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Abstract

Short-term scheduling of batch processes is a complex combinatorial problem with

remarkable impact on the total revenue of chemical plants. It consists of the optimal alloca-

tion of limited resources to tasks over time in order to manufacture final products follow-

ing given batch recipes. This article addresses the short-term scheduling of multipurpose

batch plants, using a mixed integer linear programming formulation based on the state-task

network representation. It employs both single-grid and multi-grid continuous-time repre-

sentations, derived from generalized disjunctive programming. In comparison to other

multigrid scheduling models in the literature, the proposed multi-grid model uses no big-M

constraints and leads to more compact mathematical models with strong linear relaxations,

which often results in shorter computational times. The single-grid counterpart of the for-

mulation is not as favorable, as it leads to weaker linear relaxations than the multi-grid

approach and is not capable of handling changeover time constraints.
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1 | INTRODUCTION

Short-term scheduling of multipurpose batch processes is a challenging

problem and has received increasing attention over the last 20 years. It

consists of allocating limited resources to tasks over time in order to

produce final products following given batch recipes in terms of some

specific performance criteria (e.g., minimum cost, makesapn or maxi-

mum profit). Different types of rigorous optimization approaches have

been proposed to study this problem, with most of them consisting of

solving a discrete- or continuous-time mixed integer linear program-

ming (MILP) formulation. Reviews can be found in References 1-5.

In discrete-time approaches, the time horizon of interest is divided

into a number of time slots of equal and fixed duration,6,7 with the

beginning and ending of tasks being associated with the boundaries of

these time intervals. In contrast, in - continuous-time representations

the length of time slots is selected by the optimization,8-11 thus leading

to a significant reduction in the number of decision variables. Though

continuous-time approaches will result in better solutions than their

discrete counterparts, they inevitably need tuning parameters

(e.g., number of time slots), thus requiring an iterative procedure to

find the optimal solutions.12 This is a big drawback because the initial

guess on the minimum number of time slots is hardly trivial, thus

involving, in most cases, solving a particular instance at least five times

(see, e.g., Table 6 in Reference 13). However, if the initial guess is accu-

rate enough, no more than two iterations are usually needed.

For all of the above, the time representation becomes a critical issue

for scheduling problems,14 with discrete-time being a particular case of

continuous-time.15 The main reason why the large majority of scheduling

models for batch plants have adopted a continuous-time representation is

that it is easier to cope with variable processing times. Two types of

continuous-time - models have been developed for multipurpose batch

plants: single-grid16-20 and multi-grid.21-29,33 In the former, events and time

slots are common for all units, while in the latter each unit has its own set

of time intervals, which is not shared with other units. Both formulations

have their pros and cons, but the remarkable advantage of multi-grid

continuous-time models is that they need fewer event points to generate

optimal solutions. In turn, the single-grid models can consider resource

constraints other than equipment, together with various storage policies.
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Most of the scheduling models for multipurpose batch plants can be

classified into two categories according to the process network representa-

tion: state-task network (STN)6,18,21-24,26-28 and resource-task network

(RTN),2,16,17,19,25,31 both facilitating the modeling by converting the real

plant entities into virtual entities. In contrast to the STN, the RTN represen-

tation has been shown to be very versatile due to the unified treatment of

resources, meaning that all resources are the same, regardless if they are

equipments, materials, and utilities. The first MILP scheduling model based

on the STN for batch plants was presented by Kondili et al.6 who relied on

the discrete-time representation where the length of the time slots is

determined from the greatest common factor among the processing times

involved in the problem. For the same problem, Ierapetritou and Floudas21

developed an efficient multi-grid continuous-time MILP formulation that

was then generalized to tackle continuous and semicontinuous processes

with multiple intermediate due dates.22,23 The models need fewer events

to discover the optimal solutions and can be orders of magnitude faster

than the single-grid models.17-20

In another work, Castro et al.19 presented a single-grid continuous-

time formulation based on the RTN that is suitable for both continuous

and batch plants. Compared to the earlier attempt by the authors,17

the formulation uses different sets of timing constraints that apart

from providing the optimal solutions in lower CPU times, lead to strong

linear relaxations. Shaik and co-workers26-28 introduced multi-grid

continuous-time models based on the work by Ierapetritou and

Floudas,21 which can handle both batch and continuous processes.

The main disadvantage of these models comes from allowing tasks to

be taken place over multiple events, which is achieved with the model

parameter Δn (=0, 1, 2, …), a limit on the maximum number of events

over which a task can span. For a new instance, it is not known which

value of Δn should be adopted, and, for example, switching Δn from

zero to one doubles the number of binary variables and constraints

(see, e.g., Table 7 in Reference 26). This is not the case for the multi-

grid continuous-time formulation by Susarla et al.29 who generalized

the model by Sundaramoorthy and Karimi20 to allow various types of

storage and wait policies for material states.

In addition to developing a wide range of MILP models, research on

the scheduling of multipurpose batch plants has also studied a variety of

solution methods. Velez et al.32 developed a constraint propagation algo-

rithm to account for the calculation of lower bounds on the number and

size of tasks necessary to meet given demand, which leads to reductions in

the computational requirements by orders of magnitude. Wu and

Ierapetritou33 used a decomposition method based on a heuristic approach

and Lagrangian relaxation to provide lower and upper bounds for the origi-

nal problem first introduced by Ierapetritou and Floudas.21 More recently,

Lee and Maravelias30 devised a three-stage optimization -framework, in

which the first stage uses a discrete-time model to find an approximate

solution, which then is mapped onto a continuous-time model. The final

stage uses a continuous-time linear programming (LP) model to obtain a

fairly accurate solution by refining the timing of events and batch sizes.

On the other hand, generalized disjunctive programming (GDP) is

becoming more popular, providing a high-level framework for model-

ing complex mixed integer programs.34-40 It is generally followed by

two formulations with complementary strengths: convex hull and big-

M reformulations. The former has been shown to always be at least as

tight as the big-M reformulation, but needs a couple more decision

variables and constraints. Maravelias and Grossmann18 are the first to

partly rely on a GDP-based formulation for the scheduling of batch

plants. The advantage is a tight formulation when minimizing the

makespan (see, e.g., tables 15–17 in Reference 13), which is a more

difficult performance criterion for scheduling problems.18

In this article, we develop a continuous-time MILP approach based

on the STN for the optimal scheduling of multipurpose batch plants.

Both single-grid and multi-grid approaches are addressed, which differ

only by their timing constraints. The proposed model uses a slot-based

approach, always leading to one more event point in ourmulti-grid model

compared with unit-specific event-based approaches developed by

Floudas and co-workers.21-26 This is because, in the slot-based

approaches when a task starts at a time point it does not finish at the

same time point. In order to ensure an efficient MILP formulation by

design, we rely on GDP for deriving the model constraints, applying con-

vex hull reformulations and converting logical propositions into integer

inequalities. Results show that the proposed multi-grid model is very effi-

cient computationally and leads to tighter linear relaxations.

2 | PROBLEM STATEMENT

This work addresses the short-term scheduling of multipurpose batch

plants with no resources other than materials and equipment units. Given

the problem data (including the processing time of tasks in units, material

inventories, and the available units for each task) and the production rec-

ipe through the STN, we aim to develop a continuous-timeMILP formula-

tion to optimally determine the sequence, timing, and size of tasks in each

equipment unit. We will use the idea of task decoupling, in which a task

that can be processed in several units is replaced by several tasks that

represent unique task–unit combinations (see Figure 1).

