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Abstract—This paper proposes an Artificial Intelligence (AI) based 

data-driven approach to forecast heat demand for various customer 

types in a District Heating System (DHS). The proposed day-ahead 

forecasting approach is based on a hybrid model consisting of 

Imperialistic Competitive Algorithm (ICA) and Support Vector 

Machine (SVM). The model is built using two years (2015 - 2016) of 

hourly data from various buildings in the Otaniemi area of Espoo, 

Finland. Day-ahead forecast models are also developed using 

Persistence and four other AI based techniques. Comparative 

forecasting performance analysis among these techniques was 

performed. The proposed ICA-SVM heat demand forecasting model 

is tested and validated using an out-of-sample one-year (2017) hourly 

data of the buildings’ district heat consumption. The prediction 

results are presented for the out-of-sample testing days in a one-hour 

time interval. The validation results demonstrate that the devised 

model is able to predict the buildings’ heat demand with an improved 

accuracy and short computation time. Moreover, the proposed model 

demonstrates outperformed prediction accuracy improvement, 

compared to the other five evaluated models. 

Keywords—SVM, ICA, district heating, prediction, energy efficiency, 

energy management, AI, machine learning, building, decentralized 

energy systems, smart cities, smart grid. 

I. INTRODUCTION 

In the recent decentralized power system paradigm, a building 

can be considered as a prosumer having its own local energy 

supply with the assumption that power balancing can possibly be 

achieved locally. Buildings consume large quantity of energy. 

According to the Center for Clean Air Policy (CCAP), buildings 

share almost 40% of the global energy demand [1] and as Eurostat, 

buildings share 38.1% of the energy demand in the European 

Union (EU), much greater than any other area, comprising 

transport (33.3%) and industry/factory (25.9%) [2]. Specifically, 

heating demands (space heating, water heating and space cooling) 

shares about 55% of the world building energy demand [3]. The 

implementation of efficient and optimal building energy 

management systems (BEMS) is anticipated to produce a peak 

saving of 8% of the energy usage in the EU [4].  

For reducing the power consumption and enhance compliance 

with the EU policies on buildings energy efficiency [5], it is 

necessary to regulate effectively the available Heating, 

Ventilation, and Air Conditioning (HVAC) systems.  

Hence, heat demand (energy consumption of HVAC systems) 

forecasting is vital for optimal, efficient and smart energy 

management. This largely assists the control and management of 

BEMSs, in the contemporary smart grid context.  

Previous works in the area of heat demand prediction for 

buildings can be classified as classical and data-driven techniques 
[6], [7]. The classical methods use equations that define the 

physical characteristics of a system to estimate the outcome while 
the data-driven techniques relate to artificial intelligence (AI), 

machine leaning and deep learning where observations of system 
inputs and outputs are gathered for model development. The 

observed data is then employed to describe mathematical model 
of the system [6]. Plenty of researches have recently taken into 

account the use of AI, machine learning and deep learning to build 
data-driven systems because of the recent fast deployment of 

smart meters and sensors to collect system data. Various data-
driven AI based methods have been used for heat demand 

forecasting in different scenarios, support vector regression [8], 

multiple regression [9], artificial neural network (ANN) [10], 
[11]. Regarding heat demand forecasting, the AI based data-

driven methods have shown a considerable accuracy 
improvements over the classical methods. The AI methods have 

the advantages of establishing models from big data sizes, easy 
adaptability and fast model parameter updating capability [12].  

In district heating system (DHS), several progresses have been 

undertaken to achieve effective operational control from the 

economic and ecological viewpoints.  

Nevertheless, most previous works are limited to the 

generation side [11], [13] and [14]. The focus of this paper is to 

assist smart building energy management from the demand 

control side based on a data-driven hybrid AI model to forecast 

building heat demand in district heating systems. 

However, as reported above, most of the heat demand 

forecasting models developed so far are at national or regional 

levels. There have been only very few studies on heat demand 

forecasting at small-scale levels. Thus, this paper aims to 

contribute in addressing the problem of heat demand forecasting 

in buildings. Besides, most of the forecasting models by the prior 

researchers employed limited set of predictors, and hence, it has 

become a major problem to obtain a reliable forecasting 

performance and accuracy.  



Moreover, most of the previous support vector machine (SVM) 

based heat demand forecasting approaches have employed a Back 

Propagation (BP) training technique to obtain the SVM model 

parameters. Although the BP training technique needs less 

computation time, it may be stuck by suboptimal (local) solutions. 

This paper proposes a hybrid AI model combining the 

imperialistic competitive algorithm and support vector machine 

(ICA-SVM) for the day-ahead prediction of district heat demand 

in buildings. The paper uses the imperialistic competitive 

algorithm (ICA) optimization algorithm to search for the optimal 

values of the SVM model parameters. ICA, unlike BP algorithms, 

is capable to find global optimal solutions. Hence, optimal 

parameter sets of the SVM model and thus accurate forecasts can 

be obtained by the optimization process of the ICA algorithm. The 

hybrid ICA-SVM approach is chosen to develop building district 

heat demand forecast model mainly because of its improved 

training mechanism, higher accuracy and smaller learning time. 

