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ABSTRACT
The notorious incident of sudden infant death syndrome
(SIDS) can easily happen to a newborn due to many en-
vironmental factors. To prevent such tragic incidents from
happening, we propose a multi-task deep learning framework
that detects different facial traits and two life-threatening
indicators, i.e. which facial parts are occluded or covered,
by analyzing the infant head image. Furthermore, we ex-
tend and adapt the recently developed models that capture
data-dependent uncertainty from noisy observations for our
application. The experimental results show significant im-
provements on YunInfants dataset across most of the tasks
over the models that simply adopt the regular cross-entropy
losses without addressing the effect of the underlying uncer-
tainties.

Index Terms— Bayesian deep neural net, occlusion de-
tection, cover detection, neonate safety

1. INTRODUCTION

Facial analysis has always been one of the core problems in
the computer vision field. In particular, problems such as face
detection [1], facial landmark detection [2], and pose esti-
mation [3] have been progressing at an unprecedented pace
thanks to the advancements in deep learning approaches. That
being said, most efforts have been poured into analyzing the
subjects who are either children or adults [4, 5], but much less
have been focused on the infant group, which is considered
vulnerable and requires being attended. This may have stag-
nated the development in computer vision applications cen-
tered around the infants. For instance, in surveillance appli-
cations, while many more systems are rather general purpose,
they are not crafted for monitoring neonatal safety. Having
such a safety system is crucial since the notorious incident of
sudden infant death syndrome (SIDS) can happen quite easily
to a newborn under several risky conditions [6].

In this work, as one crucial step towards protecting a new-
born against SIDS, we propose a multi-task Bayesian deep
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Fig. 1. Instances of annotations for the four tasks on infant
head images on YunInfants. Labels for each image contain
three parts. 1/0 in the first 4-element vector (and the second 3-
element vector) encode whether an eye, eyes, nose and mouth
are occluded (covered)/not occluded (not covered). 1/0 in the
third scalar element says the eyes are open / not open.

neural architecture consisting of four different sub-tasks of
recognizing: a) whether the eyes, nose, or mouth, are oc-
cluded, b) whether they are covered by arbitrary objects, c)
whether the eyes are open, and d) the locations of the five
facial landmarks. A facial part is defined to be occluded
when not visible. A facial part is defined to be covered when
not visible and covered by external objects, such as a pillow.
Having both occlusion and cover detection tasks in the same
learning framework makes it possible to analyze whether the
occlusion is caused by sleeping position or the surrounding
objects. Being not visually apparent, analyzing infant facial
traits can be challenging as shown in Fig. 1. We would like
to develop a system that can assist any monitoring system in
telling if an infant is in an improper sleeping position, caus-
ing her face being covered by the bedding. Existing works
inferring occlusion on head images, such as [7, 8, 9], do not
focus on analyzing infant images. On the contrary, we intro-
duce a novel dataset named YunInfants and propose a method
focusing on the infant group, aiming to handle any head pose
and imaging under varying lighting conditions.

To be applied in a system that considers safety issues, it



is suggested that the network should estimate uncertainty of
its predictions [10]. Two types of uncertainties can be con-
sidered in a learning task, i.e. aleatoric and epistemic uncer-
tainties [10]. We emphasize the former one as it comes from
the inherent noise in the observation, such as the noise or the
sensing capability of the sensor, and can lead to ambiguous
predictions. This reflects the scenario in our application be-
cause the collected images contain noises due to: 1) the cam-
era switching to the night-vision mode, where its sensing abil-
ity is limited and often noisy, and 2) the motion blur caused
by the sudden movement of the baby.

To summarize the contributions in this paper: a) We pro-
pose a multi-task Bayesian deep learning framework that
learns four detection tasks accounting for neonatal safety.
This is a critical and, to our knowledge, novel application in
computer vision. b) We extend the loss function for classifi-
cation defined in [10] to multi-label and multi-task problems.
Empirically we show that learning with this extended loss
function accounting for data-dependent uncertainty brings
significant improvement in nearly all tasks over the baselines
on the collected YunInfants dataset. The following sections
are structured as follows. In Sec. 2, we introduce the proposed
network architecture and formalize the objectives of different
learning tasks in the network. In Sec. 3, we present the ex-
perimental results, which are then followed by conclusions in
Sec. 4.