We adopt a continuous-time representation with both single and

multiple reference grids, featuring a set r 2 R time points and |R| − 1

time slots. In the single-grid case, the time slots are common for all

units whereas in multigrid option, each unit has its own set of time

intervals, which is not shared with other units. In other words, in the

multi-grid option the occurrences of each time point can vary across

different units. An example is event point r5 in the left hand side of

Figure 2. The time point r5 across unit J2 occurs at time 7.85 hr

whereas it locates at time 7.21 hr along the time axis of unit J3.

F IGURE 1 Task decoupling idea: Task i is replaced by two Tasks
i1 and i2 [Color figure can be viewed at wileyonlinelibrary.com]
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We use the binary variable Xi,r,r0 to indicate that task i is performed

during time interval r, r0½ �jr < r0 ≤ r +Δr , where Δr is a limit on the maximum

number of time slots over which task i can span (if Δr = 1, then tasks

can only last one time slot). For example, in the single-grid case in

Figure 2, task I8 spans over three time slots [r4, r5], [r5, r6] and [r6, r7],

starting at time point r4(6 hr) and ending at time point r7 (8 hr).

3 | MATHEMATICAL MODEL

In the mathematical formulation to be presented next, we rely on

GDP to derive the new MILP scheduling model for the multipurpose

batch plants. We first present the common constraints for the single-

grid (- SG) and the multi-grid (MG) models and then separately device

timing constraints. Finally, we incorporate intermediate due date con-

straints into the SG.

3.1 | Common constraints for the SG and MG models

3.1.1 | Allocation, batch size, and processing time

Let Xi, r, r0 be a binary variable indicating that task i 2 Ij is being

processed during time interval r, r0½ �jr < r0 ≤ r +Δr : According to - disjunc-

tion in Equation (1), in each equipment unit at most a single task can

be processed during the time interval r, r0½ �jr < r0 ≤ r +Δr . Let Vi, r, r

0represent the batch size of task i being processed during time interval

r, r0½ �jr < r0 ≤ r +Δr . The lower and upper limits on the batch size must be

taken into account in each unit. The processing time of task i during time

interval r, r0½ �jr < r0 ≤ r +Δr , that is, LRi, r, r0 is a linear function of batch size,

where cpi and vpi are the constant and variable terms for the processing

time of task i in unit j. We have thus the following disjunction:

_
−

i2 Ij

Xi, r, r0

vmin
i ≤Vi,r,r0 ≤ v

max
i

LRi, r, r0 = cpi + vpiVi, r, r0

2
64

3
75_

−

Xno task
r, r0

Vi,r,r0 =0, 8i2 Ij
LRi, r, r0 =0, 8i2 Ij

2
64

3
758j2 J, r, r0j

r < r0 ≤ r +Δr

ð1Þ

The convex hull reformulation of disjunction (1) gives rise to

Equations (2–4).

X
i2Ij

Xi, r, r0 ≤1, 8j2 J, r, r0jr < r0 ≤ r +Δr ð2Þ

vmin
i Xi,r,r0 ≤Vi,r,r0 ≤ v

max
i Xi,r,r0 8i2 Ij, j2 J, r, r0

��
r < r0 ≤ r +Δr ð3Þ

LRi,r,r0 = cpiXi,r,r0 + vpiVi,r,r0 8i2 Ij, j2 J, r, r0
��
r < r0 ≤ r +Δr ð4Þ

From Figure 3, for each unit only one task can start and finish

at each time point, as stated by the logic propositions (5) and (6).

Note that due to Equations (5) and (6), constraint (2) becomes

redundant. If task i 2 Ij is being performed during time inter-

val r, r0½ �jr +1< r0 ≤ r +Δr , the same or other tasks suitable in unit j cannot

be processed in any time intervals k, r00½ �jr < k ≤ r00 < t0 (Figure 4a) or

k, r00½ �jr < k < r00 < r0or k < r < r00 < r0 (Figure 4b) or k, r00½ �jr < k < r0 < r00 (Figure 4c),

as imposed by the logic proposition (7). Note that if a task is

performed in unit j during time intervals k, r00½ �jr < k ≤ r00 < r or

k, r00½ �jr < k < r00 < r0or k < r < r00 < r0 or k,t00½ �jr < k < r0 < r00 , the same or other tasks

cannot be performed in unit j during time interval r,r0½ �jr +1< r0 ≤ r +Δr .
These are also satisfied by Equation (7), since from the discrete math-

ematics we have (P) ¬Q)≡ (Q) ¬P).

_
−

i2 Ij

_
−

r0 2R

r < r0 ≤ r +Δr

Xi,r,r0 _
−
Xno i
r,r0 8j2 J, r 2R ð5Þ

_
−

i2 Ij

_
−

r 2R

r < r0 ≤ r +Δr

Xi,r,r0 _
−
Xno i
r,r0 8j2 J, r0 2R ð6Þ

Xi, r, r0 )¬ _
r00 2R

k < r
0 0
≤ k +Δr

Xi0 ,k, r0 0

0
BBBBB@

1
CCCCCA8i, i0 2 Ij ,r, r

0
,k2Rjr +1< r0 ≤ r +Δr,r +1≤ k,r0 ≥ k +1

ð7Þ

The above logic propositions lead to Equations (8–9).

F IGURE 2 Single-grid and multi-grid representations for the proposed continuous-time approach [Color figure can be viewed at
wileyonlinelibrary.com]
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X
r2R

r < r0 ≤ r +Δr

X
i2Ij

Xi,r,r0 ≤18j2 J, r0 2R ð8Þ

X
r02R

r < r0 ≤ r +Δr

X
i2Ij

Xi,r,r0 ≤18j2 J, r 2R ð9Þ

Xi,r, r0 +
X

k < r0 0 ≤ k +Δr

Xi0 ,k,r0 0 ≤18i, i0 2 Ij , r,r
0
,k2Rjr +1< r0 ≤ r +Δr, r +1≤ k, r0 ≥ k +1

ð10Þ

3.1.2 | Mass balance constraints

Let Fs, r be the excess amount of state s at time point r. Due to

Equation (11), Fs, r will be equal to Fs, r − 1 adjusted by the amounts

produced/ consumed by all tasks starting or ending at time point r.

The initial inventory of state s is a known parameter, f0s . Equa-

tion (12) imposes lower and upper bounds on the storage capacity of

state s.

Fs, r = f
0
s jr =1 + Fs, r−1jr > 1 +

X
i2Ips

ρpi,s
X
r02R

r0 < r ≤ r0 +Δr

Vi,r0 , r +
X
i2Ics

ρci,s
X
r02R

r < r0 ≤ r +Δr

Vi,r, r0 8s2 S,r 2R

ð11Þ

fmin
s ≤ Fs,r ≤ f

max
s 8s2 S,r 2R ð12Þ

3.1.3 | Meeting demand

Demands at states s 2 SM storing final products are enforced as a

hard constraint in Equation (13) indicating that the amount in the

state s at time point r = |R| must be at least as much as ds, the mini-

mum amount required by the market.

Fs,jRj ≥ ds, 8s2 SM ð13Þ

3.1.4 | Tightening constraint

Constraints (14) lead to generate tight LP-relaxations for both SG and

MG formulations, stating that the summation of the durations of the

tasks assigned to a specific unit should be smaller than or equal to the

time horizon.

