
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Ghuman, Sukhpal Singh; Giaquinta, Emanuele; Tarhio, Jorma
Lyndon Factorization Algorithms for Small Alphabets and Run-Length Encoded Strings

Published in:
Algorithms

DOI:
10.3390/a12060124

Published: 01/06/2019

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Ghuman, S. S., Giaquinta, E., & Tarhio, J. (2019). Lyndon Factorization Algorithms for Small Alphabets and
Run-Length Encoded Strings. Algorithms, 12(6), Article 124. https://doi.org/10.3390/a12060124

https://doi.org/10.3390/a12060124
https://doi.org/10.3390/a12060124


algorithms

Article

Lyndon Factorization Algorithms for Small Alphabets
and Run-Length Encoded Strings †

Sukhpal Singh Ghuman 1, Emanuele Giaquinta 2 and Jorma Tarhio 3,*
1 Faculty of Applied Science & Technology, Sheridan College, 7899 McLaughlin Road,

Brampton, ON L6Y 5H9, Canada; sukhpal.ghuman@sheridancollege.ca
2 F-Secure Corporation, P.O.B. 24, FI-00181 Helsinki, Finland; emanuele.giaquinta@f-secure.com
3 Department of Computer Science, Aalto University, P.O.B. 15400, FI-00076 Aalto, Finland
* Correspondence: jorma.tarhio@aalto.fi
† This paper is an extended version of our paper: Ghuman, S.S.; Giaquinta, E.; Tarhio, J. Alternative

algorithms for Lyndon factorization. In Proceedings of the Prague Stringology Conference 2014, Prague,
Czech Republic, 1–3 September 2014; pp. 169–178.

Received: 24 May 2019; Accepted: 17 June 2019; Published: 21 June 2019
����������
�������

Abstract: We present two modifications of Duval’s algorithm for computing the Lyndon factorization
of a string. One of the algorithms has been designed for strings containing runs of the smallest
character. It works best for small alphabets and it is able to skip a significant number of characters
of the string. Moreover, it can be engineered to have linear time complexity in the worst case.
When there is a run-length encoded string R of length ρ, the other algorithm computes the Lyndon
factorization of R in O(ρ) time and in constant space. It is shown by experimental results that the
new variations are faster than Duval’s original algorithm in many scenarios.

Keywords: Lyndon factorization; string algorithms; run-length encoding

1. Introduction

A string w is a rotation of another string w′ if w = uv and w′ = vu, for some strings u
and v. A string is a Lyndon word if it is lexicographically smaller than all its proper rotations.
Chen, Fox and Lyndon [1] introduced the unique factorization of a string in Lyndon words such
that the sequence of factors is nonincreasing according to the lexicographical order. The Lyndon
factorization is a key structure in a method for sorting the suffixes of a text [2], which is applied in the
construction of the Burrows-Wheeler transform and the suffix array, as well as in the bijective variant of
the Burrows-Wheeler transform [3,4]. The Burrows-Wheeler transform is an invertible transformation
of a string, based on sorting of its rotations, while the suffix array is a lexicographically sorted array of
the suffixes of a string. They are the groundwork for many indexing and data compression methods.

Duval’s algorithm [5] computes the Lyndon factorization in linear time and in constant space.
Various other solutions for computing the Lyndon factorization have been proposed in the past.
A parallel algorithm [6] was presented by Apostolico and Crochemore, while Roh et al. described an
external memory algorithm [7]. Recently, I et al. and Furuya et al. introduced algorithms to compute the
Lyndon factorization of a string given in the grammar-compressed form and in the LZ78 encoding [8,9].

In this paper, we present two new variations of Duval’s algorithm. The paper is an extended
version of the conference paper [10]. The first algorithm has been designed for strings containing runs
of the smallest character. It works best for small alphabets like the DNA alphabet {a, c, g, t} and it
is able to skip a significant portion of the string. The second variation works for strings compressed
with run-length encoding. In run-length encoding, maximal sequences in which the same data value
occurs in many consecutive data elements (called runs) are stored as a pair of a single data value and a
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count. When there is a run-length encoded string R of length ρ, our algorithm computes the Lyndon
factorization of R in O(ρ) time and in constant space. This variation is thus preferable to Duval’s
algorithm when the strings are stored or maintained with run-length encoding. In our experiments,
the new algorithms are considerably faster than the original one in the case of small alphabets, for both
real and simulated data.

The rest of the paper is organized as follows. Section 2 defines background concepts Section 3
presents Duval’s algorithm, Sections 4 and 5 introduce our variations of Duval’s algorithm, Section 6
shows the results of our practical experiments, and the discussion of Section 7 concludes the article.