2. PROPOSED METHOD

We propose a Bayesian multi-task neural network for four dif-
ferent detection tasks, including a) facial occlusion, b) facial
cover, c) eye openness, and d) five-point facial landmark de-
tection.

Fig. 2. The proposed multi-task network architecture for oc-
clusion, cover, eye openness, and landmark detection tasks.
Convkxk n represents a convolution layer with kernel size
k×k, n output channels, and stride being 1. FC n represents
a fully-connected layer with n outputs. sigm. and rect+
indicates sigmoid activation function and the rectifier that en-
force positiveness, respectively. BN indicates batch normal-
ization. The network, in each task branch, estimates not only
the posterior mean of the class distribution, but also the un-
certainty of the estimates.

2.1. Network Architecture and Objectives

2.1.1. Labels

Occlusion, Cover, and Eye Openness Detection: The la-
bels defined for occlusion, cover, and eye openness detection
tasks are denoted as yocc ∈ {0, 1}4, ycov ∈ {0, 1}3, and
yeye ∈ {0, 1} respectively. 1’s (0’s) in these labels repre-
sent if a facial part is occluded (not occluded), covered (not
covered), or open (closed), respectively for yocc, ycov , and
yeye. The conditions of the four facial parts (an eye, both
eyes, nose, mouth) are enclosed in yocc, while those of three
facial parts (eyes, nose, mouth) are captured in ycov . yeye
captures the eye openness. One can refer to Fig. 1 for label-
ing examples. Note that if a human annotator cannot tell the
condition, then it is labeled as -1. We follow the same land-
mark annotation protocol used in [5] except that we do not
annotate the occluded facial part.
Five-Point Facial Landmark Detection: Most of the works
on landmark detection assume that every landmark is visible
regardless of the pose and occlusion [5]. However, it is not a
suitable setting in the application addressed in this paper since
one can easily find a head image visible with only few or no
landmarks (as in some examples in Fig. 1). Hence the task
here is not to estimate the coordinates of the landmarks, but
to detect if those five landmarks are present in the grid space
Ylm ∈ {0, 1}Wlm×Hlm×3, where the three Wlm ×Hlm land-
mark maps respectively correspond to the visibility of eyes,
nose and mouth at a lower resolution of the input image.

2.1.2. Inputs and Outputs

Fig. 2 depicts the overview of the proposed framework. The
network takes a head image as input X ∈ Rwi×hi×ci , which
can come from any head detector. The outputs of the network
are collected from four task branches, each of which pre-
dicts the probability of the class labels and the their observa-
tion noises. Concretely, the landmark, occlusion (occ), cover
(cov), and eye openness (eye) branches (subscripted by lm,
occ, cov, and eye, respectively) predict (y′occ ∈ [0, 1]4, σocc ∈
R4
≥0), (y′cov ∈ [0, 1]3, σcov ∈ R3

≥0), (y′eye ∈ [0, 1], σeye ∈
R≥0), and (Y ′lm ∈ [0, 1]Wlm×Hlm×3, Slm ∈ RWlm×Hlm×3

≥0 ),
respectively.

2.1.3. Network Architecture

The proposed network architecture is shown in Fig. 2. The
input image X is fed into a CNN base network Fbase :
R160×160×3 → Rwb×hb×cb . The output of the base network,
Fbase(X), flows through the operations, Cshar, consisting of
shared convolution layer followed by ReLu and batch nor-
malization, yielding Z = Cshar(Fbase(X)), which is the
input to the succeeding detection tasks, where the computa-
tions are carried out through functions Flm, Focc, Fcover,
and Feye, respectively, defined as follows (* denotes either



occ, cov, eye):

Flm = Clm,2(Clm,1(Z)), (1)
F∗ = FC∗(O(Z)), (2)

where O(·) is the global average pooling used in [11]. Flm,
the predictions in the landmark branch is defined by convo-
lutional layers Clm,1 and Clm,2, in which the latter outputs
Y ′lm and Slm. FCocc, FCcov , and FCeye are fully-connected
layers with eight, six, and two output neurons, respectively.
Among the outputs of each FC∗, the first half of neurons are
the logit values followed by the sigmoid activation functions
for estimating the class probabilities. The second half of neu-
rons are the values which are then activated by softplus func-
tion [12] that enforces positiveness for estimating the standard
deviations of the class probabilities. In the following subsec-
tion, we formulate the losses for the different tasks.

2.1.4. Losses with Aleatoric Uncertainty

The model is learned by minimizing L, the sum of the
weighted losses, i.e.