F IGURE 4 Simple example illustrating the need for Equation (10) [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 3 In each unit, only one
task can start and finish at each time
point [Color figure can be viewed at
wileyonlinelibrary.com]
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http://wileyonlinelibrary.com


X
r02R

X
r2R

r < r0 ≤ r +Δr

X
i2Ij

LRi,r,r0 ≤ hmax8j2 J ð14Þ

3.2 | Timing constraints

Timing constraints are very crucial for continuous-time formulations.

They can have profound impact on the CPU time and even on the

solution quality. These will be demonstrated later in the result section.

3.2.1 | Timing constraints for the MG model

Let SRj, r be the time that unit j starts to perform a task at time point r. As

stated by Equation (15), the difference between the start time of unit j at

two time points r and r0 (r < r0 ≤ r + Δr) should be either equal to or

greater than the processing time of all tasks starting and ending at those

same time points in unit j. For different units linked to the same state s,

the start of unit j consuming state s, at time point r0 should be after the

activity duration of unit j0 feeding the same state during the time interval

r, r0½ �jr < r0 ≤ r +Δr , as stated in Equation (16).

SRj,r0 ≥ SRj,r +
X
i2Ij

LRi,r,r0 8j2 J, r, r0jr < r0 ≤ r +Δr ð15Þ

SRj,r0 ≥ SRj0 ,r +
X
i2Ij 0

LRi,r,r0 8j2 Jcs , j
0 2 Jps j 6¼ j0

� �
,s2 S, r, r0jr < r0 ≤ r +Δr ð16Þ

In short-term scheduling problems, the optimal production is to be

obtained for a given time horizon. Thus, the following time horizon

constraint should be considered.

SRj,r +
X
i2Ij

LRi,r,r0 ≤ hmax 8j2 J, r, r0 2Rjr < r0 ≤ r +Δr ð17Þ

Similar timing constraints can be defined for tasks instead of units,

as imposed by Equations (15') and (16'). Note, however, that these

alternative constraints lead to relatively weaker LP relaxations in most

cases than Equations (15) and (16).

SRi,r0 ≥ SRi0 ,r + LRi0 ,r,r0 8i, i0 2 Ij , j2 J, r,r0
��
r < r0 ≤ r +Δr ð15Þ

SRi,r0 ≥ SRi0 ,r + LRi0 ,r,r , 8i2 Ij , i
0 2 Ij0 , i2 Ics , i

0 2 Ips i 6¼ i, j 6¼ jð Þ,s2 S, r,r0
��
r < r0 ≤ r +Δr ð16Þ

3.2.2 | Timing constraints for the SG model

Let CRr be the absolute time of time point r. The difference between

CRr and CRr0 (r < r0 ≤ r + Δr) should be either equal to or greater than

the processing time of all tasks starting and ending at those same event

points. In addition, the absolute time of each time point must equal to

or less than the length of time horizon.

CRr0 −CRr ≥ LRi,r,r0 8i, r, r0 2Rjr < r0 ≤ r +Δr ð18Þ

CRr ≤ hmax 8r 2R ð19Þ

3.3 | Sequence-dependent cleaning for the MG
model

Changeovers occur when two different tasks are processed in the same

unit in consecutive process operations. The changeovers are often associ-

ated with changing the operating conditions or with the cleaning of the

equipment. If unit j is processing two different tasks i and i0during time

intervals r, r0½ �jr < r0 ≤ r +Δr and r0 0,k½ �jr0 ≤ r00 < k ≤ r0 +Δr , respectively, there will

be a changeover time of τi0 ,i at time point r 0 0 in unit j. We have thus

the following proposition and disjunction:

Xi, r, r0 ^ _
k2R

r00 < k ≤ r00 +Δr

Xi0 ,r0 0 ,k )Xchangeover
i, i0 ,r, r0 , r0 0 8i, i0 2 Ij i 6¼ i0ð Þ, j2 JM, r,r0, r0 0

2Rjr < r0 ≤ r +Δr, r0 ≤ r0 0 ð20Þ

_
−

i0

_
−

i

Xchangeover
i, i0 , r,r0 ,r0 0

SRj,r0 0 − SRj, r + LRi,r,r0
� �

≥ τi0 , i

" #
8i, i0

2 Ij i 6¼ i0ð Þ, j2 JM, r,r0, r0 0 2Rjr < r0 ≤ r +Δr,r0 ≤ r0 0 ð21Þ

The convex hull reformulation of the disjunction and the con-

version of the logic expression give rise to the following

constraints:

Xchangeover
i, i0 , r,r0 ,r0 0 ≥Xi,r,r0 +

X
k2R

r
0 0
< k ≤ r

0 0
+Δr

Xi0 ,r0 0 ,k −18i, i0 2 Ij i 6¼ i0ð Þ, j2 JM, r, r0, r0 0

2Rjr < r0 ≤ r +Δr, r0 ≤ r0 0
ð22Þ

SRj,r0 0 − SRj,r + LRi0 ,r,r0
� �

≥ τi0 ,iX
changeover
i,i0 ,r,r0 ,r0 0 8i, i0 2 Ij i 6¼ i0

� �
, j2 JM, r, r0 ,r0 0 2Rjr < r0 ≤ r +Δr,r0 ≤ r0 0

ð23Þ

We can now eliminate variables Xchangeover
i,i0 ,r,r0 ,r0 0 from the formulation

by combining Equations (22) and (23), giving rise to the following con-

straint (24):

SRj,r0 0 ≥ SRj,r + LRi, r,r0
� �

+ τi0 , i Xi,r, r0 +
X
k2R

r
0 0
< k ≤ r

0 0
+Δr

Xi0 ,r0 0 ,k −1

0
BBBB@

1
CCCCA8i, i0

2 Ij i 6¼ i0ð Þ, j2 JM, r, r0 , r0 0 2Rjr < r0 ≤ r +Δr,r0 ≤ r0 0 ð24Þ



3.4 | Objective function

Two alternative objective functions will be considered:

1. Maximum revenue. If we assume that all final products are sold at

the end of time horizon, the total revenue of the plant is calculated

by Equation (25)

max z=
X
s 2 SM

vsFs,jRj ð25Þ

The SG model for revenue maximization consists of Equations

(3, 4, 8–14, 18–19, and 25). The MG model for revenue maximization

consists of Equations (3–4, 8–17, 24, and 25).

2. Minimum makespan. The plant must satisfy the amount required

by the market in a shorter time.

min z=H ð26Þ

where the continuous variable H satisfies the following equations.

SRj,r +
X
i2Ij

LRi,r,r0 ≤H 8j2 J, r, r0 2Rjr < r0 ≤ r +Δr ð27Þ

CRr ≤H 8r 2R ð28Þ

Note that when minimizing the schedule makespan, the time hori-

zon parameter hmax has to be replaced by the continuous variable H in

the tightening constraint (14).

The SG model for makespan minimization consists of

Equations (3–4, 8–14, 18, 26, and 28). The MG model for makespan

minimization consists of Equations (3–4, 8–16, 24, and 26–27).

3.5 | Due date constraints

In this section, we will incorporate intermediate due date con-

straints into the SG model. The same constraints can be easily

extended for the MG model. Let us assume that state require-

ments linked to the markets (s 2 SM) need to be met within a few

predefined time periods t 2 T, with ht standing for the end of time

period t (h0 = 0 h and h|T| = hmax). The exclusive disjunction in

Equation (31) states that every time point in the grid must locate

in exactly one time period t 2 T. If time point r locates in period t,

its absolute time (CRr) should be within the time interval [ht

− 1, ht].