The proposed ICA-SVM based hybrid heat demand 

forecasting approach is compared with Persistence, ANN (back-

propagation feedforward ANN), GA-ANN (GA combined with 

ANN), SVM (back-propagation SVM), and GA-SVM (GA 

combined with SVM), to demonstrate its robustness regarding 

prediction accuracy and other performance indexes. 

The paper layout is presented below. Section II presents the 

devised prediction approach and model framework. Section III 

defines the data collection and preparation techniques. The ICA-

SVM hybrid framework is given in Section IV. The various 

performance criteria used to estimate the prediction accuracy are 

given in Section V. The experimental findings and statistical 

analysis of the devised heat demand forecasting strategy are given 

in Sections VI. The paper is finally concluded in Section VII. 

II. PROPOSED HEAT DEMAND PREDICTION STRATEGY 

This paper devises a novel building district heat demand 

prediction model based on the combination of ICA and SVM. The 

past values of the predictor variables and heat demand data are 

employed to train the SVM model using the ICA parameter 

optimization. The future values of the predictors are then 

employed to predict the future heat demand using the trained ICA-

SVM model. The model is validated with actual district heat 

demand information of various buildings in the Otaniemi area of 

Espoo, Finland. The proposed model has the ability to relearn any 

time when there is new learning dataset. The model schematic is 

shown in Figure 1. 

III. DATA COLLECTION AND PREPROCESSING 

The predictor dataset used to develop the proposed building 

district heat demand forecasting model, in this paper, are past 

values of district heat demand, meteorological data (ambient air 

temperature, dew-point temperature, ambient humidity, ambient 

air pressure, wind speed, wind direction, and solar irradiation), 

daily variations (hours in a day), weekly variations (days in a 

week), monthly variations (months in a year), seasonal variations 

(seasons in a year), building occupancy, previous 24h average heat 

demand, 24h lagged heat demand, and 168h lagged heat demand 

data. An actual heat demand data of different customer types are 

considered while developing the forecasting model. 

 

Figure 1. Proposed building district heat demand forecasting model. 

The meteorological data is obtained from the nearest weather 

station of the Finnish Meteorological Institute (FMI) [15], while 

the calendar (seasonality) information is available in [16]. Due to 

limitation of direct measurement of building occupancy data, we 

use indirect representation of the occupancy with two additional 

variables – holiday/weekend indicator and period of the day 

variables. 

Some of the predictor variables are processed to more 

simplified and matching representations ahead of the SVM 

learning. All the data values are converted into hourly (mean) 

values. The predictors and target data are finally arranged in one-

hour resolution to fit the resolution differences of the different 

data sources. The weather forecast data record time zone (UTC) 

is converted to the local time to synchronize it with the time zone 

of the Espoo city where the buildings are located. 

IV. PROPOSED HYBRID ICA-SVM MODEL 

A. Imperialist Competitive Algorithm (ICA) 

The ICA optimization technique is employed, in this study, in 

order to optimally adjust the SVM parameters, for achieving a 



possible maximum prediction accuracy of the proposed district 

heat demand forecasting model. ICA algorithm is a newly 
emerging optimization method in the class of evolutionary 

algorithms. It was inspired by the imperialistic competition which 
is the socio-political evolution of humans for developing a 

powerful imperialistic authority [17]. 
The algorithm begins with a starting (first) solution of 

population of Ncountry, which are classified into two distinct 
categories called imperialists and colonies based on the functional 

values of the solution that are indicated with (Nimp) and (Ncol), 
respectively. In this algorithm terminology, the combination of 

imperialists and colonies is said to be empires. Each colony in the 

first population are proportionally distributed to the empires 
according to the powers of the imperialists. The power of empires 

is inversely proportional to their cost (functional value). The 
normalized cost of imperialists is given below: 

 𝐶𝑛 = 𝑐𝑛 − 𝑚𝑎𝑥𝑖(𝑐𝑖)                                                    (1) 

where cn is the nth imperialist cost and Cn is the associated 

normalized cost of the imperialist. Assuming this normalized cost 
is computable for all the imperialists, the normalized power of 

each imperialist is given by: 

𝑃𝑛 = |
𝐶𝑛

∑ 𝐶𝑖

𝑁𝑖𝑚𝑝
𝑖=1

|                                                                (2) 

At the assimilation stage, every empire’s colonies start moving 
toward their target imperialist, right away the establishment of the 

initial empires. Figure 2 shows this movement of colony toward 
its relevant imperialist by x units and θ deviations; where, x and θ 

are random parameters that enjoy uniform distributions. 

   𝑥 ∈ 𝑈 (0, 𝛽 × 𝑑)                                                             (3) 

   𝜃 ∈ 𝑈 (−𝛾, 𝛾)  

where β, called assimilation coefficient, is a number defined to be 

slightly bigger than 1; d is the straight distance from the 
imperialist to the colony; γ, called revolution rate, is a parameter 

that controls the angular rotation from the initial position.  

