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Abstract—The electricity consumption profile of buildings are different from 

the typical load curves that represent the electricity consumption of large 

systems at the national or regional level. The electricity demand in buildings is 

many times lower than the region- or nation-wide demands. It is also much 

more volatile and stochastic, meaning that the conventional tools are not 

effective enough for straightforward application at a building demand level. In 

this paper, an integrated approach consisting of Hilbert-Huang Transform 

(HHT), Regrouping Particle Swarm Optimization (RegPSO) and Adaptive 

Neuro-Fuzzy Inference System (ANFIS) is devised for 24h-ahead prediction of 

electric power consumption in buildings. The forecasts are used as input 

information for smart decisions of distributed energy management systems 

that control the optimal bidding and scheduling of energy resources for 

building energy communities. The effectiveness of the proposed forecasting 

approach is demonstrated using actual electricity demand data from various 

buildings in the Otaniemi area of Espoo, Finland. The prediction performance 

of the proposed approach for various building types (energy customer 

clusters), has been examined and statistical comparisons are presented. The 

prediction results are presented for future days with a one-hour time interval. 

The validation results demonstrate that the approach is able to forecast the 

buildings’ electricity demand with smaller error, outperforming five other 

approaches, and in reasonably short computation times.  

Keywords—AI, ANFIS, building, electricity demand, energy management, 

feature extraction, forecasting, HHT, machine learning, parameter 

optimization, RegPSO. 

I. INTRODUCTION 

In the traditional larger electric power system energy is produced by 

huge generation plants installed far away from load centers (consumers). 

This brings transmission power loss and obstructs the opportunity of 

localizing power production, causing a much reliance on huge power 

generation systems. Recently, a global conceptual energy shift has been 

devised to make the existing power generation system more reliable, cost-

effective, eco-friendly, modern, and smart, in order to address the 

challenges the current power grid is facing [1], [2]. 

Electricity consumption relies on several facts, as the weather 

parameters (temperature, humidity, wind speed, cloud, rain, etc.), daylight 

durations, hours in days, days in weeks, months in years, seasons in years, 

workability (presence of work) condition, etc. This makes electricity 

demand prediction rather a complex task that looks beyond merely 

statistical tools. Recently, electric load prediction is being carried out 

employing many forecasting algorithms, and among them, ANFISs are 

one of the most prominent choices due to their capability to acquire 

knowledge from the environment and familiarize themselves [3]. 

Since the past few decades, it has become a common practice to 

consider various local energy generation resources (diesel, microturbine, 

PV, geothermal, etc.) as one of the construction items when new buildings 

are planned for construction. That means, in the recent decentralized 

power system paradigm, a building can be considered as a prosumer 

having its own local energy supply, with the assumption that balancing 

can possibly be achieved locally.  

Moreover, it has been found that buildings consume a large quantity 

of energy. According to the Center for Clean Air Policy (CCAP), 

buildings account for almost 40% of the world energy consumption [4] 

and as Eurostat, buildings account for 38.1% of energy consumption in 

the EU, much greater than any other sector, including transport (33.3%) 

and industry/factory (25.9%) [5]. 

The load curves of buildings and other small-scale energy systems are 

different from typical electric power consumption curve, making the 

conventional techniques (developed for national or regional prediction) 

inappropriate for their straightforward application due to two bold 

reasons. In buildings, not only the total electricity demand level is many 

times less than the regional or national demand levels, but also the 

electricity demand profile manifests a more fluctuation and does not 

generally follow the same profile. 

The integration of Information and Communications Technologies 

(ICTs) assisted intelligent operation, control, supervision and protection 

functions into buildings creates smart buildings of desired features. In this 

scenario, to properly manage the electricity generation of its energy 

production resources and reduce the building electricity bills, independent 

electricity demand forecasting is required for each particular building in 

question. Accurate forecast of electricity demand in buildings 

significantly helps the building energy suppliers or aggregators to have 

better decisions in the electricity market participation.   

The existing electricity prediction approaches can be categorized 

based on the models they use as time-series and regression models. The 

time-series approaches describe future electricity demand based on its 

previous and present time series features [6]–[10]. The regression (causal) 

approaches characterize electricity demand based on external features that 

can possibly affect the electricity consumption [11] – [18].  

Machine learning and artificial intelligence (AI) based approaches 

have been used for electricity demand predictions. For instance, expert 

systems in [19] and [20], fuzzy logic systems in [21] and neuro-fuzzy 

systems in [22] and [23]. It is observed that, the machine learning and AI 

based electricity demand forecasting methods have given better 

forecasting accuracy than the conventional methods (such as persistence, 

linear regression, nonlinear regression, ARIMA, etc.). 

Artificial neural networks (ANNs), in different forms, among the 

famous AI methods have been widely utilized for electricity demand 

prediction. For instance, Multi-layer Perceptron (MLP) ANN in [24], 

RBF ANN in [25], SOM ANN in [26], and feedforward multi-layer 

(FFML) ANN in [27]. 

However, in the recent few years, fuzzy logic systems (FLSs) and 

ANFISs have become the most prominent techniques for electric load 

demand forecasting, with better performances than the ANNs do. The 

study in [3] developed an ANFIS based electric load prediction strategy 

for small region, high school campus area, with low consumption. 

Electricity consumption data and other parameters derived from the 

consumption, such as month and hour, were used as inputs to develop the 

forecasting strategy. The strategy was verified to be effective for 

electricity demand forecasting of small regions. Reference [6] provided 



an intelligent time series technique for electric load prediction of a 

complex energy system. The time series technique was modeled for 

medium- and long-term prediction horizons. It used electricity demand 

information of many previous years to develop the intelligent ANFIS 

model. The result obtained were estimates of electricity demand forecasts 

for several years ahead. The work in [9] devised an integrated fuzzy time-

series and dynamic model to predict electric load demand a number of 

months ahead. Time series data of electric load was employed to develop 

the model. The devised integrated model was applied independently to 

single home, community, facility, and industrial cases. The outcomes 

found demonstrated that the devised model presented satisfactory 

forecasting accuracy over the tested months.  