_
−

t2 T

Yr,t

ht−1 ≤CRr ≤ ht

� �
8r 2R ð29Þ

Equations (30 and 31) are obtained using the convex hull

reformulation of disjunction (29).

X
t2T

Yr,t =1, 8 r 2R ð30Þ

X
t2T

Yr, tht−1 ≤CRr ≤
X
t2T

Yr, tht,8 r 2R ð31Þ

If time point r is the last one located in time period t (i.e., Yr, t = 1

and Yr + 1, t = 0), the amount of material stored in state s should be as

large as ds, t, the minimum amount that the plant should produce

during the period t. Otherwise, the slack variables BRs, t, representing

the backorder of product at state s during the time interval [ht − 1,

ht], is activated in disjunction (33) and results in penalty costs. Note

that the term BRs, t − 1 inside the disjunction denotes the shortage of

state s during period t − 1 to be tardily met at period t.

Yr,t ^¬Yr +1,t )Y last
r,t 8t2T,r 2R ð32Þ

_
t

Y last
r,t

Fs, r +BRs, t−BRs, t−1 ≥
Xt

t02T
ds,t0

2
64

3
758 s2 SM,r 2R ð33Þ

The convex hull reformulation of the disjunction (33) and the con-

version of the logic expression (32) give rise to the following

constraints:

Y last
r,t ≥Yr,t−Yr +1,t, 8t2 T, r2R ð34Þ

Fs,r +BRs,t−BRs,t−1 ≥
Xt

t02T
ds,t0Y

last
r,t , 8s2 SM,t2 T,r 2R ð35Þ

Combining Equations (34) and (35), we have the following con-

straint (36):

Fs,r +BRs,t−BRs,t−1 ≥
Xt

t02T
ds,t0 Yr,t−Yr +1,tð Þ,8s2 SM,t2T, r 2R ð36Þ

From constraint (36), one can simply derive Equation (37), leading

to a slight reduction in the CPU time.

Fs,r ≥
X
t2T

ds,t−BRs,tð Þ 8s2 SM, r = jR j ð37Þ

Equation (38) maximizes the total revenue of the plant while

respecting the intermediate due dates needs.

max z=
X
s2SM

vsFs,jRj−
X
t2T

X
s2SM

bcsBRs,t ð38Þ

The SG model with the intermediate due date constraints consists

of Equations (3, 4, 8–14, 18–19, 30, 31, and 36–38).



4 | COMPUTATIONAL RESULTS

The performance of the proposed models (the SG and MG) is now com-

pared to two similar approaches from the literature, that is, to the single-

grid model of Maravelias and Grossmann,18 and to the multi-grid model

of Shaik and Floudas.26 To ensure a fair comparison, all models have

been implemented in GAMS 24.9.1 and solved using CPLEX 12.7.1

(using four threads in parallel, i.e., option threads = 0) and the computa-

tions are performed without prefixing any binary or continuous variables.

The hardware consists of a laptop with an Intel i5-7300U (2.60 GHz,

8 GB of RAM), running Windows 10, 64-bit operating system. The

termination criteria were either a relative optimality tolerance of 10−3

(based on Table 1) or a maximum computational time of 7,200 s.

We consider two benchmark example problems (Ex1-Ex2) tackled in

Shaik et al.13The STN representations of these examples can be found in

Figure 5. For these example problems we consider two different scheduling

horizons (H = 8 hr and H = 10 hr) and three different demand scenarios.

4.1 | Choosing optcr and threads options

Optcr or optimality tolerance in GAMS specifies a relative termination

tolerance for a global solver.41 The default option for optcr is 10−1

TABLE 1 Effect of optcr and threads
option in GAMS on solution quality and
CPU time

Optcr

Case 1 (Makespan minimization)

S&Fa (|N| = 26, Δn = 0) MG (|R| = 27, Δr = 1)

CPU (s) MILP (hr) RMILP (hr) CPU (s) MILP (hr) RMILP (hr)

Option threads = 0

10−1 3.28 47.01 44.4 1.01 47.49 44.8

10−2 135.46 47.01 44.4 2.67 47.01 44.8

10−3 133.01 47.01 44.4 5.21 47.01 44.8

10−4 221.28 47.01 44.4 7.82 47.01 44.8

10−5 224.86 47.01 44.4 7.23 47.01 44.8

10−6 226.26 47.01 44.4 7.03 47.01 44.8

Option threads = 1

10−1 1.00 47.64 44.4 0.76 48.55 44.8

10−2 247.56 47.01 44.4 2.95 47.01 44.8

10−3 260.26 47.01 44.4 50.89 47.01 44.8

10−4 275.01 47.01 44.4 64.98 47.01 44.8

10−5 281.82 47.01 44.4 65.29 47.01 44.8

10−6 366.63 47.01 44.4 64.64 47.01 44.8

Optcr

Case 2 (profit maximization)

S&Fa (|N| = 8, Δn = 1) MG (|R| = 9, Δr = 2)

CPU (s) MILP ($) RMILP ($) CPU (s) MILP ($) RMILP ($)

Option threads = 0

10−1 10.96 2,338.7 3,618.6 9.35 2,331.3 3,618.6

10−2 549.5 2,345.3 3,618.6 102.7 2,345.3 3,618.6

10−3 353.7 2,358.2 3,618.6 119.6 2,358.2 3,618.6

10−4 462.4 2,358.2 3,618.6 146.6 2,358.2 3,618.6

10−5 462.7 2,358.2 3,618.6 145.7 2,358.2 3,618.6

10−6 459.1 2,358.2 3,618.6 147.3 2,358.2 3,618.6

Option threads = 1

10−1 31.9 2,292.5 3,618.6 51.65 2,330.9 3,618.6

10−2 572.6 2,345.3 3,618.6 655.1 2,358.2 3,618.6

10−3 875.4 2,358.2 3,618.6 947.6 2,358.2 3,618.6

10−4 714.8 2,358.2 3,618.6 979.4 2,358.2 3,618.6

10−5 710.7 2,358.2 3,618.6 950.5 2,358.2 3,618.6

10−6 708.4 2,358.2 3,618.6 950.0 2,358.2 3,618.6

aShaik and Floudas.26



indicating that the objective value will be within 10% of the true

objective value. With different adjustments for the optcr value, differ-

ent objective values may be found and the solver will stop as soon as

it has found a feasible solution proven to be within the tolerance

specified by optcr. The threads option controls the number of CPU

cores to be used by a solver. The default value for threads is 1, which

means that the solver will use only one core and leave the rest free

for other tasks. The solver will use all available cores if threads option

is set to zero (option threads = 0).

To show the effect of optcr and threads on the CPU time and the

solution quality, we solve two cases, both -sharing the STN

representation of Ex 2. In the first case, the aim is to meet - product

demands at states S12 and S13 (dS12= 750 mass unit (mu), dS13=

750 mu) at a minimum makespan, while the second case aims at maxi-

mizing the revenue during the next 10 hr. As can be observed from

Table 1, different optcr values lead to different CPU times and almost

in all cases the smaller optcr value, the higher CPU time. Table 1 also

indicates that the threads option has profound impact on CPU times

and can affect the solution quality too. For instance, the proposed

model finds a solution of $2,345.3 for Case 2 in 102.7 s with option

threads = 0 and option optcr = 10−2, while it returns the global opti-

mum (2,358.2 $) in 655.1 s with the same optimality tolerance and

option threads = 1.

