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Abstract: Random-wound electrical machines often suffer from high circulating current losses. These losses vary from machine
to machine in a stochastic fashion. This study proposes an improved sampling algorithm for quantifying the uncertainty inherent
in random windings. The algorithm is then combined with a circuit model to perform Monte Carlo analysis on the losses. The
results are compared to measurements, and a good agreement is observed.

1 Introduction
Design of high-efficiency and high-performance electrical machine
requires accurate prediction of resistive winding losses. These
losses can be divided into skin- and proximity effects, and
circulating currents. The latter can be especially significant and
dominate in random-wound machines with stranded windings and
a high-supply frequency, such as high-speed machines and multi-
pole permanent magnet machines. Indeed, resistive loss increases
of several tens of per cent have been observed [1, 2].

Due to manufacture reasons, the positions of the strands in a
random-wound winding cannot be exactly known or controlled. In
other words, their positions can be regarded as uncertain.
Furthermore, they can vary significantly from slot to slot and
machine to machine. Correspondingly, also the circulating current
losses often exhibit significant variance, even between nominally
identical machines [3]. As such, the losses are also stochastic in
nature.

This paper extends the authors' previous work in [3] for
uncertainty quantification of the circulating current losses. First, an
equivalent circuit approach for modelling stranded windings is
briefly recounted. Next, a phenomenological sampling algorithm is
proposed for modelling the uncertainty in the winding. This
algorithm is then coupled to the circuit model. Finally, the
statistical properties of the resistive losses are then estimated with
Monte Carlo analysis and compared to measurement data.

2 Modelling circulating currents
Some necessary basic theory is briefly presented here. First, the
basics of the circulating current phenomenon are explained,
followed by a light-weight circuit model suitable for their analysis.
The circuit configuration is assumed fully know, i.e. the
randomness is not taken into account until Section 3.

2.1 Circulating currents

Circulating currents can occur whenever two or more strands with
different impedances are connected in parallel. The conductors
draw different currents, which of course increases the total losses
compared to an even distribution of current.

These currents can be decomposed to the average current
component and a number of circulating current components. This
gives the name to the phenomenon and has been illustrated for two
conductors in Fig. 1. In the figure, the individual strand currents
are denoted by i1 and i2. Correspondingly, the average current is
iave, whereas icirc is the apparent circulating component. 

It must be noted that differing impedances are not the only
possible cause for circulating currents. Instead, they can also occur
due to externally induced strand voltages, e.g. by permanent
magnet flux partially penetrating into an open slot [4]. However,
this paper focuses on solid-rotor induction machines, so this
phenomenon is ignored. However, if needed, it can still be
straightforwardly included in the circuit model described in the
next section.

2.2 Circuit model

In random-wound induction machines, circulating currents are
typically determined by the slot leakage inductances. Thus, they
can be modelled by a circuit model as done by the authors in [3],
based on the work of, e.g. van der Geest et al. [5] and Jiancheng et
al. [6]. First, the strand voltages uslot,k in the slot k are written as

uslot,k = (R + jωLσ)istrand,k + ek, (1)

where istrand,k denotes the strand currents, and R and Lσ are the
strand resistance and leakage inductance matrices for the slot,
respectively. The vector ek denotes the strand voltages induced by
the main flux, linking both the stator and the rotor, and will be
discussed shortly.

Next, the strand currents are expressed with a set of linearly
independent loop currents i as

istrand,k = Lki, (2)

where Lk denotes the loop matrix for the slot k. Then, Kirchhoff's
voltage law is applied to the strand voltages and the supply
voltages us:

Fig. 1  Illustration of the circulating current phenomenon
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us = ∑
k = 1

QS

Lk
Tustrand,k, (3)

where Qs is the number of stator slots. Finally, (1)–(3) are
combined, yielding the final system of equations

us = ∑
k = 1

QS

Lk
T(R + jωLσ)Lki + Lk

Tek . (4)

From this equation, the loop currents i can then be solved. The
resistive losses in the strands can then be post-processed from the
strand currents (2) and the strand resistances.

In an induction machine, the back-electromotive force vector ek
is strongly dependent on both the stator and rotor currents.
Following the approach in [3], it can be written as

ek = Ks,ki + Kr,kir (5)

where ir is the rotor current space vector. The matrices Ks,k and Kr,k
of rank 3 and rank 1, respectively, can be derived from the typical
equivalent circuit parameters. Obviously, the system (4) has to be
augmented by the rotor-branch voltage equation.