L = αoccLocc + αcovLcov + αeyeLeye + αlmLlm, (3)

where each loss term for each task is introduced as follows.
Multi-Label Losses: We formulate the multi-label classifi-
cation problem as the composition of cocc = 4, ccov = 3,
and ceye = 1 binary classification problem(s) for occlusion,
cover, eye openness detection tasks, respectively. c∗ is the
number of classes in the corresponding detection task. This
allows one to easily extend the classification loss with het-
eroscedastic aleatoric uncertainty proposed in [10] to multi-
label classification tasks. Concretely, given a target vector
y∗ = [y∗,i]i=1,...,c∗ , we apply one-hot transform on y∗ to
obtain Y∗ = [yT∗,i]i=1,...,c∗ ∈ Rc∗×2, where yT∗,i = [1, 0] if
y∗,i = 0, otherwise, yT

∗,i = [0, 1]. Likewise, we define a
vector of predicted logit values as f∗ = [f∗,i]i=1,...,c∗ , where

y′∗ = σ(f∗) = [σ(f∗,i)]i=1,...,c∗ , (4)

σ(·) is the sigmoid function, and y′∗ are defined in Sec. 2.1.2.
Next, one can transform f∗,i into a matrix, F∗ = [fT∗,i]i=1,...,c∗ ,
where fT∗,i = [−f∗,i, f∗,i].

To compute the loss with aleatoric uncertainty, one gener-
ates N noisy logit outputs ŷt∗ from f∗ for t = 1, ..., N , where

ŷt
∗ = f∗ + σ∗ε

t, εt ∼ N (0, 1), ŷt∗ = [ŷt∗,i]i=1,...,c∗ . (5)

From Eq. (5), one can apply the transformation applied to
f∗,i as described above to obtain Ŷ t

∗ = [ŷtT
∗,i]i=1,...,c∗ , ŷtT∗,i =

[−ŷt∗,i, ŷt∗,i]. Then one can compute the multi-label loss per
sample with aleatoric uncertainty using

L∗ = − log
1

N

N∑
t=1

1

c∗

c∗∑
i=1

exp
(
yT∗,i · ŷ

tT
∗,i−

log(exp(−ŷt∗,i) + exp(ŷt∗,i))
)
. (6)

Auxiliary Loss on Facial Landmark: Adding an auxiliary
loss Llm defined over facial landmarks allows the model to
learn to see the facial features. In addition, we argue that
having the landmark detection results available is useful for
model diagnosis as shown later in the experiments. The land-
mark loss calculation is exactly the same as the other tasks
except that one has to flatten Y ′lm and Ylm before feeding
them through the computations in Eqs. (5) and (6).

3. EXPERIMENTS AND RESULTS

3.1. Dataset

To the best of our knowledge, there does not exist any pub-
licly accessible dataset similar to YunInfants that we collected
from over a hundred users under their consent. Table 1 shows
the data statistics. YunInfants, containing both day and night-
vision head images, is recorded in home environments with
the camera pointing to the crib. The images greatly vary in
head poses, lighting conditions, and sometimes suffer from
motion blur. Most of the subjects (i.e. infants) are Asian.

3.2. Network Parameters

Inputs: All input images are resized to a fixed size of
160 × 160 × 3. The width and height of the ground-truth
landmark maps are set to be (Wlm, Hlm) = (10, 10).
Hyperparameters: The base CNN network we adopt is
MobileNetV2 [13] for computational efficiency. We extract
features from the 14th convolution layer, reducing the size
to 1

16 of the original image in both width and height. This
gives us the feature maps of size 10 × 10 × 96. The weights
(αocc, αcov, αeye, αlm) used to define the total loss in Eq. (3)
are set to be (10, 1, 1, 1). We set T = 25 used in Eq. (6)
throughout all the experiments that require computing the
losses that capture data-dependent uncertainty. All the mod-
els are trained with 130k batches (50 images / batch), and the
best model of each method used in the test phase is picked
according to the average validation accuracy (in terms of the
F1-score) at 90k, 100k, ..., and 130k batches.