F IGURE 5 State task network representations for Ex1 and Ex2

TABLE 2 Computational results for Ex 1 using the SG model under revenue maximization

Event points CPU (s) Nodes Nonzeros Binary variables Total variables Eqs. MILP ($) RMILP ($)

Ex 1a (H = 8 hr)

M&G 5 0.23 0 3,157 80 496 1,095 1,498.56 1,730.8

SG 5 (Δr = 1) 0.04 0 580 32 147 212 1,498.56 1,730.8

5 (Δr = 2) 0.06 0 1,112 56 219 368 1,498.56 1,730.8

Ex 1b (H = 10 hr)

M&G 8 25.01 41,023 5,752 128 793 1,719 1,962.69 2,690.5

SG 8 (Δr = 1) 0.17 6,654 1,006 56 249 359 1,860.72 2,775.4

8 (Δr = 2) 6.50 31,511 2,090 104 393 671 1,958.99 2,775.6

8 (Δr = 3) 9.45 30,266 3,510 144 513 1,031 1,962.69 2,775.6

8 (Δr = 4) 10.87 41,209 5,166 176 609 1,399 1,962.69 2,775.6

Ex 2a (H = 8 hr)

M&G 7 7.50 14,730 6,728 154 946 2,076 1,583.44 2,560.6

SG 7 (Δr = 1) 0.50 743 1,198 66 297 436 1,274.48 2,750.9

7 (Δr = 2) 0.70 1,421 2,403 121 462 781 1,583.44 2,750.9

7 (Δr = 3) 0.76 1,421 1,379 165 594 1,157 1,583.44 2,750.9

Ex 2b (H = 10 hr)

M&G 10 7,200a 3,256,256 10,856 220 1,351 2,934 2,307.66 3,473.9

SG 10 (Δr = 1) 5.87 22,129 1,789 99 438 643 1,963.88 3,618.6

10 (Δr = 2) 326.92 1,453,542 3,732 187 702 1,195 2,156.36 3,618.6

10 (Δr = 3) 148.4 509,111 6,379 264 933 1,853 2,307.66 3,618.6

10 (Δr = 4) 188.29 457,597 9,755 330 1,131 2,567 2,307.66 3,618.6

aRelative gap (RG) = 8.67%.



4.2 | Comparison of the SG to a previous single-grid
approach

In this section, we compare the performance of the proposed SG

model to the single-grid model of Maravelias and Grossmann,18 here-

after referred to as M&G. From Tables 2 and 3, one can see that both

formulations require the same number of time points to find the same

optimal solution. However, the proposed model always requires fewer

continuous variables (but slightly more binary variables), constraints

and often spends lower CPU times finding the optimal solutions. In

turn, M&G exhibits tighter LP relaxations (RMILP) in most cases.

Table 2 gives the model and solution statistics of the SG and M&G

models for the case of revenue maximization. In Ex 1a (H = 8 hr), Ex

2a (H = 10 hr) and Ex 2a (H = 8 hr), both the SG and M&G models per-

form equally well. The proposed SG model excels for Ex 3b, being

10 times faster to find a solution worth 2,307.66 $ in 669.48 s (5.87

+ 326.92 + 148.4 + 188.29) with 10 event points. Note that unlike

M&G that needs only a single tuning parameter (i.e., the number of

time points in the grid), the proposed model requires two tuning

parameters, i.e., the number of time points and Δr. At each event

point, we need to iterate over Δr to discover the global optimal

solution.

When minimizing the schedule makespan, we need to specify the

big-M value for those constraints in M&G involving big-M parameters.

Similar to the literature, we use M = 50 in Ex 1c and Ex 2c and

M = 100 in Ex 1d, Ex 1e, Ex 2d, and Ex 2e (these are also applied to

the -multi-grid model of Shaik and Floudas26). Table 3 summarizes the

model and solution statistics of the SG and M&G models for the case

of makespan minimization. In Ex 2c, our SG model solves slightly

slower than M&G (8.65 + 1.39 + 1.79 = 11.83 s vs. 7.06 s). In Ex 1d

and Ex 1e, both SG and M&G perform equally and cannot close the

gap in 2 hr while generating the same optimal solution at termination.

For Ex 2c, Ex 2d, and Ex 2e, though the SG model requires more

TABLE 3 Computational results for Ex 1 using the SG model under makespan minimization

Event points CPU (s) Nodes Nonzeros Binary variables Total variables Eqs. MILP (hr) RMILP (hr)

Ex 1c (dS8= 200 mu, dS9= 200 mu)

M&G 10 7.06 3,687 7,968 160 992 2,137 19.34 18.68

SG 10 (Δr = 1) 8.65 29,164 1,368 72 318 459 19.78 18.68

10 (Δr = 2) 1.39 3,451 2,884 136 510 875 19.34 18.68

10 (Δr = 3) 1.79 3,585 4,968 192 678 1,379 19.34 18.68

Ex 1d (dS8= 500 mu, dS9= 400 mu)

M&G 20 7,200a 342,956 21,578 320 1,982 4,217 46.52 45.57

SG 20 (Δr = 1) 7,200b 4,777,385 2,868 152 658 949 46.52 45.57

Ex 1e (dS8= 600 mu, dS9= 600 mu)

M&G 25 7,200c 231,955 30,483 400 2,477 5,257 56.81 56.05

SG 25 (Δr = 1) 7,200c 985,756 3,618 192 828 1,194 56.81 56.05

Ex 2c (dS12= 100 mu, dS13= 200 mu)

M&G 11 71.1 44,575 12,226 242 1,487 2,980 13.36 11.33

SG 11 (Δr = 1) 0.62 2,034 1,994 110 486 714 14.61 11.25

11 (Δr = 2) 6.09 20,582 4,183 209 783 1,335 13.53 11.25

11 (Δr = 3) 11.07 31,419 7,226 297 1,048 2,087 13.36 11.25

11 (Δr = 4) 13.03 32,315 11,223 374 1,278 2,920 13.36 11.25

Ex 2d (dS12= 250 mu, dS13= 250 mu)

M&G 12 23.60 5,665 14,357 264 1,622 3,508 17.02 14.40

SG 12 (Δr = 1) 0.79 3,083 2,191 121 533 783 18.97 14.27

12 (Δr = 1) 1.36 2,475 4,626 231 863 1,473 17.02 14.27

12 (Δr = 3) 1.78 2,529 8,065 330 1,160 2,319 17.02 14.27

Ex 2e (dS12= 930 mu, dS13= 840 mu)

M&G 29 691.4 32,276 54,749 638 3,917 8,370 51.82 50.92

SG 29 (Δr = 1) 12.43 17,780 5,540 308 1,332 1,956 59.74 49.92

29 (Δr = 2) 49.28 29,507 12,157 605 2,223 3,819 51.82 49.92

29 (Δr = 3) 110.21 38,830 22,328 891 3,081 6,263 51.82 49.92

aRG = 2.01%.
bRG = 0.79%.
cRG = 1.15%.



binary variables, it performs better and solves a few times faster

than M&G.