ANFIS and regression techniques were employed for predicting Iran's 

yearly electricity load in [11]. Socio-economic factors, energy-economic 

factors and national aggregated electricity consumption data have been 

utilized to construct the forecast model. The study summarizes that the 

ANFIS model gives an acceptable accuracy and outperforms the other 

evaluated conventional forecasting techniques. Reference [17] 

implemented fuzzy causal model for electric load demand prediction of 

summer and winter periods. It was implemented for 24h-ahead electricity 

consumption prediction in a utility company. The considered power 

system achieved a reliable operation using the developed fuzzy based 

electric load forecasting. The work in [18] has presented a short-term load 

forecasting (STLF) technique to use it in power system operational control 

strategy. It proposed a methodology to increase forecasting accuracy and 

reduce processing-time by employing FLS with one-hour intervals. The 

combination of ANFIS and wavelet transform in [14] and the 

hybridization of FLS with extreme learning machine (ELM) in [19] are 

also developed for electricity demand forecasting in different scenarios 

for improved prediction performance. 

The literature survey in this study, as reported above, shows that most 

of the electricity demand forecasting models have been developed to 

forecast electric load demands at national or regional levels. However, the 

electricity demand forecasting at small-scale levels, such as 

microgrid/prosumer, residential entity, commercial area, industrial unit, 

single building or household still needs improvement and it is one of the 

hot research issues in the area of smart grids. Thus, this study can make a 

contribution to the field of electricity demand forecasting in buildings, 

small-scale level. Moreover, this study considers several relevant 

predictors to improve the prediction accuracy.  

Furthermore, most of the previous ANFIS based load demand 

forecasting approaches have used a Back Propagation (BP) learning 

method to obtain the ANFIS membership function (MF) parameters. 

Although BP training technique needs less computation time, it may be 

stuck by suboptimal (local) solution and is therefore not capable to reach 

global (system-level) optimal solution. On the other hand, those previous 

forecasting researches that have used the combination of PSO and ANFIS 

employed the conventional PSO algorithm for searching the optimal 

values of the ANFIS MF parameters. Though the PSO has resulted in 

improved performance over the BP for the ANFIS training, it has shown 

premature convergence (stagnation or false convergence at local 

solutions) which does not guarantee reliable forecasting accuracy 

throughout the entire forecasting horizon and scenario. 

To compensate the drawbacks of the BP and standard PSO algorithms 

for improved-performance ANFIS training, this study uses the RegPSO 

algorithm, which is capable to obtain global optimal solutions for almost 

all optimization problems [28], [29]. Hence, the optimization process of 

the RegPSO algorithm can obtain optimal parameter sets of the ANFIS 

MFs and thus accurate electricity demand forecasts. 

Besides, unlike the previous researches on ANFIS based load demand 

forecasting, this study employs the HHT technique as a feature extraction 

technique to pick the most relevant features of the predictor variables for 

the RegPSO-ANFIS model. 

In this paper, the Artificial Intelligence (AI) based integrated HHT-

RegPSO-ANFIS approach is chosen to develop building electricity 

demand forecast model mainly because of its improved training 

mechanism, higher accuracy and smaller learning time. 

The devised HHT-RegPSO-ANFIS based integrated electricity 

demand forecasting approach is compared with Persistence, ANN (back-

propagation feedforward ANN), GA-ANN (GA combined with ANN), 

ANFIS (back-propagation ANFIS), and GA-ANFIS (GA combined with 

ANFIS), to demonstrate its robustness regarding prediction accuracy and 

other performance indexes. 

The main targets and findings of this paper are outlined below. 

(1) Present a new and effective AI based integrated approach for 

short-term (24h-ahead) electricity demand forecasting in 

buildings considering several predictor variables; 

(2) Undertake performance assessment of the presented electricity 

demand forecasting approach over different building types 

(customer classes) such as residential, educational, offices, 

mixed-use type, and others. 

(3) Improve forecasting accuracy, considering accuracy levels 

obtained by other five approaches. 

The paper organization is given below. Section II presents the devised 

prediction approach and model framework. Section III describes the data 

sources and preparation techniques.  

The HHT-RegPSO-ANFIS integrated framework and the theoretical 

concepts of HHT, RegPSO and ANFIS are given in Section IV. The 

various performance criteria used to estimate the prediction accuracy are 

given in Section V. The experimental findings and statistical analysis of 

the devised electricity demand forecasting strategy are given in Sections 

VI. The study is finally summarized in Section VII. 

II. PROPOSED ELECTRICITY DEMAND FORECASTING APPROACH 

This paper devises a novel building electricity demand prediction 

model using the hybridization of HHT, RegPSO and ANFIS. The HHT is 

utilized to extract relevant features of the electric load data series to obtain 

a cluster of enhanced-feature subseries for improved prediction accuracy. 

The past values of predictor variables and HHT extracted subseries of the 

electricity demand data are employed to train the ANFIS. The future series 

of predictor values are then employed to predict the next electricity 

demand subseries based on the trained ANFIS model. The RegPSO 

searches for the best parameter sets of the ANFIS MFs to attain improved 

prediction accuracy. Finally, the predicted or next (ahead) electricity 

demand time series is reassembled by employing an inverse HHT on the 

predicted subseries. 