2. Basic Definitions

Let Σ be a finite ordered alphabet of σ symbols and let Σ∗ be the set of words (strings) over
Σ ordered by lexicographic order. In this paper, we use the terms string, sequence, and word
interchangeably. The empty word ε is a word of length 0. Let Σ+ be equal to Σ∗ \ {ε}. Given a
word w, we denote with |w| the length of w and with w[i] the i-th symbol of w, for 0 ≤ i < |w|.
The concatenation of two words u and v is denoted by uv. Given two words u and v, v is a substring
of u if there are indices 0 ≤ i, j < |u| such that v = u[i]...u[j]. If i = 0 (j = |u| − 1) then v is
a prefix (suffix) of u. The substring u[i]...u[j] of u is denoted by u[i..j], and for i > j u[i..j] = ε.
We denote by uk the concatenation of k u’s, for u ∈ Σ+ and k ≥ 1. The longest border of a word
w, denoted with β(w), is the longest proper prefix of w which is also a suffix of w. Let lcp(w, w′)
denote the length of the longest common prefix of words w and w′. We write w < w′ if either
lcp(w, w′) = |w| < |w′|, i.e., if w is a proper prefix of w′, or if w[lcp(w, w′)] < w′[lcp(w, w′)]. For any
0 ≤ i < |w|, ROT(w, i) = w[i..|w| − 1]w[0..i− 1] is a rotation of w. A Lyndon word is a word w such
that w < ROT(w, i), for 1 ≤ i < |w|. Given a Lyndon word w, the following properties hold:

1. |β(w)| = 0;
2. either |w| = 1 or w[0] < w[|w| − 1].

Both properties imply that no word ak, for a ∈ Σ, k ≥ 2, is a Lyndon word. The following result is
due to Chen, Fox and Lyndon [11]:

Theorem 1. Any word w admits a unique factorization CFL(w) = w1, w2, . . . , wm, such that wi is a Lyndon
word, for 1 ≤ i ≤ m, and w1 ≥ w2 ≥ . . . ≥ wm.

The interval of positions in w of the factor wi in CFL(w) = w1, w2, . . . , wm is [ai, bi], where
ai = ∑i−1

j=1 |wj|, bi = ∑i
j=1 |wj| − 1, for i = 1, . . . , m. We assume the following property:

Property 1. The output of an algorithm that, given a word w, computes the factorization CFL(w) is the
sequence of intervals of positions of the factors in CFL(w).

The run-length encoding (RLE) of a word w, denoted by RLE(w), is a sequence of pairs (runs)

〈(c1, l1), (c2, l2, ), . . . , (cρ, lρ)〉 such that ci ∈ Σ, li ≥ 1, ci 6= ci+1 for 1 ≤ i < ρ, and w = cl1
1 cl2

2 . . . c
lρ
ρ .

The interval of positions in w of the run (ci, li) is [arle
i , brle

i ] where arle
i = ∑i−1

j=1 lj, brle
i = ∑i

j=1 lj − 1.

3. Duval’s Algorithm

In this section we briefly describe Duval’s algorithm for the computation of the Lyndon
factorization of a word. Let L be the set of Lyndon words and let

P = {w | w ∈ Σ+ and wΣ∗ ∩ L 6= ∅} ,

be the set of nonempty prefixes of Lyndon words. Let also P′ = P ∪ {ck | k ≥ 2}, where c is the
maximum symbol in Σ. Duval’s algorithm is based on the following Lemmas, proved in [5]:
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Lemma 1. Let w ∈ Σ+ and w1 be the longest prefix of w = w1w′ which is in L. We have CFL(w) =

w1CFL(w′).

Lemma 2. P′ = {(uv)ku | u ∈ Σ∗, v ∈ Σ+, k ≥ 1 and uv ∈ L}.

Lemma 3. Let w = (uav′)ku, with u, v′ ∈ Σ∗, a ∈ Σ, k ≥ 1 and uav′ ∈ L. The following propositions hold:

1. For a′ ∈ Σ and a > a′, wa′ /∈ P′;
2. For a′ ∈ Σ and a < a′, wa′ ∈ L;
3. For a′ = a, wa′ ∈ P′ \ L.

Lemma 1 states that the computation of the Lyndon factorization of a word w can be carried
out by computing the longest prefix w1 of w = w1w′ which is a Lyndon word and then recursively
restarting the process from w′. Lemma 2 states that the nonempty prefixes of Lyndon words are all
of the form (uv)ku, where u ∈ Σ∗, v ∈ Σ+, k ≥ 1 and uv ∈ L. By the first property of Lyndon words,
the longest prefix of (uv)ku which is in L is uv. Hence, if we know that w = (uv)kuav′, (uv)ku ∈ P′ but
(uv)kua /∈ P′, then by Lemma 1 and by induction we have CFL(w) = w1w2 . . . wk CFL(uav′), where
w1 = w2 = . . . = wk = uv. For example, if w = abbabbaba, we have CFL(w) = abb abb CFL(aba),
since abbabbab ∈ P′ while abbabbaba /∈ P′.