4.3 | Comparison of MG to a previous -multi-grid
model

In this section, we compare the performance of the proposed MG

model to perhaps one of the most efficient -multi-grid scheduling

models in the literature, that is, to the event-based model by Shaik

and Floudas,18 hereafter referred to as S&F. For the sake of a fair

comparison, we have removed the big-M term in constraint (16) in

S&F, which makes it exactly equivalent to the model by Vooradi

and Shaik.27 In general, MG always needs one more event point to

find the optimal solutions, but roughly the same number of total

variables and fewer constraints and often leads to tighter LP relaxa-

tions. Similar to the proposed model, S&F also uses a parameter Δn

TABLE 4 Computational results for Ex 2 using the MG model under revenue maximization

Event points CPU (s) Nodes Nonzeros Binary variables Total variables Eqs. MILP ($) RMILP ($)

Ex 1a (H = 8 hr)

S&F 4 (Δn = 0) 0.14 0 722 32 165 307 1,498.56 1,730.8

5 (Δn = 0) 0.32 418 921 40 206 390 1,498.56 2,083.9

5 (Δn = 1) 0.54 886 2,217 72 270 754 1,498.56 2,123.3

MG 5 (Δr = 1) 0.10 0 704 32 162 250 1,498.56 1,730.8

6 (Δr = 1) 0.26 0 877 40 199 309 1,498.56 2,019.3

6 (Δr = 2) 0.42 541 1,717 72 295 557 1,498.56 2,091.1

Ex 1b (H = 10 hr)

S&F 6 (Δn = 0) 0.76 1,997 1,120 48 247 473 1,943.16 2,727.1

7 (Δn = 0) 6.29 36,996 1,319 56 288 556 1,943.16 2,775.4

7 (Δn = 1) 61.23 256,043 3,233 104 384 1,088 1,962.69 2,780.2

8 (Δn = 0) 27.39 140,520 1,518 64 329 639 1,943.16 2,804.9

8 (Δn = 1) 1,829.87 3,500,606 3,741 120 441 1,255 1,962.69 2,805.4

MG 7 (Δr = 1) 0.46 978 1,066 48 236 368 1,912.87 2,628.4

8 (Δr = 1) 0.82 5,211 1,242 56 273 427 1,912.87 2,732.0

8 (Δr = 2) 17.67 75,429 2,530 104 417 799 1,962.69 2,770.9

9 (Δr = 1) 4.81 25,696 1,418 64 310 486 1,912.87 2,775.3

9 (Δr = 2) 302.12 908,315 2,881 120 478 920 1,962.69 2,804.2

Ex 2a (H = 8 hr)

S&F 5 (Δn = 0) 0.21 310 1,280 55 286 545 1,583.44 2,100.0

6 (Δn = 0) 1.15 4,911 1,557 66 343 661 1,583.44 2,750.9

6 (Δn = 1) 8.82 41,801 3,727 121 453 1,280 1,583.44 2,750.9

MG 6 (Δr = 1) 0.28 402 1,289 55 280 455 1,583.44 2,100.0

7 (Δr = 1) 0.64 2,725 1,544 66 332 542 1,583.44 2,563.2

7 (Δr = 2) 3.73 21,764 3,039 121 497 977 1,583.44 2,682.0

Ex 2b (H = 10 hr)

S&F 6 (Δn = 0) 0.57 1,161 1,557 66 343 661 2,292.54 2,871.8

7 (Δn = 0) 3.87 14,793 1,834 77 400 777 2,293.46 3,369.6

7 (Δn = 1) 17.04 51,931 4,222 143 532 1,512 2,345.30 3,369.6

8 (Δn = 0) 25.01 117,362 2,111 88 457 893 2,293.46 3,618.6

8 (Δn = 1) 384.12 1,328,510 5,117 165 611 1,744 2,358.20 3,618.6

8 (Δn = 2) 1,570.12 2,896,294 7,075 231 743 2,008 2,358.20 3,618.6

MG 7 (Δr = 1) 0.35 1,035 1,544 66 332 542 2,292.54 2,853.9

8 (Δr = 1) 1.67 6,886 1,799 77 384 629 2,292.54 3,204.6

8 (Δr = 2) 5.46 22,490 3,598 143 582 1,151 2,345.30 3,325.6

9 (Δr = 1) 11.17 33,576 2,054 88 436 716 2,292.54 3,424.58

9 (Δr = 2) 118.56 525,135 4,157 165 667 1,325 2,358.20 3,618.64

9 (Δr = 3) 321.20 839,726 6,756 231 865 1,997 2,358.20 3,618.64



(=0, 1, 2,…) that defines a limit on the maximum number of events

over which a task can span. However, as the proposed model is a

slot-based approach and not a event-based model, a task that

starts at a time point does not end at the same point, leading to a

minimum value of one for the parameter Δr (=1, 2, 3,…) in our

model.

TABLE 5 Computational results for Ex 2 using the MG model under makespan minimization

Event points CPU (s) Nodes Nonzeros Binary variables Total variables Eqs. MILP (hr) RMILP (hr)

Ex 1c (dS8= 200 mu, dS9= 200 mu)

S&F 9 (Δn = 0) 1.10 3,984 1,722 72 371 652 19.34 18.68

10 (Δn = 0) 1.54 2,511 1,921 80 412 727 19.34 18.68

10 (Δn = 1) 1.93 3,890 4,762 152 556 1,511 19.34 18.68

MG 10 (Δr = 1) 1.09 4,112 1,635 72 348 547 19.34 18.68

11 (Δr = 1) 1.20 4,044 1,815 80 385 606 19.34 18.68

11 (Δr = 2) 1.64 4,013 3,793 152 601 1,164 19.34 18.68

Ex 1d (dS8= 500 mu, dS9= 400 mu)

S&F 20 (Δn = 0) 0.59 0 3,911 160 822 1,477 46.11 45.57

21 (Δn = 0) 2.34 2,670 4,110 168 863 1,552 46.11 45.57

21 (Δn = 1) 6.14 2,610 10,350 328 1,183 3,260 46.11 45.57

MG 21 (Δr = 1) 1.48 2,631 3,615 160 755 1,196 46.11 45.57

22 (Δr = 1) 1.92 3,840 3,795 168 792 1,255 46.11 45.57

22 (Δr = 2) 3.62 2,741 8,215 328 1,272 2,495 46.11 45.57

Ex 1e (dS8= 600 mu, dS9= 600 mu)

S&F 25 (Δn = 0) 3.17 2,806 4,906 200 1,027 1,852 56.68 56.05

26 (Δn = 0) 2.61 2,606 5,105 208 1,068 1,927 56.68 56.05

26 (Δn = 1) 10.37 3,244 12,890 408 1,468 4,055 56.68 56.05

MG 26 (Δr = 1) 2.25 2,949 4,515 200 940 1,491 56.68 56.05

27 (Δr = 1) 2.70 2,688 4,695 208 977 1,550 56.68 56.05

27 (Δr = 2) 4.73 2,565 10,225 408 1,577 3,100 56.68 56.05

Ex 2c (dS12= 100 mu, dS13= 200 mu)

S&F 7 (Δn = 0) 0.21 130 1,841 77 401 702 13.36 11.25

8 (Δn = 0) 0.64 1,580 2,118 88 458 807 13.36 11.25

8 (Δn = 1) 5.21 9,015 5,124 165 612 1,658 13.36 11.25

MG 8 (Δr = 1) 0.34 80 1,848 77 385 631 13.36 12.31

9 (Δr = 1) 0.54 760 2,109 88 437 718 13.36 11.62

9 (Δr = 2) 1.18 3,621 4,254 165 668 1,327 13.36 11.25

Ex 2d (dS12= 250 mu, dS13= 250 mu)