A two-year (2015 - 2016) window length information of building 

electricity demand history, meteorological variables, seasonal or calendar 

variations, building occupancy, and electricity price has been used to 

construct the proposed electricity demand forecasting model. The model 

is validated with actual electricity demand information of various 

buildings in the Otaniemi area of Espoo, Finland. The effectiveness of the 

devised electricity demand forecast model is tested with a one year (2017) 

testing window information. The forecast test results are presented for 

future days with a one-hour time interval. The forecast model of the 

devised integrated strategy has the ability to relearn any time when there 

is new learning dataset. The devised forecasting model is illustrated in 

Figure 1. 

III. DATA DESCRIPTION AND PREPARATION 

The predictor dataset employed to implement the proposed building 

electricity demand forecasting model, in this paper, are past values of 

electricity demand, meteorological variables (ambient air temperature, 

dew-point temperature and relative humidity), daily variations (hours in 

days), weekly variations (days in weeks), monthly variations (months in 

years), seasonal variations (seasons in years), building occupancy, 

electricity price, previous 24h average electricity demand, 24h lagged 

electricity demand, and 168h lagged electricity demand. Due to limitation 

of direct measurement of building occupancy data, we use indirect 

representation of the occupancy with two additional variables – 



holiday/weekend indicator and period of the day (working mode, idle 

mode and cool-down period) variables. Electricity price is also one of the 

predictor variable for constructing the forecasting model in this paper. For 

customers with time-of-use electricity pricing agreements, it is obvious 

that their electricity consumption is lower during the low price periods 

and higher during the peak price periods. Hence, electricity price is 

considered as one of the predictor variables as it may affect the load 

prediction process. 

 

Figure 1. Proposed building electricity demand forecasting model. 

The actual electricity demand data of various buildings in the Otaniemi 

area of Espoo, Finland has been used to develop the model. The electricity 

price data is obtained from the Nord pool [30]. The Finnish 

Meteorological Institute (FMI) [31] provides the weather observations. 

The calendar information is available in [32]. 

Some of the predictor variables should be processed to more simplified 

and matching representations ahead of the HHT decomposition and 

ANFIS learning. All the data values are converted into hourly (mean) 

values. The predictors and target data are finally arranged in one-hour 

resolution to fit the resolution differences of the different data sources. 

The weather forecast data record time zone (UTC) is converted to the local 

time to synchronize it with the time zone of the city where the buildings 

are located. 

IV. PROPOSED HHT-REGPSO-ANFIS INTEGRATED MODEL  

A. Hilbert-Huang Transform (HHT) 

The amplitudes of the electric load curves obtained from the 

buildings vary in each time instant. The HHT tool is employed to 

decompose the electricity demand data series into a cluster of data 

subseries. The resultant decomposed (subseries) data provides improved 

performance features than the original data. Thus, the decomposed data 

can be utilized to forecast the electricity demand with less prediction error. 

By employing the HHT, the analogical time representation of the 

frequency presence in the initial electricity demand data is carried out to 

obtain the real-time frequency of data. 

The real-time frequency is obtained employing the Hilbert 

transform (HT) [33]. HT for a monocomponent signal g(t) is described 

below. 

       ℎ(𝑡) =
1

𝜋
∫

𝑔(𝜏)

𝑡−𝜏

∞

−∞
𝑑𝜏                                                                     (1) 

In (1), g(t) and h(t) designate the conjugate pair that describes time-series 

f(t) given below. 

      𝑓(𝑡) = 𝑔(𝑡) + 𝑗ℎ(𝑡)                                                                      (2) 

The polar coordinate representation of (2) is expressed beneath. 

      𝑓(𝑡) = 𝑐(𝑡)𝑒𝑗∅(𝑡)                                                                       (3) 

Here, 

𝑐(𝑡) = √𝑔(𝑡)2 + ℎ(𝑡)2                                                                (4) 

∅(𝑡) = arctan (
ℎ(𝑡)

𝑔(𝑡)
)                    

c(t) and φ(t) designate the real-time amplitude and phase of f(t). c(t) and 

φ(t) represent the suboptimal (neighborhood) representation of an 

amplitude- and phase-angle-oscillating trigonometrical fit to g(t). The 

real-time frequency ω(t) is obtained from the real-time phase expressed 

below: 

   𝜔(𝑡) =
𝑑∅(𝑡)

𝑑𝑡
=

ℎ̇(𝑡)𝑔(𝑡)−ℎ(𝑡)𝑔̇(𝑡)

𝑔2(𝑡)+ℎ2(𝑡)
                                                      (5) 

ω(t) is essentially feasible merely if φ(t) is a monocomponent signal. 

Since φ(t) is derived from g(t), g(t) must be monocomponent signal as 

well. However, almost all practical signals, and particularly those found 

from weather forecasts and building electricity demand, are not mono-

component. The work by Huang et al. [33] has described the Empirical 

Mode Decomposition (EMD) technique for decomposing multi-

component signals into mono-component subseries signals. By using the 

HHT, the target, electricity demand, data is expressed by an aggregation 

of Intrinsic Mode Functions (IMFs). Each generated IMF is 

monocomponent quantity that must satisfy the requirements below:  

(1) The quantity of zero touches and the quantity of extreme points 

should be same or vary, at extreme, by one 

(2) The mean of the wraps found by local maximum points and 

minimum points must be zero at every instant. 

The IMFs are derived from the initial data by employing a sifting 

technique. In the sifting technique, bottom and top wraps are formed by 

introducing an interpolating curve via the neighborhood minimum and 

maximum points. The wraps average q1 is deducted from g(t) to find the 

initial element d1. To create the IMFs, the sifting process is successively 

carried out j times to di, till the IMFs are found: 

         𝑑1𝑘 = 𝑑1(𝑗−1)
− 𝑞1𝑗

                                                                  (6) 

The sifting procedure ends if the standard-deviation of two serial 

outcomes is less than a specified threshold value. The initial IMF contains 

information about the peak frequency, is expressed as: 

𝑎1 = 𝑑1𝑗
                                                                                            (7) 

Then, a1 is deducted from the first signal, and the residue p1, that 

holds information about the lesser frequency elements, is expressed as: 

         𝑝1 = 𝑔(𝑡) − 𝑎1                                                                          (8) 

In the process of the HHT EMD decomposition, p1 is considered 

like the beginning signal. The procedure iterates, a2 is calculated, etc., till 

either of the requirements below are satisfied: 

(1) pn or an has lower energy 

(2) pn is monotonic. 