Suppose that we have a procedure LF-NEXT(w, k) which computes, given a word w and an
integer k, the pair (s, q) where s is the largest integer such that w[k..k + s− 1] ∈ L and q is the largest
integer such that w[k + is..k + (i + 1)s− 1] = w[k..k + s− 1], for i = 1, . . . , q− 1. The factorization
of w can then be computed by iteratively calling LF-NEXT starting from position 0. When a given
call to LF-NEXT returns, the factorization algorithm outputs the intervals [k + is, k + (i + 1)s − 1],
for i = 0, . . . , q− 1, and restarts the factorization at position k + qs. Duval’s algorithm implements
LF-NEXT using Lemma 3, which explains how to compute, given a word w ∈ P′ and a symbol
a ∈ Σ, whether wa ∈ P′, and thus makes it possible to compute the factorization using a left to
right parsing. Note that, given a word w ∈ P′ with |β(w)| = i, we have w[0..|w| − i − 1] ∈ L
and w = (w[0..|w| − i − 1])qw[0..r − 1] with q = b |w||w|−i c and r = |w| mod (|w| − i). For example,

if w = abbabbab, we have |w| = 8, |β(w)| = 5, q = 2, r = 2 and w = (abb)2ab. The code of Duval’s
algorithm is shown in Figure 1. The algorithm has O(|w|)-time and O(1)-space complexity.

LF-DUVAL(w)
1. k← 0
2. while k < |w| do
3. (s, q)← LF-NEXT(w, k)
4. for i← 1 to q do
5. output (k, k + s− 1)
6. k← k + s

LF-NEXT(w, k)
1. i← k + 1
2. j← k + 2
3. while TRUE do
4. if j = |w|+ 1 or w[j− 1] < w[i− 1] then
5. return(j− i, bi/(j− i)c)
6. else
7. if w[j− 1] > w[i− 1] then
8. i← k + 1
9. else

10. i← i + 1
11. j← j + 1

Figure 1. Duval’s algorithm to compute the Lyndon factorization of a string.

The following is an alternative formulation of Duval’s algorithm by I et al. [8]:

Lemma 4. Let j > 0 be any position of a string w such that w < w[i..|w| − 1] for any 0 < i ≤ j and
lcp(w, w[j..|w| − 1]) ≥ 1. Then, w < w[k..|w| − 1] also holds for any j < k ≤ j + lcp(w, w[j..|w| − 1]).

Lemma 5. Let w be a string with CFL(w) = w1, w2, . . . , wm. It holds that |w1| = min{j | w[j..|w| − 1]
< w} and w1 = w2 = . . . = wq = w[0..|w1| − 1], where q = 1 + blcp(w, w[|w1|..|w| − 1])/|w1|c.
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For example, if w = abbabbaba, we have min{j | w[j..8] < w} = 3, lcp(w, w[3..8]) = 5, and q = 2.
Based on these Lemmas, the procedure LF-NEXT can be implemented by initializing j ← k + 1 and
executing the following steps: (1) compute h← lcp(w[k..|w| − 1], w[j..|w| − 1]). (2) if j + h < |w| and
w[k + h] < w[j + h] set j ← j + h + 1 and repeat step 1; otherwise return the pair (j, 1 + bh/jc). It is
not hard to verify that, if the lcp values are computed using symbol comparisons, then this procedure
corresponds to the one used by Duval’s original algorithm.

4. Improved Algorithm for Small Alphabets

Let w be a word over an alphabet Σ with CFL(w) = w1, w2, . . . , wm and let c̄ be the smallest
symbol in Σ. Suppose that there exists k ≥ 2, i ≥ 1 such that c̄k is a prefix of wi. If the last symbol
of w is not c̄, then by Theorem 1 and by the properties of Lyndon words, c̄k is a prefix of each of
wi+1, wi+2, . . . , wm. This property can be exploited to devise an algorithm for Lyndon factorization
that can potentially skip symbols. Note that we assume Property 1, i.e., the output of the algorithm
is the sequence of intervals of the factors in CFL(w), as otherwise we have to read all the symbols of
w to output CFL(w). Our algorithm is based on the alternative formulation of Duval’s algorithm by
I et al. [8]. Given a set of strings P , let OccP (w) be the set of all (starting) positions in w corresponding
to occurrences of the strings in P . We start with the following Lemmas:

Lemma 6. Let w be a word and let s = max{i | w[i] > c̄} ∪ {−1}. Then, we have CFL(w) =

CFL(w[0..s])CFL(c̄(|w|−1−s)).

Proof. If s = −1 or s = |w| − 1 the Lemma plainly holds. Otherwise, Let wi be the factor in CFL(w)

such that s belongs to [ai, bi], the interval of wi. To prove the claim we have to show that bi = s.
Suppose by contradiction that s < bi, which implies |wi| ≥ 2. Then, wi[|wi| − 1] = c̄, which contradicts
the second property of Lyndon words.