3 Stochastic modelling
In a random-wound machine, the positions of the individual strands
inside slots cannot be accurately known or controlled. As the
leakage inductances Lσ are strongly position dependent, the
circulating current losses can vary considerably between nominally
identical machines. Although long acknowledged, this stochastic
behaviour has received relatively little attention in the literature
[7].

3.1 Prior work

In [8], the electric field in a random-wound transformer was briefly
analysed. The analysis was based on first determining a set of
possible strand positions, and then permuting the order of the
strands within this set. This permutation could be decomposed into
a set of pair-wise swapping of strand positions, which might be a
clearer way to visualise the approach. This same approach was
adopted and formally justified by Lehikoinen et al. [3].

This randomisation of the strand positions is equivalent to
randomly permuting the rows of each of the loop matrices Lk. The
statistical behaviour can then be evaluated with, e.g. the Monte
Carlo method. However, the problem of generating samples of
suitably-distributed permutations still remains.

In [3], a rather complex sampling algorithm was proposed for
generating permutations following a normal-like distribution,
according to a special distance function. In addition, it was
observed that the permutations for each slot could not be assumed
statistically independent. Instead, a complex inter-slot dependency
was defined to obtain satisfactory results. Thus, a special
successive sampling scheme was developed, described next.

3.2 Proposed sampling algorithm

Indeed, this paper proposes an improved, easier-to-implement
sampling algorithm, also taking into account the apparent
dependency between separate slots. The algorithm is based on a
simplified model of the actual winding process. Specifically, it is
assumed that each coil is first wound around a coil former outside
the machine core. The coils would then be inserted into the slots
through the slot openings. As the machines analysed later in this
paper have semi-closed slots, this insertion has to be performed a
few strands at a time.

Based on this process model, it can be assumed that any few
strands that are close to each other in one slot are probably close to
each other also in the next slot the coil passes through. Thus, the
proposed algorithm can be summarised as follows.

First, the parallel strands in a phase are divided into n bundles.
Then, between each two successive slots that the coil passes
through, a random draw is made. With the probability p, the order
of the bundles is changed according to a uniformly distributed
random permutation. This permutation can be easily generated in
most software environments, such as MATLAB or the NumPy
package for Python. On the other hand, the order of the bundles is
left intact with the probability 1 − p. The flow of the algorithm has
been illustrated in Fig. 2, whereas Fig. 3 illustrates the order that
the slots are traversed in. 

Fig. 2  Flowchart of the proposed algorithm
 

Fig. 3  Ordering of the coil sides used
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An illustrative comparison between the old and the new
sampling algorithms can then be found in Fig. 4, which visualises a
randomisation of the strand order between two successive slots. As
can be seen, with the old algorithm, the strands are crossing each
other in an individual fashion. In reality, this would probably form
a very messy-looking end-winding with fine braid-like structures.
By contrast, with the new algorithm, the strands are moving in
three larger bundles. Indeed, it could be argued that this is closer to
the structure of an actual end-winding, such as the one illustrated in
Fig. 5. 

4 Simulation and measurement results
The proposed sampling algorithm was then used to analyse the
circulating current losses and their variations in a high-speed
induction motor with a rated power of roughly 200 kW. The main
dimensions of the machines can be found in Table 1. 

The results were then compared to the measurement data of 230
nominally identical motors. The circulating current factor

kcc =
∑k = 1

N ik 2

(1/N) ∑k = 1
N ik

2 (6)

was chosen as the quantity of interest. Here, N denotes the number
of parallel strands [1].

As a reference, Fig. 6 shows the estimated probability density
distribution of kcc at the rated frequency. Both the measured values
and those simulated with the old sampling algorithm are shown. As
can be seen, both distributions are roughly normal shaped and have
similar mean values. However, the simulated values exhibit
significantly smaller variance, resulting in a narrower distribution
with a higher peak. 

4.1 Evaluation of the proposed algorithm

It must be stressed that the proposed new algorithm has two input
arguments: the number of bundles n and the mixing probability p.
Hence, several Monte Carlo simulations were performed to
evaluate their effect on the circulating current losses. The number
of samples per simulation was set to 1000, as no significant
differences could be seen in the results with larger sample sizes.