Utilizing the aforementioned process, the decomposition of the initial 

multi-component signal g(t) is expressed as follows. 



    𝑔(𝑡) = ∑ 𝑎𝑖 + 𝑝𝑛
𝑛
𝑖=1                                                                    (9) 

Each IMF (ai) is constrained to HT by (5) to determine the real-time 

frequencies. Since g(t) is a multicomponent signal, it contains greater than 

one frequencies. Therefore, the HT based decomposition of g(t) is given 

by following expression [33]: 

       𝑔(𝑡) = 𝑅𝑒{∑ 𝑐𝑖(𝑡)𝑒𝑥𝑝(𝑗 ∫ 𝜔𝑖 (𝑡)𝑑𝑡)𝑛
𝑖=1 }                                 (10) 

Here, ci(t) and ωi(t) are real-time quantities whose values change 

instantaneously. The Hilbert transform assisted Huang EMD 

preprocessor, expressed in (10), is also called the Hilbert-Huang 

transform (HHT). 

HHT provides a comprehensive, adaptively flexible and almost 

orthogonal designation of the initial function compared to Fourier and 

Wavelet transforms [34], [35]. Therefore, in this paper, the HHT is 

selected for the devised day-ahead electricity demand forecasting model 

development because of its better performance for extracting important 

detail behaviors of the target variable. That is, in this study, the amplitudes 

of the IMFs resulted from the HHT decomposition (of the electricity 

demand) are used as target variable for the RegPSO-ANFIS based 

electricity demand forecasting model.  

B. Regrouping Particle Swarm Optimization (RegPSO) 

PSO is a non-deterministic, evolutionary and population-oriented 

global optimization technique motivated by social activities of animals 

like swarm of insects, flock of birds and school of fishes. 

It does not require genetic manipulators like crossover or mutation as 

the other evolutionary type optimization algorithms, such as the GA 

optimization technique. It has very few describing parameters, only 

position and velocity, and hence it is easy for implementations. 

PSO has been widely applied in power system studies for different 

application scenarios. Its general working principle and power system 

related applications are presented in [36]. 

The search space subset for the PSO positions (decision variables) can 

be defined as follows. 

Ω = ⌊𝑝1
𝐿 , 𝑝1

𝑈⌋ × ⌊𝑝2
𝐿 , 𝑝2

𝑈⌋ × … × ⌊𝑝𝑛
𝐿 , 𝑝𝑛

𝑈⌋ ⊂ 𝑅𝑛                       (11) 

where, the p is a vector of decision variables and x∈R
n
, p

j
L and p

j
U are the 

smaller and higher boundaries of the search domain, respectively; j is the 

search space dimension index. 

The kth particle position at the ith iteration is described as: 

𝑝𝑘(𝑖) = 𝑝𝑘(𝑖 − 1) + 𝑣𝑘(𝑖);  𝑘 = 1, 2, … , 𝑀                           (12) 

where, M is swarm-size; vk(i) is kth particle velocity at the ith step.  

The velocity exhibits the degree of change of the particle position 

and it is described below. 

   𝑣𝑘(𝑖) = 𝛾(𝑖)𝑣𝑘(𝑖 − 1) + 𝑙1𝑟𝑎𝑑1 (𝑃𝑏𝑒𝑠𝑡,𝑘 − 𝑝𝑘(𝑖 − 1)) 

                        + 𝑙2𝑟𝑎𝑑2(𝐺𝑏𝑒𝑠𝑡 − 𝑝𝑘(𝑖 − 1))                                              (13) 

where, γ(i) is an iteration-dependent inertia coefficient. In this paper, 

value of γ(i) is considered to reduce linearly following the iteration step 

to decay out the particle velocity in the subsequent iterations. This 

dynamic inertia coefficient for the particles’ velocities enables the swarm 

of particles to converge more accurately, and expressed as follows. 

 𝛾(𝑖) = 𝛾𝑚𝑎𝑥 − (
𝛾𝑚𝑎𝑥−𝛾𝑚𝑖𝑛

𝑖𝑚𝑎𝑥
) 𝑖                                               (14) 

where, γmax is the initial inertia coefficient, γmin is the final inertia 

coefficient, imax is the highest number of iteration, l1 is the cognitive 

learning speed, l2 is the social learning speed, rad1 and rad2 are arbitrary 

numbers in (0,1) range, Pbest,k (pBest) is the optimal solution managed by 

particle k, and Gbest (gBest) is the global optimum. 

However, the standard PSO algorithm described above by (11) to (14) 

faces stagnation when the particles early converges to some particular area 

in the search domain [28]. Hence, there should an alternative mechanism 

that overcomes this early convergence problem of the standard PSO in 

order to utilize the computational simplicity, easy implementation and fast 

convergent advantages of the algorithm. In this study, the RegPSO 

algorithm is devised to avoid this stagnation (premature convergence) 

problem. RegPSO is an advanced version of the standard PSO algorithm 

equipped with anti-stagnation (anti-false-convergent) mechanism. It 

immediately reorganizes the swarm when stagnation is recognized or 

other stopping criteria (iteration number or function value) is satisfied 

[29]. This frees the particles in the swarm from possible stagnation 

problems, thus creating further explorations heading to the real global 

solution.  

Different experimental tests have been conducted to measure the 

effectiveness of the RegPSO using common benchmark problems [28]. 