For example, if w = abaabaabbaabaa, we have CFL(w) = CFL(abaabaabbaab) CFL(aa).

Lemma 7. Let w be a word such that c̄c̄ occurs in it and let s = min Occ{c̄c̄}(w). Then, we have CFL(w) =

CFL(w[0..s− 1])CFL(w[s..|w| − 1]).

Proof. Let wi be the factor in CFL(w) such that s belongs to [ai, bi], the interval of wi. To prove the claim
we have to show that ai = s. Suppose by contradiction that s > ai, which implies |wi| ≥ 2. If s = bi
then wi[|wi| − 1] = c̄, which contradicts the second property of Lyndon words. Otherwise, since wi
is a Lyndon word it must hold that wi < ROT(wi, s− ai). This implies at least that wi[0] = wi[1] = c̄,
which contradicts the hypothesis that s is the smallest element in Occ{c̄c̄}(w).

For example, if w = abaabaabbaab, we have CFL(w) = CFL(ab) CFL(aabaabbaab).

Lemma 8. Let w be a word such that w[0] = w[1] = c̄ and w[|w| − 1] 6= c̄. Let r be the smallest position in w
such that w[r] 6= c̄. Let also P = {c̄rc | c ≤ w[r]}. Then we have

b1 = min{s ∈ OccP (w) | w[s..|w| − 1] < w} ∪ {|w|} − 1 ,

where b1 is the ending position of factor w1.

Proof. By Lemma 5 we have that b1 = min{s | w[s..|w| − 1] < w} − 1. Since w[0..r − 1] = c̄r and
|w| ≥ r + 1, for any string v such that v < w we must have that either v[0..r] ∈ P , if |v| ≥ r + 1,
or v = c̄|v| otherwise. Since w[|w| − 1] 6= c̄, the only position s that satisfies w[s..|w| − 1] = c̄|w|−s is
|w|, corresponding to the empty word. Hence,

{s | w[s..|w| − 1] < w} = {s ∈ OccP (w) | w[s..|w| − 1] < w} ∪ {|w|}.
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For example, if w = aabaabbaab, we have P = {aaa, aab}, OccP (w) = {0, 3, 7} and b1 = 6.
Based on these Lemmas, we can devise a faster factorization algorithm for words containing runs of c̄.
The key idea is that, using Lemma 8, it is possible to skip symbols in the computation of b1, if a suitable
string matching algorithm is used to compute OccP (w). W.l.o.g. we assume that the last symbol of w is
different from c̄. In the general case, by Lemma 6, we can reduce the factorization of w to the one of its
longest prefix with last symbol different from c̄, as the remaining suffix is a concatenation of c̄ symbols,
whose factorization is a sequence of factors equal to c̄. Suppose that c̄c̄ occurs in w. By Lemma 7
we can split the factorization of w in CFL(u) and CFL(v) where uv = w and |u| = min Occ{c̄c̄}(w).
The factorization of CFL(u) can be computed using Duval’s original algorithm.

Concerning v, let r = min{i | v[i] 6= c̄}. By definition v[0] = v[1] = c̄ and v[|v| − 1] 6= c̄,
and we can apply Lemma 8 on v to find the ending position s of the first factor in CFL(v), i.e.,
min{i ∈ OccP (v) | v[i..|v| − 1] < v}, where P = {c̄rc | c ≤ v[r]}. To this end, we iteratively compute
OccP (v) until either a position i is found that satisfies v[i..|v| − 1] < v or we reach the end of the string.
Let h = lcp(v, v[i..|v| − 1]) , for a given i ∈ OccP (v). Observe that h ≥ r and, if v < v[i..|v| − 1], then,
by Lemma 4, we do not need to verify the positions i′ ∈ OccP (v) such that i′ ≤ i + h. The computation
of OccP (v) can be performed by using either an algorithm for multiple string matching for the set
of patterns P or an algorithm for single string matching for the pattern c̄r, since OccP (v) ⊆ Occc̄r (v).
Note that the same algorithm can also be used to compute min Occc̄c̄(w) in the first phase.

Given that all the patterns in P differ in the last symbol only, we can express P more succinctly
using a character class for the last symbol and match this pattern using a string matching algorithm
that supports character classes, such as the algorithms based on bit-parallelism. In this respect,
SBNDM2 [12], a variation of the BNDM algorithm [13] is an ideal choice, as it is sublinear on average.
However, this method is preferable only if r + 1 is less than or equal to the machine word size in bits.