3.3. Experiments

Here we study the effectiveness of the proposed method
by comparing the models in the multi-task learning setting
against those in the single-task setting, and the models con-
sidering uncertainty against those not. Though other metrics
measuring the multi-label task are available, we report the
F1-scores (i.e. the harmonic mean of precision and recall)
on all the classes in each task in Table 2 to allow analyzing
individual classification results. F1-score is adopted here to
address the imbalanced class distributions as shown in Ta-
ble 1. Comparing single-task models, we find that they are on
a par with each other across the three tasks, no matter if they



Table 1. Statistics of the training, validation, and test data.
# of images in train/val/test splits: 12850/3211/3655. The numbers in each cell show the statistics of these splits.

% occl. eye eyes nose mouth % cover. eye nose mouth % eye
open.

eye
37/38/38 21/21/15 38/38/32 58/58/54 12/13/13 21/21/24 34/35/39 22/19/20

Table 2. Comparison on F1-scores obtained from different models on three tasks: occlusion (”o”), cover (”c”), and eye
openness (”e”) detection tasks. The models vary with: 1) whether it is of single-task (presented in the first two rows), where
it is optimized solely on selected tasks, or multi-task (presented in the last four rows), where it is optimized on all the tasks,
2) whether Bayesian auxiliary landmark loss (”baux”) is employed, and 3) whether the losses are those consider uncertainty
(”bayes”) or regular cross-entropy losses (”xent”) used for measuring classification errors.

occlusion cover eye
openness

all tasks
F1-score (%) eye eyes nose mouth avg. eye nose mouth avg. avg.
{o,c,e}+baux 80.71 75.64 83.24 89.97 82.39 69.52 78.01 81.11 76.21 82.56 80.39

{o,c,e}+baux+bayes 80.01 72.06 84.09 89.63 81.45 70.78 77.12 80.91 76.27 83.20 80.31
o+c+e+bayes 79.96 76.76 83.93 90.14 82.70 72.71 78.72 81.50 77.64 83.29 81.21
o+c+e+baux 80.26 75.02 83.56 90.00 82.23 71.17 79.00 81.76 77.31 84.51 81.35

o+c+e+baux+bayes 82.19 77.16 85.64 91.09 84.02 74.82 79.57 83.11 79.17 83.92 82.37

Fig. 3. Qualitative results on correctly classified examples.
Each row shows, firstly, the input image, secondly, from the
second to fourth columns, the landmark detection results for
eyes, nose, and mouth, respectively, and thirdly, from the fifth
to seventh columns, the predicted uncertainty maps for afore-
mentioned three facial parts respectively. The numbers in
landmark and uncertainty maps are the minimum and max-
imum in logit values and predicted standard deviations, re-
spectively. The labels for the image in each row are, from top
to bottom, ([0, 0, 1, 1], [0, 1, 1], 0), ([1, 1, 1, 1], [0, 0, 0], 0),
and ([1, 0, 1, 1], [0, 1, 1], 0), respectively. One can read these
tuples by referring to the labeling format defined in Fig. 1.

model uncertainty or not. One can observe the improvements
across tasks in the multi-task models listed. The multi-task
model trained with losses capturing uncertainty along with
the auxiliary landmark losses stably obtains the highest F1-
scores in nearly all tasks except in the eye openness detection
task. This demonstrates the effectiveness of the proposed
multi-task models. Fig. 3 shows that the proposed model is
capable of differentiating whether a facial part is occluded
or covered. From the same figure, one can also perceive that
the predicted landmark maps still produce higher logit values
around facial parts even under occlusion. In addition, smaller

uncertainty values clutter around the facial area while larger
uncertainty values are found in the background. This can be
explained by the fact that comparing to the areas that contain
targets, i.e. faces, the background areas are of greater visual
variability and the model cannot there be certain with its pre-
dictions. In other words, the facial landmark detection and
uncertainty maps combined act as a face detector which can
provide evident visual cues on which other relevant tasks can
hinge to make predictions.

4. CONCLUSIONS

This paper addressed detection problems with emphasis on
infant head images, including occlusion, cover, eye openness,
and landmark detection. We introduced YunInfants dataset
and propose a Bayesian deep learning framework trained with
the loss functions that consider uncertainties across different
detection tasks while utilizing the auxiliary landmark data
to further enhance the detection accuracy in terms of the
F1-score. The qualitative results on the collected YunInfants
dataset also show that the estimated uncertainties capture
meaningful signals from the head images.

This work can be extended in different directions. To
name one possibility, one can directly learn from the data how
to weigh different losses from multiple tasks as suggested in
[14]. In addition, we plan to add more tasks into the proposed
framework to fully exploit the benefit of learning the repre-
sentations shared across different, but relevant visual tasks.
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