and visualization.
The occurrence of stains was confirmed by comparing
dirty and cleaned images that were taken in exactly same
conditions. Transforming the figures to two-colored images
by a chosen color intensity threshold value and comparing
to a cleaned figure enabled to spot also the human eye
invisible stains. For the clustering analysis [24], cropped
figures (0.5 × 0.5 mm) of dirty stain area (stain) and area
next to the stain (background) as well as cleaned stain and
background areas (cleaned surface area) were analyzed. In
the clustering analysis, the intensity of two different sam-
ple conditions were transformed to color intensity vectors
that were plotted to by two-dimensional plot x- and y-axes
with the background. In principle, in the clustering plot,
the samples with stains will cluster away from background
samples. The clustering analysis for one selected sample
(human eye invisible stain in a chair armrest) was per-
formed manually by selecting only two different conditions
(excitation light and bandpass filter). When utilizing all
data (RGB, filters 420-720 nm) with computer-aided algo-
rithms, images were analyzed using a k-means [29]. Sup-
port vector machine (SVM) classificator [30] was used to
classify dirty and clean table surfaces.

2.5 | Statistical analysis

Two-way analysis of variance (2-way ANOVA) (signifi-
cance level P = .05) was used to detect differences between
material (traditional and antimicrobial) and the sampling
location for ATP and TPC (Table 1). Post hoc tests (Tukey
honestly significant difference) were used to test differences
within the sampling location. Logarithmic transformation
was used for TPC statistical analyses in order to normalize
the distribution in data, and half of the detection limit value
was used in TPC with low growth. Normal distribution of
the data was tested with Levene's test. Statistical analyses
were performed using the Statistical Package for the Social
Sciences (SPSS) for WINDOWS ver. 25.0 (SPSS Inc., Chi-
cago, Illinois).

3 | RESULTS

3.1 | Real-life hospital environment

Public hospital, including emergency lounge area and toilet
(Figure 1A), was chosen as the environment for a real-life
case to study whether the designed optical AutoDet device
(Figure 1B) functions also in the real-life environment as
was found efficient in the laboratory environment [24]. The
results suggest that the sampling location affected signifi-
cantly (P < .05) for culturable bacteria count and ATP levels
(Table 1) in studied surfaces. In addition, S. aureus seemed
more abundant in toilets vs common areas. From 61 surfaces
that were inspected for visual dirt, 23 surfaces indicated
visual stains by the human eye. These visually dirty surfaces
however did not show on average higher culturable bacteria
counts (5 ± 8 CFU cm−2) than visually clean surfaces (7
± 12 CFU cm−2, N = 38). Same trend was observed in ATP
(1 ± 1 vs 4 ± 4 RLU cm−2, respectively). Most of the
human eye visible dirt were detected from table surfaces
(N = 19) that represented cleanest locations of the study
(Table 1). Only three of the hospital surfaces were consid-
ered as very dirty by heavy growth, that is, 40 to
100 CFU cm−2 [27] including two toilet door lock knobs
(51 and 191 CFU cm−2) and a chair armrest (85 CFU cm−2).
Despite the lack of very dirty surfaces, 52% of culturable
bacteria and 59% ATP samples exceeded hygiene guideline
levels for common and near-patient areas used in this study.

3.2 | Detecting human eye invisible stain by
manual image processing with two different
wavelengths and bandpass filters

Instead of detecting the human eye visible stains (data not
shown), more importance was given to the invisible stains.
The optical device (AutoDet) was able to detect the human
eye invisible dirt from a normal wooden armrest of a chair
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that is presented as a case study example (Figure 2A). ATP
value of 1.9 RLU cm−2 (109 RLU/surface) confirmed the
surface as dirty. Raw figures in any of the studied RGB
wavelengths and filters (420-720 nm) did not indicate the
occurrence of the human eye invisible stain, for example,
green light and filter 520 nm (Figure 2B). Using an algo-
rithm with a certain threshold level and comparing the
images of dirty and cleaned surfaces of the same circum-
stances, the stain and its location was revealed. Magnifica-
tion of the raw image (Figure 2C) does not indicate the
occurrence of the stain in top figure whereas the image

where the threshold algorithm was utilized clearly reveals
the stain as shown in the lower figure.

The phenomenon of different behaviors of two wave-
lengths was utilized in the manually performed clustering
analysis, where an image was produced by selecting two areas
(dashed squares in Figure 2C) and two excitation wavelengths
(green and red light). The Irel were plotted and the stain and
the background separates from each other (Figure 3A). The
orange area most likely represents organic dirt, and black area
represents clean surface. This was confirmed by the compari-
son to cleaned surface areas where the cleaned areas (blue

FIGURE 2 (A) A photograph of a chair with wooden varnished armrest from a real-life hospital emergency area. (B) Raw figure of the armrest
before cleaning using a green light (wavelength λ = ca. 520 nm, relative intensity Irel = 50) and bandpass filter (λ = 500 nm) from which cropped figure
(black rectangle) was used for further analyses. Dashed red square inside a cropped area highlights the location of the invisible stain (approximately
3 mm length, 1.5 mm height). (C) Magnification of the stain area as a raw figure (upper figure) and as modified image (lower figure) with 90� rotation of
images to right. In the lower figure, an algorithm was used to visualize the invisible stain utilizing a threshold value 0.35 (intensity < threshold = black
color, intensity > threshold = orange color). Dashed lines indicate stain and background locations for the clustering analysis