Let h = lcp(v, v[s..|v| − 1]) and q = 1 + bh/sc. Based on Lemma 5, the algorithm then outputs
the intervals of the factors v[(i− 1)s..is− 1], for i = 1, . . . q, and iteratively applies the above method
on v′ = v[sq..|v| − 1]. It is not hard to verify that, if v′ 6= ε, then |v′| ≥ r + 1, v′[0..r − 1] = c̄ and
v′[|v′| − 1] 6= c̄, and so Lemma 8 can be used on v′. The code of the algorithm, named LF-SKIP,
is shown in Figure 2. The computation of the value r′ = min{i | v′[i] 6= c̄} for v′ takes advantage of the
fact that v′[0..r− 1] = c̄, so as to avoid useless comparisons.

LF-SKIP(w)
1. e← |w| − 1
2. while e ≥ 0 and w[e] = c̄ do
3. e← e− 1
4. l ← |w| − 1− e
5. w← w[0..e]
6. s← min Occ{c̄c̄}(w) ∪ {|w|}
7. LF-DUVAL(w[0..s− 1])
8. r ← 0
9. k← s

10. while s < |w| do
11. w← w[s..|w| − 1]
12. while w[r] = c̄ do
13. r ← r + 1
14. (s, q)← (|w|, 1)
15. P ← {c̄rc | c ≤ w[r]}
16. j← 0
17. for i ∈ OccP (w) : i > j do
18. h← lcp(w, w[i..|w| − 1])
19. if h = |w| − i or w[i + h] < w[h] then
20. (s, q)← (i, 1 + bh/ic)
21. break
22. j← i + h
23. for i← 1 to q do
24. output(k, k + s− 1)
25. k← k + s
26. s← s× q
27. for i← 1 to l do
28. output(e + i, e + i)

Figure 2. The algorithm to compute the Lyndon factorization that can potentially skip symbols.
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If the total time spent for the iteration over the sets OccP (v) is O(|w|), the worst case time
complexity of LF-SKIP is linear. To see why, it is enough to observe that the positions i for which
LF-SKIP verifies if v[i..|v| − 1] < v are a subset of the positions verified by the original algorithm.
Indeed, given a string w satisfying the conditions of Lemma 8, for any position i ∈ OccP there is no
i′ ∈ {0, 1, . . . , |w| − 1} \OccP such that i′ + 1 ≤ i ≤ i′ + lcp(w, w[i′..|w| − 1]). Hence, the only way
Duval’s algorithm can skip a position i ∈ OccP using Lemma 4 is by means of a smaller position i′

belonging to OccP , which implies that the algorithms skip or verify the same positions in OccP .

5. Computing the Lyndon Factorization of a Run-Length Encoded String

In this section we present an algorithm to compute the Lyndon factorization of a string given
in RLE form. The algorithm is based on Duval’s original algorithm and on a combinatorial property
between the Lyndon factorization of a string and its RLE, and has O(ρ)-time and O(1)-space complexity,
where ρ is the length of the RLE. We start with the following Lemma:

Lemma 9. Let w be a word over Σ and let w1, w2, . . . , wm be its Lyndon factorization. For any 1 ≤ i ≤
|RLE(w)|, let 1 ≤ j, k ≤ m, j ≤ k, such that arle

i ∈ [aj, bj] and brle
i ∈ [ak, bk]. Then, either j = k or

|wj| = |wk| = 1.

Proof. Suppose by contradiction that j < k and either |wj| > 1 or |wk| > 1. By definition of j, k,
we have wj ≥ wk. Moreover, since both [aj, bj] and [ak, bk] overlap with [arle

i , brle
i ], we also have

wj[|wj| − 1] = wk[0]. If |wj| > 1, then, by definition of wj, we have wj[0] < wj[|wj| − 1] = wk[0].
Instead, if |wk| > 1 and |wj| = 1, we have that wj is a prefix of wk. Hence, in both cases we obtain
wj < wk, which is a contradiction.

The consequence of this Lemma is that a run of length l in the RLE is either contained in one factor
of the Lyndon factorization, or it corresponds to l unit-length factors. Formally:

Corollary 1. Let w be a word over Σ and let w1, w2, . . . , wm be its Lyndon factorization. Then, for any
1 ≤ i ≤ |RLE(w)|, either there exists wj such that [arle

i , brle
i ] is contained in [aj, bj] or there exist li factors

wj, wj+1, . . . , wj+li−1 such that |wj+k| = 1 and aj+k ∈ [arle
i , brle

i ], for 0 ≤ k < li.

This property can be exploited to obtain an algorithm for the Lyndon factorization that runs in
O(ρ) time. First, we introduce the following definition:

Definition 1. A word w is a LR word if it is either a Lyndon word or it is equal to ak, for some a ∈ Σ, k ≥ 2.
The LR factorization of a word w is the factorization in LR words obtained from the Lyndon factorization of w by
merging in a single factor the maximal sequences of unit-length factors with the same symbol.