The RegPSO effectively estimates the global solution of the benchmark 

problems.  

The swarm radius at iteration i is given by: 

𝛿(𝑖) = 𝑀𝑎𝑥 𝑜𝑓 ‖𝑝𝑘(𝑖) − 𝐺𝑏𝑒𝑠𝑡‖;  𝑘𝜀{1, 2, … , 𝑁}                 (15) 

As given by (15), the swarm radial range δ(i) is computed as the extreme 

Euclidean norm (||.||) between the particles’ positions and global best 

solution.  

The condition for the premature-convergence is given as follows. 

     𝛿𝑛𝑜𝑟𝑚 =
𝛿(𝑖)

𝑑𝑖𝑎𝑚(Ω)
< 𝜀                                                                (16) 

where, δnorm is the normalized swarm radius, diam(Ω)=‖range(Ω)‖ is the 

diameter of the search space and ε is the stagnation threshold. 

The RegPSO algorithm considers the particles in the swarm are 

very close to each other (premature convergence or stagnation occurs) and 

initiates the regrouping of the particles when (16) is satisfied. When the 

stagnation is detected by the condition specified in (16), regrouping of the 

particles in the swarm is initialized. The regrouping performs in the search 

space about the center of the global best position, Gbest. The regrouping 

factor defined below is used [28]: 

𝜌 <
6

5𝜀
                                                                                         (17) 

During the detection of the stagnation, the swarm regrouping range from 

the global best position is evaluated in each dimension as the smallest 

value of: 

(a) The initial search space scope 

(b) The multiplication of the regrouping ratio and highest norm 

from the global optimal position in the direction of dimension 

j as defined below: 

  𝑟𝑎𝑛𝑔𝑒𝑗(Ω𝑟) = 𝑚𝑖𝑛(𝑟𝑎𝑛𝑔𝑒𝑗(Ω𝑜), 𝜌 max|𝑝𝑘,𝑗
𝑟−1 − 𝐺𝑏𝑒𝑠𝑡,𝑗

𝑟−1 |); 

                                            𝑘𝜖{1, 2, … , 𝑁}                                                  (18) 

Then, the swarm is regrouped by reinitializing the particles by the 

following new position update rule: 

𝑝𝑘 = 𝐺𝑏𝑒𝑠𝑡
𝑟−1 + 𝑟′. 𝑟𝑎𝑛𝑔𝑒(Ω𝑟) −

1

2
𝑟𝑎𝑛𝑔𝑒(Ω𝑟)                      (19) 

where, 𝑟𝑎𝑛𝑔𝑒(Ω𝑟) = [𝑟𝑎𝑛𝑔𝑒1(Ω𝑟), … , 𝑟𝑎𝑛𝑔𝑒𝑛(Ω𝑟)] which employs the 

arbitrary vector r'⃗⃗ 𝜖(0,1) for making the swarm random.  
The modified search domain for the RegPSO new positions is given 

by: 

Ω𝑟 = ⌊𝑝1
𝐿,𝑟 , 𝑝1

𝑈,𝑟⌋ × ⌊𝑝2
𝐿,𝑟 , 𝑝2

𝑈,𝑟⌋ × … × ⌊𝑝𝑛
𝐿,𝑟, 𝑝𝑛

𝑈,𝑟⌋                 (20) 

Here, the associated lower and upper bounds are given by (21) and (22), 

respectively, as: 

     𝑝𝑗
𝐿,𝑟 = 𝐺𝑏𝑒𝑠𝑡,𝑗

𝑟−1 −
1

2
𝑟𝑎𝑛𝑔𝑒𝑗(Ω𝑟)                                                   (21) 

     𝑝𝑗
𝐿,𝑈 = 𝐺𝑏𝑒𝑠𝑡,𝑗

𝑟−1 +
1

2
𝑟𝑎𝑛𝑔𝑒𝑗(Ω𝑟)                                                (22) 

The regrouping index, r, is set to zero before the regrouping is triggered 



and increases by one successively as each regrouping takes place. Gbest
r-1

 is 

the vector of true optimal positions at the final routine of the preceding 

group. p⃗⃗
k

r-1
 is the kth particle position at the final iteration of the prior 

grouping.  

The initial search space Ω
o
 is associated with a regrouping catalogue of 

zero (r = 0). This indicates the regrouping task does not take place. The 

peak velocity for each regrouping is determined as follows. 

             𝑣𝑗
𝑚𝑎𝑥,𝑟 = 𝜆. 𝑟𝑎𝑛𝑔𝑒𝑗(Ω𝑟)                                                         (23) 

where, λ is the velocity clamping coefficient. 

C. Adaptive Neuro-Fuzzy Inference System (ANFIS) 

ANFIS falls in the group of intelligent multi-layer artificial networks. 

It is a feedforward artificial network [37]. It is chosen for the electricity 

demand prediction model in the study mainly because of its improved 

training mechanism and small learning time. ANFIS has been used to 

nonlinear approximation and forecasting problems in which previous data 

or scenario is employed to forecast the future data or scenario. ANFISs 

integrate the self-taught capability of ANNs and the human linguistic 

expression to quantitative (or numeric) value conversion capability of 

fuzzy logic system (FLS) [38]. The ANFIS architectural configuration is 

depicted in Figure 2.  

 

Figure 2. ANFIS architectural configuration. 

In this study, the ANFIS model implemented is a Takagi-Sugeno FLS 

layered on an ANN network with five layers. The layers have plenty of 

nodes expressed with node functions (NFs). The NFs are presented below. 

Assume Yj,i designates the yield of node i of the jth layer. 