FIGURE 3 Clustering analysis with green light (excitation wavelength λ = 525 nm, relative intensity Irel = 50) and red light (excitation
wavelength λ = 625 nm, relative intensity Irel = 255), both filtered by a bandpass filter (λ = 500 nm). Clustering analysis of (A) the dirty surface
areas as shown in Figure 2C where the human eye invisible stain area (orange color) clusters away from the background area (black color) and
(B) corresponding clustering analysis including data after cleaning
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color) cluster together with background area (black color) and
receive similar intensity values to the clean area before the
cleaning (Figure 3B). The clustering analysis was able to dif-
ferentiate the invisible stain manually with utilizing only two
different operational conditions (red/green light, same ban-
dpass filter). The surface was confirmed as clean based on
low ATP value of 0.2 RLU cm−2 after cleaning.

3.3 | Detecting human eye invisible stain by
artificial intelligence methods utilizing all
wavelengths and filters

The same example chair invisible stain was analyzed by
computer-aided parameters that included all three excitation
lights (RGB) and filters (420-720 nm) with 20 nm incre-
ments. The same invisible stain was identified by automatic
K-means algorithm (Figure 4) that used all the dirty data
instead a threshold picked by hand (Figure 3). For k-means,
the raw image with green light and 500 nm filter was chosen
as the background. Similar to manual method, the stain was
revealed as shown as orange pixels in the same region rep-
resenting the stain. This shows that if the location of the
stain is known, it is possible to cluster she stain together
automatically by utilizing all wavelengths. Based on manual
and automatic clustering analyses presented above, the stain
appeared as small clusters. Hence, the region of interest was

divided to small squares and the SVM classified them as
dirty or clean. Comparison to ATP values showed that in the
clean surface, all the little squares classify as clean, but in
the dirty case, both clean and dirty squares occur as the
stains are not evenly distributed (Appendix S1).

4 | DISCUSSION

This study further confirmed that the visual inspection of dirt
is not enough to indicate whether the touch surface hygiene
level is unsatisfactory as found earlier [7, 8] despite the
visual inspection was not perfectly comprehensive due to
varying shapes and colors of the touch surface materials. In
this study, most of the human eye visible dirt was detected
from relatively clean table surfaces probably by its best light
reflecting properties. The hygiene levels in the studied touch
surfaces were same order of magnitude for other hospital
environments despite the typical variation in hospital sur-
faces [8, 31, 32]. In this study, only few samples were con-
sidered as heavily contaminated by bacteria whereas many
samples exceeded the current guideline values. Sampling
location expectedly affected bacterial counts [26, 32], and
especially high values were detected in toilet door lock
knobs and busy registration desk chair armrests. Maintaining
low bacteria counts is of high importance for patient safety
as lower loads of bacteria is suggested to result in a lower
risk for disease acquisition in a hospital environment [33].

In this study, we focused on the human eye invisible stains
that pose challenges in the environmental surfaces, for exam-
ple, in the generally clean health-care units with frequent
cleaning practices. We were able to detect successfully the
human eye invisible stain from a dirty chair armrest by optical
measurements where ATP value over 100 RLU confirmed the
surface as dirty. The invisible stain was revealed manually by
using only two visible light sources (green and red) and one
filter, and the same result was confirmed utilizing automati-
cally all three lights (RGB) and different filters between
420 and 720 nm. We were not able to confirm that the human
eye invisible dirt was the cause of organic dirt detected on that
surface (as seen as high ATP value) but it seems highly likely
as a stain can appear in small clusters or nonevenly spread
areas. For the analyzing of the dirt, the local occurrence of the
stain instead of evenly distributing to the surface causes chal-
lenges for the algorithm development. With SVM, a correla-
tion was found between ATP and our cleanliness estimator.
Based on the optical imaging data acquired here, the dirt could
not be identified. However, based on the properties of the stain
emitting light at wavelength near 500 nm with lower excitation
wavelengths, that is, green light as presented detailed and also
with blue light (data not shown), riboflavin [18, 34] containing
stain is a strong candidate. In that case, the stain could be a cell
cluster or riboflavin rich food product.

FIGURE 4 K-means algorithm identifies the stain as shown in
Figure 2C automatically as a continuation to the manual clustering
method as shown in Figure 3. The stain is highlighted as orange color,
and background image is performed with green excitation light and
500 nm filter. The method uses all data for the dirty surface, that is, red,
green and blue excitation lights and filters 420 to 720 nm with 20 nm
increments
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In general, the optical inspection methods covering large
areas aim at the same hygiene level as current techniques. The
studied hospital was challenging environment due to high
cleanliness typical for hospitals. If the optical method func-
tions in a highly clean environment, it can be expected to
function also in dirtier environments such as public places
with less frequent cleaning. Methods like cultivation and ATP
are still needed to indicate the cleanliness of a surface. Utiliz-
ing visible light is feasible in real-life environments such as a
hospital unlike harmful low wavelength UV lights. Thus, the
optical methods utilizing visible wavelengths instead of UV-
light make a promising method for future cleanliness mea-
surements in human occupied real-life environments.
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