For example, the LR factorization of cctgccaa is 〈cctg, cc, aa〉. Observe that this factorization is a
(reversible) encoding of the Lyndon factorization. Moreover, in this encoding it holds that each run in
the RLE is contained in one factor and thus the size of the LR factorization is O(ρ). Let L′ be the set
of LR words. Suppose that we have a procedure LF-RLE-NEXT(R, k) which computes, given an RLE
sequence R and an integer k, the pair (s, q) where s is the largest integer such that clk

k . . . clk+s−1
k+s−1 ∈ L′

and q is the largest integer such that clk+is
k+is . . . c

lk+(i+1)s−1
k+(i+1)s−1 = clk

k . . . clk+s−1
k+s−1, for i = 1, . . . , q− 1. Observe

that, by Lemma 9, clk
k . . . clk+s−1

k+s−1 is the longest prefix of clk
k . . . c

lρ
ρ which is in L′, since otherwise the run

(ck+s, lk+s) would span two factors in the LR factorization of clk
k . . . c

lρ
ρ . This implies that the pair (s, q)

returned by LF-RLE-NEXT(R, k) satisfies

LF-NEXT(clk
k . . . c

lρ
ρ , 0) =

{
(∑s−1

i=0 lk+i, q) if s > 1,

(1, lk) otherwise.
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Based on Lemma 1, the factorization of R can then be computed by iteratively calling LF-RLE-NEXT

starting from position 0. When a given call to LF-RLE-NEXT returns, the factorization algorithm outputs
the intervals [k + is, k + (i + 1)s− 1] in R, for i = 0, . . . , q− 1, and restarts the factorization at position
k + qs.

We now present the LF-RLE-NEXT algorithm. Analogously to Duval’s algorithm, it reads the RLE
sequence from left to right maintaining two integers, j and `, which satisfy the following invariant:

clk
k . . . c

lj−1
j−1 ∈ P′;

` =

|RLE(β(clk
k . . . c

lj−1
j−1))| if j− k > 1,

0 otherwise.

(1)

The integer j, initialized to k + 1, is the index of the next run to read and is incremented at each

iteration until either j = |R| or clk
k . . . c

lj−1
j−1 /∈ P′. The integer `, initialized to 0, is the length in runs

of the longest border of clk
k . . . c

lj−1
j−1, if clk

k . . . c
lj−1
j−1 spans at least two runs, and equal to 0 otherwise.

For example, in the case of the word ab2ab2ab we have β(ab2ab2ab) = ab2ab and ` = 4. Let i = k + `.
In general, if ` > 0, we have

lj−1 ≤ li−1, lk ≤ lj−`,

β(clk
k . . . c

lj−1
j−1) = clk

k clk+1
k+1 . . . cli−2

i−2c
lj−1
i−1 = clk

j−`c
lj−`+1
j−`+1 . . . c

lj−2
j−2c

lj−1
j−1.

Note that the longest border may not fully cover the last (first) run of the corresponding prefix

(suffix). Such the case is for example for the word ab2a2b. However, since clk
k . . . c

lj−1
j−1 ∈ P′ it must hold

that lj−` = lk, i.e., the first run of the suffix is fully covered. Let

z =

{
1 if ` > 0∧ lj−1 < li−1,

0 otherwise.

Informally, the integer z is equal to 1 if the longest border of clk
k . . . c

lj−1
j−1 does not fully cover the

run (ci−1, li−1). By 1 we have that clk
k . . . c

lj−1
j−1 can be written as (uv)qu, where

q = b j−k−z
j−i c, r = z + (j− k− z) mod (j− i),

u = c
lj−r
j−r . . . c

lj−1
j−1, uv = clk

k . . . c
lj−`−1
j−`−1 = cli−r

i−r . . . c
lj−r−1
j−r−1,

uv ∈ L′

For example, in the case of the word ab2ab2ab, for k = 0, we have j = 6, i = 4, q = 2, r = 2.
The algorithm is based on the following Lemma:

Lemma 10. Let j, ` be such that invariant 1 holds and let s = i− z. Then, we have the following cases:

1. If cj < cs then clk
k . . . c

lj
j /∈ P′;

2. If cj > cs then clk
k . . . c

lj
j ∈ L′ and 1 holds for j + 1, `′ = 0;

Moreover, if z = 0, we also have:

3. If cj = ci and lj ≤ li, then clk
k . . . c

lj
j ∈ P′ and 1 holds for j + 1, `′ = `+ 1;

4. If cj = ci and lj > li, either cj < ci+1 and clk
k . . . c

lj
j /∈ P′ or cj > ci+1, clk

k . . . c
lj
j ∈ L′ and 1 holds for

j + 1, `′ = 0.
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Proof. The idea is the following: we apply Lemma 3 with the word (uv)qu as defined above and
symbol cj. Observe that cj is compared with symbol v[0], which is equal to ck+r−1 = ci−1 if z = 1 and
to ck+r = ci otherwise.