First, Fig. 7 shows the simulated probability density
distributions of kcc with different values of p. The number of
bundles n was kept constant at 16. As can be seen, the mixing
probability has a relatively straightforward effect on the losses,
with lower values of p resulting in a wider distribution of kcc with a
larger mean. At first, this might seem paradoxical, with a less
perturbed winding exhibiting higher losses. However, this well in
line with the earlier observations [3]. 

Fig. 4  Illustrative comparison of the old (left) and new (right) sampling
algorithms for n = 3 bundles

 

Fig. 5  Part of the end winding of a random-wound machine, with some
spontaneously occurring strand bundles illustrated

 
Table 1 Machine characteristics
Dimension Value
stator diameter, mm 290
rated frequency, Hz 450
winding connection delta
number of winding layers 2
number of turns 3
number of strands in a slot 348
number of stator slots 36
 

Fig. 6  Probability distribution of the circulating current factor at the rated
frequency estimated from measurements, and simulated with the old
sampling algorithm

 

Fig. 7  Probability distributions obtained with different mixing
probabilities, with n = 16
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Next, the effect of the number of bundles n was evaluated, with
a constant p = 0.3. The results are again shown in Fig. 8. This time,
a slightly more complex relationship can be established. With n
between 5 and 87, the mean value of kcc grows proportionally to n.
However, the variance follows a parabolic dependence, obtaining
its maximum at n = 10. Furthermore, both of these relationships
break down at n < 5, as evident from the n = 2 curve. However, this
case, i.e. having only two bundles, would represent a physically
unrealistic situation anyway. 

4.2 Performance evaluation

Next, the ability of the algorithm to match the measured results
was evaluated. First, the number of bundles n was varied between 5
and 87. Then, for each n, the mixing probability p was adjusted to
obtain the best possible agreement (in the mean-square sense) with
the measurement data.

The results are shown in Fig. 9. As can be seen, even the worst-
fitting results are on par with, or slightly better compared to the old
algorithm of Fig. 6. Furthermore, it can be seen that the best results
are indeed much better than previously. 

This is further illustrated in Fig. 10, which shows the results
obtained with n = 16. As can be seen, a very good agreement has
been obtained with the measured results in general. Admittedly, the
simulated distribution is slightly more right-tailed than the
measured one, but this deviation is still relatively minor. Compared
to the old algorithm of Fig. 6, a significant improvement can be
seen. Furthermore, due to the understandably limited sample size
of the measured data, it could be argued that the probability density

estimated from the measurements is not very accurate. In other
words, it cannot be confidently concluded which one of the
presented curves is closer to the correct one. 

4.3 Interpretation of the results

As was seen, the best results were obtained with 14–16 bundles.
For the machine in question, this corresponds to a mean bundle
size of 11–12 strands. Incidentally, this number is close to the size
of the largest bundle that could fit through the slot opening during
the winding process, namely 15 strands in a perfect circular
packing. In other words, the simulation results seem to support the
assumptions made in Section 3.2. about the winding process, i.e.
assumption that the strands are inserted into the slots in the largest
bundles fitting through the slot opening.

5 Conclusion
A sampling algorithm was proposed for modelling the uncertainty
inherent in a random winding, and for quantifying the associated
circulating current losses. The algorithm is simple to implement,
and is based on a phenomenological model of the winding process.
Properly tuned, the algorithm was able to closely match the
probability distribution of measured losses in a series of high-speed
induction machines.

The algorithm has two tuning parameters. However, based on
the results presented, it seems that one of them – the number of
bundles n – can be estimated from the machine and winding
dimensions. This would leave only the mixing probability p to be
estimated.

Fig. 8  Probability distributions obtained with different numbers of bundles, with p = 0.3
 

Fig. 9  Probability distributions (best fit) obtained with the new algorithm,
with a different number of bundles n

 

Fig. 10  Best-fitting results obtained with the new algorithm, with n = 16
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Obviously, some further work is still needed. So far, the
algorithm has only been validated against one set of measurement
data, so analysing additional machine types would be beneficial.
However, this would probably require machine manufacturers to
adopt circulating current measurements as a standard procedure.
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