S&F 10 (Δn = 0) 0.46 238 2,672 110 572 1,017 17.02 14.27

11 (Δn = 0) 0.90 627 2,949 121 629 1,122 17.02 14.27

11 (Δn = 1) 6.64 9,739 7,209 231 849 2,321 17.02 14.27

MG 11 (Δr = 1) 0.45 56 2,631 110 541 892 17.02 14.53

12 (Δr = 1) 1.12 1,303 2,892 121 593 979 17.02 14.39

12 (Δr = 2) 2.29 3,274 5,967 231 923 1,849 17.02 14.27

Ex 2e (dS12= 930 mu, dS13= 840 mu)

S&F 28 (Δn = 0) 73.18 54,090 7,658 308 1,598 2,907 51.82 49.92

29 (Δn = 0) 1,013 704,068 7,935 319 1,655 3,012 51.82 49.92

29 (Δn = 1) 7,200a 1,739,494 19,716 627 2,271 6,299 51.82 49.92

MG 29 (Δr = 1) 0.90 54 7,329 308 1,477 2,458 51.82 50.92

30 (Δr = 1) 5.35 3,783 7,590 319 1,529 2,545 51.82 50.26

30 (Δr = 2) 22.89 14,579 16,245 627 2,453 4,981 51.82 49.92

aRG = 3.68%.



Table 4 shows the results for the MG and S&F models when maxi-

mizing the revenue. For Ex 1a, both MG and S&F perform equally well,

but the proposed model needs fewer nodes and nonzero elements. In

Ex 1b, the MG confirms the solution (with nine events point and Δr = 2)

in 302.12 s of CPU while S&F proves the optimality in 1,829 s. Results

for Ex 2a are roughly similar, but the MG leads to a tighter LP relaxation.

The proposed MG model excels for Ex 2b, being able to prove the opti-

mum in 321.20 s versus 1,570.12 s required by S&F.

Table 5 gives the computational results for MG and S&F when mini-

mizing the schedule makespan. For examples Ex 1c, Ex 1d, Ex 1e, Ex 2c,

and Ex 2d, both the MG and S&F perform roughly similar in terms of CPU

time, but the proposed model requires fewer nonzero elements and con-

straints. In Ex 3e, the proposed MG model surprisingly outperforms S&F.

When tasks cannot span, S&F spends 73.18 s finding a solution worth

51.82 hr with 28 event points whereas the proposed model finds the

same solution in 0.90 s. Considering one more time point, S&F requires

1,013 s to confirm the solution obtained with 28 time points, while the

proposed model proves the solution in 5.35 s. For the case that tasks can

last more than one time slot (Δn = 1 and Δr = 2) the proposed model finds

the same makespan of 51.82 hr in 22.89 s with 30 time points whereas

S&F cannot close gap in 2 hr with 29 events.

4.4 | Alternative timing constraints (Ex 1b, Ex 2b)

As already mentioned, timing constraints are very crucial for

continuous-time formulations and they can have profound impact on

the CPU time and even on the solution quality. As can be observed

from Tables 4 and 5, the MG model always needs one more event

point compared to S&F. In other words, if S&F discovers the global

optimum with n event points, the proposed MG model will require n

+ 1 event points to generate the same optimum. However, with the

same task spanning limits, they may result in different solutions. This

can be - seen from the results of Ex 1b in Table 4, where with seven

event points and when tasks cannot span (Δn = 0), S&F generates a

solution worth $1,943.16, whereas the MG model yields a solution of

$1,912.87 with eight event points and Δr = 1 (the same happens for

Ex 2b). Considering the timing constraints for tasks instead of units

(i.e., Equations (15’) and (16’)), the MG model results in the same solu-

tion as S&F generates with the same task spanning limits (see

TABLE 6 Results for Ex 1b and Ex 2b with two alternative timing constraints for the MG

Event points CPU (s) Nodes Nonzeros Binary variables Total variables Eqs. MILP ($) RMILP ($)

Ex 1b (H = 10 hr)

S&F 7 (Δn = 0) 6.29 36,996 1,319 56 288 556 1,943.16 2,775.4

7 (Δn = 1) 61.23 256,043 3,233 104 384 1,088 1,962.69 2,780.2

7 (Δn = 2) 89.87 291,704 4,154 144 464 1,244 1,962.64 2,780.2

MGTa 8 (Δr = 1) 5.95 26,491 1,578 56 305 567 1,943.16 2,775.4

8 (Δr = 2) 56.64 184,206 3,154 104 449 1,059 1,962.64 2,775.4

8 (Δr = 3) 46.96 103,278 4,984 144 569 1,569 1,962.64 2,775.4

MGUb 8 (Δr = 1) 0.82 5,211 1,242 56 273 427 1,912.87 2,732.0

8 (Δr = 2) 17.67 75,429 2,530 104 417 799 1,962.69 2,770.9

8 (Δr = 3) 28.03 77,534 4,120 144 537 1,209 1,962.69 2,770.9

Ex 2b (H = 10 hr)

S&F 8 (Δn = 0) 25.01 117,362 2,111 88 457 893 2,293.46 3,618.6

8 (Δn = 1) 384.12 1,328,510 5,117 165 611 1,744 2,358.20 3,618.6

8 (Δn = 2) 1,570.12 2,896,294 7,075 231 743 2,008 2,358.20 3,618.6

MGTa 9 (Δr = 1) 24.61 133,841 2,510 88 481 908 2,293.46 3,618.64

9 (Δr = 2) 202.12 864,354 5,012 165 712 1,685 2,358.20 3,618.64

9 (Δr = 3) 610.40 1,531,723 7,953 231 910 2,501 2,358.20 3,618.64

MGUb 9 (Δr = 1) 11.17 33,576 2,054 88 436 716 2,292.54 3,424.58

9 (Δr = 2) 118.56 525,135 4,157 165 667 1,325 2,358.20 3,618.64

9 (Δr = 3) 321.20 839,726 6,756 231 865 1,997 2,358.20 3,618.64

aMG with constraints (15’) and (16’).
bMG with constraints (15) and (16).

TABLE 7 Sequence-dependent changeover times used in Ex1

Changeover time (hr)

Task I2 I3 I4 I5 I6 I7

I2 0 - 0.2 - 0.4 -

I3 - 0 0.2 - 0.3

I4 0.2 - 0 - 0.5 -

I5 - 0.1 - 0 - 0.2

I6 0.1 - 0.4 - 0 -

I7 - 0.3 - 0.5 - 0



Table 6). However, these constraints lead to a slight increment in the

number of continuous variables and constraints and to relatively poor

LP relaxations in most cases. As can be seen from Table 6, replacing

constraints (15’) and (16’) by (15) and (16) roughly doubles the CPU

times in all cases.