First note that, if z = 1, cj 6= ci−1, since otherwise we would have cj−1 = ci−1 = cj. In the first
three cases, we obtain the first, second and third proposition of Lemma 3, respectively, for the word

clk
k . . . c

lj−1
j−1cj. Independently of the derived proposition, it is easy to verify that the same proposition

also holds for clk
k . . . c

lj−1
j−1cm

j , m ≤ lj. Consider now the fourth case. By a similar reasoning, we have that

the third proposition of Lemma 3 holds for clk
k . . . cli

j . If we then apply Lemma 3 to clk
k . . . cli

j and cj, cj is
compared to ci+1 and we must have cj 6= ci+1 as otherwise ci = cj = ci+1. Hence, either the first (if

cj < ci+1) or the second (if cj > ci+1) proposition of Lemma 3 must hold for the word clk
k . . . cli+1

j .

We prove by induction that invariant 1 is maintained. At the beginning, the variables j and `

are initialized to k + 1 and 0, respectively, so the base case trivially holds. Suppose that the invariant

holds for j, `. Then, by Lemma 10, either clk
k . . . c

lj
j /∈ P′ or it follows that the invariant also holds for

j + 1, `′, where `′ is equal to `+ 1, if z = 0, cj = ci and lj ≤ li, and to 0 otherwise. When clk
k . . . c

lj
j /∈ P′

the algorithm returns the pair (j− i, q), i.e., the length of uv and the corresponding exponent.
The code of the algorithm is shown in Figure 3. We now prove that the algorithm runs in O(ρ)

time. First, observe that, by definition of LR factorization, the for loop at line 4 is executed O(ρ)

times. Suppose that the number of iterations of the while loop at line 2 is n and let k1, k2, . . . , kn+1

be the corresponding values of k, with k1 = 0 and kn+1 = |R|. We now show that the s-th call to
LF-RLE-NEXT performs less than 2(ks+1 − ks) iterations, which will yield O(ρ) number of iterations
in total. This analysis is analogous to the one used by Duval. Suppose that i′, j′ and z′ are the
values of i, j and z at the end of the s-th call to LF-RLE-NEXT. The number of iterations performed
during this call is equal to j′ − ks. We have ks+1 = ks + q(j′ − i′), where q = b j′−ks−z

j−i′ c, which implies
j′ − ks < 2(ks+1 − ks) + 1, since, for any positive integers x, y, x < 2bx/ycy holds.

LF-RLE(R)
1. k← 0
2. while k < |R| do
3. (s, q)← LF-RLE-NEXT(R, k)
4. for i← 1 to q do
5. output (k, k + s− 1)
6. k← k + s

LF-RLE-NEXT(R = 〈(c1, l1), . . . , (cρ, lρ)〉, k)
1. i← k
2. j← k + 1
3. while TRUE do
4. if i > k and lj−1 < li−1 then
5. z← 1
6. else z← 0
7. s← i− z
8. if j = |R| or cj < cs or
9. (cj = cs and lj > ls and cj < cs+1) then

10. return (j− i, b(j− k− z)/(j− i)c)
11. else
12. if cj > cs or lj > ls then
13. i← k
14. else
15. i← i + 1
16. j← j + 1

Figure 3. The algorithm to compute the Lyndon factorization of a run-length encoded string.

6. Experimental Results

We tested extensively the algorithms LF-DUVAL, LF-SKIP, and LF-RLE. In addition, we also tested
variations of LF-DUVAL and LF-SKIP, denoted as LF-DUVAL2 and LF-SKIP2. LF-DUVAL2 performs
an if-test

if w[j− 1] = w[i− 1] then
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which is always true in line 9 of LF-NEXT. This form, which is advantageous for compiler optimization,
can be justified by the formulation of the original algorithm [5] where there is a three branch test of
w[j− 1] and w[i− 1]. LF-SKIP2, after finding the first c̄r, searches for c̄r until c̄r+1 is found, whereas
LF-SKIP searches for c̄rx where x is a character class.

The experiments were run on Intel Core i7-4578U with 3 GHz clock speed and 16 GB RAM.
The algorithms were written in the C programming language and compiled with gcc 5.4.0 using the
O3 optimization level.

Testing LF-SKIP. At first we tested the variations of LF-SKIP against the variations of LF-DUVAL.
The texts were random sequences of 5 MB symbols. For each alphabet size σ = 2, 4, . . . , 256 we
generated 100 sequences with a uniform distribution, and each run with each sequence was repeated
500 times. The average run times are given in Table 1 which is shown in a graphical form in Figure 4.

Table 1. Run times in milliseconds on random sequences (5 MB) with a uniform distribution of a
varying alphabet size.