In layer 1, each node is self-learning and its NF is expressed as: 

𝑌1,𝑖 = 𝜇𝐶𝑖(𝑢);  𝑖 = 1, 2 or                                                          (24) 

𝑌1,𝑖 = 𝜇𝐷𝑖−2(𝑣);  𝑖 = 3, 4                                                         (25) 

Here, u or v is the ith node input. Ci (Di-2) is the linguistic tag linked to the 

particular node. Consequently, Y1,i is the belongingness status of fuzzy-

set C (C1, C2, D1, or D2). The membership status designates the grade by 

which the particular input u (or v) suits the linguistic label C. There are 

different types of membership functions (MFs) which have been used to 

evaluate the degree to which a given input belongs to a particular class or 

linguistic variable. For example, a general bell MF is expressed as 

follows. 

𝜇𝐶𝑖(𝑢) =
1

1+|
𝑢−𝑟𝑖

𝑝𝑖
|
2𝑞𝑖

                                                             (26) 

Here, {pi, qi, ri} is the ANFIS input layer MF parameter set. When these 

parameter set values change, the MF alters consequently, thus showing 

several types of MFs on linguistic label Ai. The other common and 

appropriate nominee MFs that can be utilized as a node function in layer 

1 are the Gaussian MF, z-shaped MF, trapezoidal MF, triangular-shaped 

MF, s-shaped MF, and sigmoid MF [39]. This layer parameters are 

premise parameters. 

In layer 2, the nodes п are described by yield denoting the rule firing 

power and this outcome is the multiplication of the entering raw-signals: 

  𝑌2,𝑖 = 𝛾𝑖 = ∏ 𝜇𝑗𝑗 = 𝜇𝐶𝑖(𝑢). 𝜇𝐷𝑖(𝑢);  𝑖 = 1, 2                    (27) 

In layer 3, the nodes N evaluate the normalization of firing power of 

rule i by the overall combination of each rule’s power: 

               𝑌3,1 = 𝛾̅𝑖 =
𝛾𝑖

∑ 𝛾𝑗𝑗
=

𝛾𝑖

𝛾1+𝛾2
;  𝑖 = 1, 2                          (28) 

This layer outcomes are regularized firing powers due to the 

normalization process. 

In layer 4, each node is self-learning and the nodes calculate their 

associated rule to the entire yield as follows.  

                 𝑌4,𝑖 = 𝛾̅𝑖𝑧𝑖 = 𝛾̅𝑖(𝑎𝑖𝑢 + 𝑏𝑖𝑢 + 𝑐𝑖)                                                (29) 

where, {ai, bi, ci} is the ANFIS output layer MF parameter set; γ̅
i
 is the 

result from layer 3. The constant MF and linear MF are the most 

appropriate and commonly used MFs in the output layer. This layer 

parameters are resultant parameters. 

In layer 5, the ending node Σ computes the end-result by adding all the 

entering inputs as: 

 𝑌5,𝑖 = ∑ 𝛾̅𝑖𝑖 𝑧𝑖 =
∑ 𝛾𝑖𝑧𝑖𝑖

∑ 𝛾𝑖𝑖
                                                              (30) 

Therefore, a self-learning (adapting) AI model corresponds to Sugeno 

FLS in the context of functional performance. 

In this study, the ANFIS network utilizes the RegPSO algorithm to 

optimally search the ANFIS MF parameters. These MF parameters are 

augmented to parameters of the RegPSO. The MSE is employed as fitness 

function in the RegPSO. The target of the devised integrated model is to 

realize a possible smallest value for the objective cost function. This 

ANFIS MF parameter optimization search procedure run until the 

electricity demand prediction error arrives at a present minimum value or 

zero. The RegPSO algorithm has the benefit of computational easiness for 

a pre-specified dimension of ANFIS network topology. That is why it is 

chosen for this paper as a best tool for the ANFIS based electricity demand 

forecast model parameter optimization. 

The ANFIS model in this study is implemented using Matlab 

Software. Various set of parameters such as MF types, number of MFs, 

learning algorithms, etc. have been investigated experimentally to obtain 

the ANFIS optimal configuration having the lowest error. 

D. Operation of the Proposed HHT-RegPSO-ANFIS Model 

Here, the detail operation and calibration of the integrated approach 

employed to implement the devised electric load prediction approach are 

described systematically, as illustrated in Figure 3. 

As it is clearly depicted in Figure 3, the HHT tools are used in the 

first and final steps of the forecasting process, for the electricity demand 

variable decomposition and reconstruction purposes, respectively. 

The target variable, electricity demand, series is first decomposed 

into several subseries (IMFs) by the HHT. The decomposed historical 

subseries are then used to train the ANFIS Network using the RegPSO 

optimization method. The trained ANFIS model maps the nonlinear 

relationship between the predictor variables and electricity demand 

subseries. Then, the future (next day) predictors are fed to the developed 

(trained) RegPSO-ANFIS network to predict the future electricity demand 

subseries of the buildings. Lastly, the future electricity demand subseries 

are reassembled to give the desired electricity demand forecast. 

V. FORECASTING ACCURACY ASSESSMENT  

To assess the accuracy of the devised integrated HHT-RegPSO-

ANFIS electricity demand forecasting strategy, the MAPE (mean absolute 

percent error), RMSE (root mean squared error) and NMAE (normalized 

mean absolute error) and FS (forecast skill) criteria are utilized.  

The accuracy assessment criteria are calculated in terms of the actual 

electricity demand, and given hereafter. 

The MAPE is given as: 

         𝑀𝐴𝑃𝐸 =
100

𝑁
∑ |

𝑃ℎ
𝑎−𝑃ℎ

𝑓

𝑃ℎ
𝑎 |𝑁

ℎ=1                                                      (31) 

where, Ph
a
 and Ph

f
 are the real and prediction values of the electricity 

demand at hour h, respectively, and N is the forecasting horizon and its 

value is 24 for day-ahead forecast. 