4.5 | Changeover time (Ex 1b)

Here we solve Ex 1b with changeover time constraints to show how

they can affect the solution quality and - CPU time. Table 7 shows the

sequence-dependent changeover times considered in Ex 1. The

changeover time constraints are very important in practice and all

scheduling models should consider them rigorously; otherwise, the

returned solutions may not be acceptable to the users. This can be

F IGURE 6 Gantt chart for Ex 1b with and without changeover time constraints using seven event points (Δr = 2) [Color figure can be viewed
at wileyonlinelibrary.com]

TABLE 8 Results for Ex 2a with and without changeover time constraints

Event points CPU (s) Nodes Nonzeros Binary variables Total variables Eqs. MILP ($) RMILP ($)

Ex 1b (H = 10 hr)

MG1a 6 (Δr = 1) 0.31 266 1,730 40 199 489 1,765.75 2,397.16

6 (Δr = 2) 0.51 474 3,242 72 295 857 1,765.75 2,419.69

7 (Δr = 1) 0.70 1,693 2,254 48 236 620 1,765.78 2,584.49

7 (Δr = 2) 3.50 12,355 4,356 88 356 1,110 1,789.70 2,717.17

7 (Δr = 3) 4.79 14,511 6,319 120 452 1,558 1,789.70 2,721.21

8 (Δr = 1) 4.10 15,370 2,838 56 273 763 1,765.75 2,691.46

8 (Δr = 2) 44.90 153,694 1,242 104 417 1,387 1,789.70 2,769.02

MG2b 6 (Δr = 1) 0.15 0 890 40 199 309 1,912.87 2,436.69

6 (Δr = 2) 0.26 157 1,742 72 295 557 1,912.87 2,436.69

7 (Δr = 1) 0.46 978 1,066 48 236 368 1,912.87 2,628.45

7 (Δr = 2) 1.15 2,989 2,136 88 356 678 1,962.69 2,722.23

7 (Δr = 3) 0.96 2,930 3,388 120 452 1,006 1,962.69 2,742.19

8 (Δr = 1) 0.82 5,211 1,242 56 273 427 1,912.87 2,732.06

8 (Δr = 2) 17.67 75,429 2,530 104 417 799 1,962.69 2,770.92

aMG with changeover time constraints.
bMG without changeover constraints.

F IGURE 7 Gantt chart for Ex 2b with intermediate due dates
using nine event points (Δr = 3) [Color figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


realized from the right-hand side of Figure 6. Reaction 3 (tasks I6, I7)

that has been processed twice in unit J2 and once in J3, now with the

changeover time constraints is processed only twice in unit J3. The

computational results for Ex 1b with and without the changeover time

constraints are all summarized in Table 8. It can be seen that apart

from poor solutions, with the changeover time constraints the MG

model becomes slower, which can be caused due to almost 40%

increases in the number of constraints.

4.6 | Ex 2a with intermediate due dates

Ex 2a is tackled again here, but this time the requirements of states S12

and S13 should be met within two due dates T1 = 5 hr and T2 = 8 hr.

We consider dS12, T1 = 80 mu, dS13, T1 = 60 mu, dS12, T2 = 200 mu and

dS13, T2 = 60 mu, and bcs, t = 2 $/mu. The Gantt chart schedule for Ex 2a

using nine time points (Δr = 3) is given in Figure 7. It can be observed

that time point 7 (CR7 = 5 hr) is the last one located in the first period.

Therefore, at this time point the amount of material stored at states S12

and S13 should be as large as 80 and 60 mu, respectively. Otherwise,

backordered costs will be raised. Analyzing Figure 7, one can simply

derive that, tasks I10 and I11 produce 83.75 mu (= 41.87 + 41.87) for

state S12 from time 3.38 to 5 hr. At the end of period 2, the total

amount stored at state S12 should be at least 280 (80 + 200)

mu. However, accodring to Figure 7, state S12 faces 59.47 mu shortages

of P1 in the second period. This is because the total amount that tasks

I10 and I11 produce for the state S12 during the time horizon is 220.52

mu (=41.87 + 41.87 + 68.36 + 68.36). Backorders also cannot be

avoided at state S13, that is, 37.66 mu in the first period and 40 mu in

the second period. Model statistics and computational results for Ex 2a

with intermediate due dates are all summarized in Table 9.

5 | CONCLUSIONS

This article presented an MILP formulation based on the STN for

the short-term scheduling of multipurpose batch plants with

changeover time and intermediate due dates constraints. It

employed a continuous-time representation with both single and

multiple reference grids. We used the high-level construct of GDP

to associate simple linear constraints to each decision variable,

which were then converted into MILP format using convex hull

reformulations. We also rely on logical propositions to formulate

constraints featuring solely binary variables. The proposed MILP

formulations have been tested using a set of benchmark problems

from the literature and results were compared to two previous pub-

lished formulations. The results demonstrate that the proposed MG

model leads to substantial reductions in solution times, problem

sizes, and to tighter linear relaxations compared to a state-of-the-

art event-driven approach. The single-grid counterpart of the for-

mulation is not as favorable, as it exhibits relatively weaker linear

relaxations and is not capable of handling the changeover time con-

straints. The main disadvantage of the proposed approach is that it

requires two tuning parameters that may hinder finding the global

optimal solution.
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NOTATION

Sets/Indices

I/i tasks

J/j units

S/s states

R/r time points

T/t time periods

Ij tasks that can be processed in unit j

Ips tasks which produce state s

Ics tasks which consume state s

Jps units which feed state s

Jcs units which is fed by state s

SM states that feed local markets (final states)

JM units that can process more than one task

Parameters

hmax time horizon (hr)

ht time at which time period t ends (hr)

cpi fixed duration of task i (hr)

vpi variable duration of task i (hr)

τi,i0 sequence-dependent changeover time when task i is

followed by task i0 (hr)

ρpi,sð>0Þ proportion of state s produced by task i

ρci,sð<0Þ proportion of state s consumed by task i

TABLE 9 Results for Ex 2a with intermediate due dates constraints

jRj CPU (s) Nodes Nonzero Binary variables Total variables Eqs MILP ($) RMILP ($)

9(Δr = 1) 12.26 48,784 1,794 106 416 639 604.1 2,940.1

9(Δr = 2) 122.92 506,609 3,463 183 647 1,122 986.7 2,940.1

9(Δr = 3) 101.96 465,398 5,690 249 845 1,686 1,152.9 2,940.1

10(Δr = 1) 34.92 122,887 2,012 119 465 715 604.1 2,940.1

10(Δr = 2) 676.43 1,890,415 3,923 207 729 1,267 986.7 2,940.1

10(Δr = 3) 2,469.5 4,428,925 6,542 284 960 1,925 1,152.9 2,940.1



vmax
i maximum batch size for task i (mu)

vmin
i

minimum batch size for task i (mu)

f0s initial amount of state s (mu)

fmax
s maximum storage capacity of state s (mu)

fmin
s

minimum storage capacity of state s (mu)

ds minimum amount needed by state s at the end of the

time horizon (mu)

ds, t minimum demand of state s due at period t (mu)

vs price of state s ($)

csi,i0 changeover cost when task i is followed by task i0 ($)

bcs, t unit backorder cost in state s during time period t ($)

Variables

Xi, r, r0 binary variable indicating that task i is being processed

during time interval [r, r0]

Yr, t binary variable indicating that time point r locates in

time period t

Y last
r,t

true if time point r is the last one located in time

period t

Vi,r,r0 batch size of task i during time interval [r, r0]

Fs, r excess amount of state r at time point r

SRj, r time at which task j starts at time point r

SRi, r time at which task i starts at time point r

LRi,r,r0 processing time of task i during time interval [r, r0]

CRr absolute time of time point r

BRs, t backorder in state s 2 SM during time period t

H makespan
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