σ LF-DUVAL LF-DUVAL2 LF-SKIP LF-SKIP2

2 14.6 21.9 2.5 1.5
4 14.6 14.9 1.6 1.1
8 14.7 9.1 1.3 1.1

16 14.7 6.4 1.3 1.2
32 14.7 5.0 1.4 1.6
64 14.7 4.3 1.7 2.3
128 14.7 4.0 2.0 3.2
192 14.6 3.8 1.7 3.7
256 14.6 3.8 2.6 4.1

 5

 10

 15

 20

 25

 1  2  4  8  16  32  64  128  256

R
u
n
 t

im
e
 (

m
s)

Alphabet size

LF-DUVAL
LF-DUVAL2

LF-SKIP
LF-SKIP2

Figure 4. Comparison of the algorithms on random sequences (5 MB) with a uniform distribution of a
varying alphabet size.

LF-SKIP was faster than the best variation of LF-DUVAL for all tested values of σ. The speed-up
was significant for small alphabets. LF-SKIP2 was faster than LF-SKIP for σ ≤ 16 and slower for
σ > 16.

The speed of LF-DUVAL did not depend on σ. LF-DUVAL2 became faster when the size of the
alphabet grew. For large alphabets LF-DUVAL2 was faster than LF-DUVAL and for small alphabets
the other way round. In additional refined experiments, σ = 5 was the threshold value. When we
compiled LF-DUVAL and LF-DUVAL2 without optimization, both of the variations behaved in a similar
way. So the better performance of LF-DUVAL2 for large alphabets is due to compiler optimization,
possibly by cause of branch prediction.
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We tested the variations of LF-SKIP also with longer random sequences of four characters up to
500 MB. The average speed did not essentially change when the sequence became longer.

In addition, we tested LF-SKIP and LF-SKIP2 with real texts. At first we did experiments with
texts of natural language. Because runs are very short in a natural language and newline or some
other control character is the smallest character, the benefit of LF-SKIP or LF-SKIP2 was marginal.
If it were acceptable to relax the lexicographic order of the characters, some gain could be obtained.
For example, LF-SKIP achieved the speed-up of 2 over LF-DUVAL2 in the case of the KJV Bible when ‘l’
is the smallest character.

For the DNA sequence of fruitfly (15 MB), LF-SKIP2 was 20.3 times faster than LF-DUVAL.
For the protein sequence of the saccharomyces cerevisiae (2.9 MB), LF-SKIP2 was 8.7 times faster than
LF-DUVAL2. The run times on these biological sequences are shown in Table 2.

Table 2. Run times in milliseconds on two biological sequences.

LF-DUVAL LF-DUVAL2 LF-SKIP LF-SKIP2

DNA (15 MB) 44.7 52.2 3.0 2.2
Protein (2.9 MB) 8.5 3.4 0.50 0.39

Testing LF-RLE. To assess the performance of the LF-RLE algorithm, we tested it together with
LF-DUVAL, LF-DUVAL2 and LF-SKIP2 for random binary sequences of 5 MB with different probability
distributions, so as to vary the number of runs in the sequence. The running time of LF-RLE does not
include the time needed to compute the RLE of the sequence, i.e., we assumed that the sequence is
given in the RLE form, since otherwise other algorithms are preferable. For each test we generated
100 sequences, and each run with each sequence was repeated 500 times. The average run times are
given in Table 3 which is shown in a graphical form in Figure 5.

Table 3. Run times in milliseconds on random binary sequences (5 MB) with a skew distribution.

P(zero) LF-DUVAL LF-DUVAL2 LF-SKIP2 LF-RLE

0.05 14.6 5.7 1.4 0.70
0.10 14.7 7.8 1.1 1.3
0.20 14.7 12.4 1.0 2.4
0.30 14.8 17.4 1.2 3.2
· · ·
0.70 14.7 16.9 1.7 3.2
0.80 14.6 12.7 2.0 2.4
0.90 14.6 8.4 2.8 1.3
0.95 14.7 6.3 4.7 0.70

Figure 5. Comparison of the algorithms on random binary sequences (5 MB) with a skew distribution.
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Table 3 shows that LF-RLE was the fastest for distributions P(0) = 0.05, 0.9, and 0.95. Table 3
also reveals that LF-RLE and LF-DUVAL2 worked symmetrically for distributions of zero and one,
but LF-SKIP2 worked unsymmetrically which is due to the fact that LF-SKIP2 searches for the runs of
the smallest character which was zero in this case.

In our tests the run time of LF-DUVAL was about 14.7 ms for all sequences of 5 MB.
Thus LF-DUVAL is a better choice than LF-DUVAL2 for cases P(0) = 0.3 and 0.7.

7. Conclusions

We presented new variations of Duval’s algorithm for computing the Lyndon factorization
of a string. The first algorithm LF-SKIP was designed for strings containing runs of the smallest
character in the alphabet and it is able to skip a significant portion of the characters of the string.
The second algorithm LF-RLE is for strings compressed with run-length encoding and computes the
Lyndon factorization of a run-length encoded string of length ρ in O(ρ) time and constant space.
Our experimental results show that these algorithms can offer a significant speed-up over Duval’s
original algorithm. Especially LF-SKIP is efficient in the case of biological sequences.
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