 

Figure 3. Proposed electricity demand forecasting algorithm 

The RMSE is defined as: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑃ℎ

𝑎 − 𝑃ℎ
𝑓

)
2

𝑁
ℎ=1                                                  (32) 

   The NMAE is expressed as:        

                   𝑁𝑀𝐴𝐸 =
1

𝑁
∑

|𝑃ℎ
𝑎−𝑃ℎ

𝑓
|

𝑃𝑝𝑒𝑎𝑘

𝑁
ℎ=1                                                       (33)        

where, Ppeak is the peak aggregate electricity demand of the building. 

The FS criterion estimates the merit of prediction approaches by 

referring the prediction accuracy obtained by evaluated approaches to 

persistence predictions, which assume time lag electricity demand 

correlations (similarities). For 24h-ahead predictions, the persistence 

forecast is given by: 

         𝑃ℎ
𝑓(𝑡) = 𝑃ℎ

𝑎(𝑡 − 24)                                                                   (34) 

The FS criterion is calculated based on the relation of the RMSEs 

of forecasting models with reference to persistence method [35], [40], it 

is given as follows. 

 𝐹𝑆 = 1 −
𝑅𝑀𝑆𝐸𝑀𝑜𝑑𝑒𝑙

𝑅𝑀𝑆𝐸𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒
                                                     (35) 

A forecast-skill value of 1 indicates a perfect model, and 0 indicates the 

prediction approach’s RMSE is the same as the reference’s RMSE (no 

improvement from the persistence). A negative FS tells lower 

effectiveness of the prediction approach than the reference. Based on the 

above expression of the FS criterion, the persistence approach should have 

FS value of zero. 

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this study, the integrated HHT-RegPSO-ANFIS model is 

developed for short-term (24h-ahead) building electricity demand 

forecasting. Electricity demand data of four building types (pilot customer 

classes) in the Otaniemi area of Espoo, Finland have been used to 

construct and validate the forecasting model. The buildings are Building 

A (residential building type), Building B (educational building type, 

contains classrooms and laboratories), Building C (office building type), 

and Building D (mixed use building, contains computer laboratories and 

health care center). The buildings have a peak (in the three years period: 

2015 - 2017) aggregate electricity demand of 236 kW, 626 kW, 29 kW, 

and 86 kW, respectively.  

The prediction performance of the devised forecast model is 

verified with a one-year (2017) window length testing data. However, to 

illustrate the testing results here, the model testing result is given for 

randomly chosen four weekdays and four weekends/holidays representing 

the weekdays and weekends of the four seasons of the year: summer 

weekday (Wednesday - July 26, 2017), summer weekend (Sunday - July 

16, 2017), fall weekday (Thursday - Oct 12, 2017), fall weekend 

(Saturday - Oct 28, 2017), winter weekday (Monday - January 9, 2017), 

winter holiday (Sunday - January 1, 2017), spring weekday (Tuesday – 

April 18, 2017), and spring weekend (Saturday – April 8, 2017). Hence, 

particular days with better electricity demand profiles are not chosen 

deliberately. This demonstrates an irregular forecast accuracy distribution 

in the testing year that reveals the actual electricity consumption in the 

buildings.  

 

The forecast results are presented for the random testing days with 

one-hour time resolution. The electricity demand forecasts by the 

proposed integrated HHT-RegPSO-ANFIS method are depicted in 

Figures 4 to 5 for weekdays and weekends/holidays, respectively.  

The plots for the forecast results are presented for some of the pilot 

buildings, due to limitation of space.  

 

Figure 4. Real vs. forecasted electricity demand in weekdays for Building A – 

residential building  

As it can be observed in Figures 4 to 5, the forecasts by the devised 

integrated HHT-RegPSO-ANFIS approach follow the actual electricity 

demand trends with smaller gaps (errors).  



Table I provides the values of the criteria employed to estimate the 

error of the proposed integrated HHT-RegPSO-ANFIS approach for 24h-

ahead forecasting of building electricity demand.  

 

Figure 5. Real vs. forecasted electricity demand in weekends for Building B – 

educational building  

TABLE I 
 ACCURACY OF THE PROPOSED MODEL FOR BUILDING C – OFFICE BUILDING 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

The values, in Table I, are shown for one of the pilot buildings, due 

to limitation of space. As clearly presented in Table I, the proposed 

approach has effectively achieved very acceptable (accurate) values in all 

the evaluated accuracy criteria. As we compare the performance of the 

devised approach between the weekdays and weekends, it is seen that the 

prediction accuracy is lower during the weekdays except for the 

residential building type. Furthermore, regarding the building types, the 

proposed model has resulted in very accurate and acceptable forecasting 

accuracy for all building types. Specifically, the model has achieved an 

excellent performance (MAPE of 1.91%) for the educational building 

type and relatively lowest accuracy (MAPE of 10.23%) for the mixed-use 

building type. 

Besides, as we compare the performance of the devised integrated 

approach among the seasons, it is observed that the forecast errors are 

higher during winter and summer seasons for some of the buildings.  

This is because there are higher consumptions of electricity and much 

uncertainty in winter and summer seasons due to environmental (weather) 

impacts.  

Table II presents an effectiveness comparison between the devised 

integrated HHT-RegPSO-ANFIS based building electricity demand 

forecasting strategy and other five strategies (Persistence, ANN, GA-

ANN, ANFIS, and GA-ANFIS), based on the MAPE criteria. The 

comparison is shown for one of the pilot buildings, due to limitation of 

space. 

TABLE II 

COMPARATIVE MAPE (%) FOR BUILDING D – MIXED-USE BUILDING  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

1Wd = Weekday, 2Hd = Holiday, 3We = Weekend 

The devised integrated strategy provides the lowest forecast error; 

the total mean MAPE obtained, respectively for the residential type, 

educational type, office type and mixed-use type buildings, is 4.16%, 

1.91%, 8.06%, and 10.23%. The devised strategy’s total mean MAPE 

increment compared to the other five strategies is 42.38%, 19.38%, 

8.37%, 4.59% and 3.03%, respectively, for the residential building type, 

81.76%, 19.07%, 9.05%, 4.5% and 2.55%, respectively, for the 

educational building type, 62.75%, 19.07%, 8.62%, 4.61% and 2.89%, 

respectively, for the office building type, and 55.33%, 19.32%, 8.98%, 

4.57% and 2.57%, respectively, for the mixed-use building type. The 

same training dataset is used for each of the presented approaches and 

each approach is implemented with its optimal parameters and setups. 

For further extensive comparison of the various forecasting models 

evaluated in this study, demonstrative experimental results for the 

complete one-year (2017) testing data are provided next, in Table III.  

TABLE III 

COMPARATIVE MAPE (%) FOR ONE-YEAR (2017) TEST DATA FOR BUILDING B – 

EDUCATIONAL BUILDING  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As verified by the demonstrative experimental results in Table III, the 

proposed forecasting model annual MAPEs for all the buildings have 

almost similar values as that of the randomly chosen testing days. This 

Day Type MAPE 

(%) 

RMSE 

(kW) 

NMAE 

(%) 

Forecast 

Skill 

(%) 

Winter 
Weekday 5.07 0.82 3.05 76.19 

Holiday 6.65 0.69 2.65 71.28 

Spring 
Weekday 9.21 1.61 6.28 63.01 

Weekend 12.75 1.42 6.09 84.34 

Summer 
Weekday 6.45 0.85 3.17 32.23 

Weekend 7.81 0.78 3.24 11.42 

Fall 
Weekday 7.10 0.87 3.61 46.66 

Weekend 9.49 0.98 3.63 73.03 

Average 
Weekday 6.96 1.04 4.03 54.52 

Weekend 9.176 0.97 3.91 60.01 

Total 

Average 
 

8.06 1.01 3.97 57.26 

 

Day Type Persistence ANN 
GA-

ANN 
ANFIS 

GA-

ANFIS 

HHT-

RegPSO-

ANFIS 

Winter 
Wd1 27.63 6.67 5.91 5.51 5.44 5.34 

Hd2 8.97 7.46 6.23 6.12 6.04 5.89 

Spring 
Wd 18.60 14.51 12.92 12.04 11.75 11.46 

We3 44.41 20.87 18.72 18.30 17.88 17.46 

Summer 
Wd 36.11 25.80 22.70 21.16 20.64 20.12 

We 15.70 14.27 13.00 12.71 12.42 12.00 

Fall 
Wd 8.30 8.09 7.17 6.68 6.60 6.47 

We 23.52 3.74 3.31 3.24 3.20 3.05 

Average 
Wd 22.66 13.77 12.17 11.35 11.11 10.85 

We 23.15 11.58 10.31 10.09 9.89 9.60 

Total 

Average 
 

22.90 12.68 11.24 10.72 10.50 10.23 

 

Month Persistence ANN 
GA-

ANN 
ANFIS 

GA-

ANFIS 

HHT-

RegPSO-

ANFIS 

 

January 13.76 1.53 1.35 1.26 1.24 1.22  

February 14.59 1.62 1.44 1.34 1.32 1.29  

March 7.71 1.68 1.49 1.39 1.35 1.32  

April 9.46 2.06 1.83 1.71 1.66 1.62  

May 10.71 2.33 2.07 1.93 1.88 1.83  

June 2.14 2.13 1.87 1.74 1.70 1.65  

July 2.30 2.28 2.01 1.87 1.82 1.77  

August 1.64 1.62 1.43 1.33 1.29 1.26  

September 2.21 1.88 1.67 1.56 1.53 1.50  

October 2.25 1.92 1.71 1.59 1.56 1.53  

November 2.67 2.28 2.02 1.88 1.86 1.82  

December 23.56 2.62 2.32 2.16 2.13 2.09  

Average 7.75 2.00 1.77 1.65 1.61 1.58  

 



verifies the consistency of the proposed model performance throughout 

the year. In addition, the devised integrated HHT-RegPSO-ANFIS model 

still outperforms all the other evaluated models. 

VII. CONCLUSIONS 

The devised integrated electricity demand strategy is based on the 

hybridization of the HHT, RegPSO and ANFIS. A two-year (2015 - 2016) 

historical data of predictors is utilized to develop the forecast model of the 

devised strategy. The prediction accuracy of the devised strategy is tested 

with a one-year (2017) window length testing data. The modeling 

approach has the ability to learn any time when there is a new training 

dataset. The application of the devised strategy for 24h-ahead building 

electricity demand forecasting is new and effectively successful. The total 

mean values of MAPE, NMAE and FS, obtained for the whole testing 

year, are 4.17%, 2.10% and 39.92%, respectively, for the residential type 

building, 1.58%, 1.05% and 62.44%, respectively, for the educational 

type building, 7.12%, 2.64% and 59.03%, respectively, for the office type 

building, and 9.25%, 4.17% and 54.46%, respectively, for the mixed-use 

type building. The devised model outperforms other five evaluated 

electricity demand forecasting models, regarding forecasting accuracy 

measures. The model has given very accurate forecast results for all the 

building types. The mean execution time for 24h-ahead forecast 

(excluding training time)  is lower than 10 sec using MATLAB simulation 

environment on a research workstation with Intel Core i7-6820HQ 

Processor, 2.70 GHz CPU, 16 GB RAM. Therefore, the presented 

numerical results and performance comparisons with other approaches 

verify the capability and suitability of the devised integrated approach for 

a short-term electricity demand prediction in building energy systems. 
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