 
Figure 2. Colonies moving toward their pertinent imperialist. 

The total cost of each empire is composed of the authority of 

the imperialist and the colonies, and defined by: 

  𝑇. 𝐶.𝑛 = 𝐶𝑜𝑠𝑡(𝑖𝑚𝑝𝑒𝑟𝑖𝑎𝑙𝑖𝑠𝑡𝑛) +
                                    𝜉. 𝑚𝑒𝑎𝑛{𝐶𝑜𝑠𝑡(𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠 𝑜𝑓 𝑒𝑚𝑝𝑖𝑟𝑒𝑛)}      (4) 

where T.C.n is the nth empire absolute cost; ξ, called power 

coefficient, is positive number slightly less than 1. 

The ICA optimization process converges when all the empires 

but the strongest one finally downfall. This sole empire will 

control all the colonies. 

 Mathematically speaking, this sole empire is the desired 

optimal solution of the optimization problem in question. 

B. Support Vector Machine (SVM) 

SVMs are non-parametric methods that essentially depend on 
kernel functions. Vapnik et al. [18] established the essentials of 

SVMs in 1995. SVMs are getting significant credits nowadays due 
to a number of noticeable characteristics and promising hands-on 

performances. SVM has been effectively implemented to 
prediction tasks and pattern classifications, mainly the clustering 

of two unlike pattern categories. 

 The SVM basic operational principle is mapping datasets to 
higher dimension representative hyperplanes using nonlinear 

mappings or approximations. Linear-regressions in the upper-
dimension hyperplanes are associated with non-linear regressions 

in the lower-dimension plane, and articulated below [19], [20]. 

𝑦(𝑥) = 𝑤. Φ(𝑥) + 𝑏 ;   Φ: 𝑅𝑛 →  𝑅𝑁                           (5) 

where, y∈RN is a training target; x∈Rn is a training input 

(predictor); b is a bias parameter; w∈RN is weight/coefficient 

parameter; Φ(x) is a non-linear mapping-function; and Φ: Rn → 

RN is a non-linear mapping that converts the initial training inputs 
to the upper-dimension characteristic hyperspace. 

Figure 3 illustrates the configuration of an SVM, where input x 
is transformed into output y via the mapping-function Φ(·). The 

yield of the regression y is the linear integration of scaled Φ(x). 

 

Figure 3. Structure of SVM 

A special SVM known as linear-epsilon-insensitive SVM (ε-
SVM) is used in this study due to its scarceness representation 

capacity. The ε-SVM objective function is described based on the 
ε-insensitive loss-function. The SVM model parameters, w and b, 

can be obtained optimally by solving the constrained fitness 
function formulated below. 

𝑚𝑖𝑛 {
1

2
𝑤𝑇𝑤 + 𝛾 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑁
𝑖=1 }                                      (6) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑦𝑖 − 𝑤. Φ(𝑥𝑖) − 𝑏 ≤ 𝜀 + 𝜉𝑖  

 𝑤. Φ(𝑥𝑖) + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗  

 𝜉𝑖 , 𝜉𝑖
∗ ≥ 0 

where, ξi and ξi
* are auxiliary parameters; γ is a normalization 

parameter; N is a training window length; and ε is a loss parameter.  
The optimization problem expressed in (6) is a quadratic 

programming type, and generally solved by solving its equivalent 
dual-problem defined below. 



           𝑚𝑖𝑛 {

1

2
∑ ∑ (𝛼𝑖 − 𝛼𝑖

∗)𝑁
𝑗=1

𝑁
𝑖=1 . Φ(𝑥𝑖 , 𝑥𝑗). (𝛼𝑗 − 𝛼𝑗

∗) −

∑ (𝛼𝑖 + 𝛼𝑖
∗). 𝜀 + ∑ (𝛼𝑖 − 𝛼𝑖

∗). 𝑦𝑖
𝑁
𝑖=1

𝑁
𝑖=1

}     (7) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑁

𝑖=1 = 0 ; 𝛼𝑖 , 𝛼𝑖
∗ ≥ 0  

Solving for the positive Lagrange-multipliers (αi – αi*), the final 

formulation of the SVM regression output y is described by: 

     𝑦̂(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑁

𝑖=1 . 𝐾(𝑥, 𝑥𝑖) + 𝑏                          (8) 

where, K(xi, xj) = Φ(xi).Φ(xj) is known as kernel-function of the 

SVM model. 
From the Karush-Kuhn-Tucker (KKT) optimality condition 

[19] for quadratic-programming type objective functions, all the 
terms (αi – αi*) cannot have non-zero values. The SVM model 

training samples related to the non-zero terms with regression 
errors equal to or greater than ε are called support vectors. For 

given n training window length, the ε-SVM calculates a 2n×2n 
kernel-matrix. The RBF kernel is used in this study, and expressed 

below.  

   𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−
‖𝑥𝑖−𝑥𝑗‖

2

𝜎2 )                                           (9) 

where, σ is a Gauss parameter (width of RBF kernel) and defines 

the impact area of the support-vectors in the training window 
domain. As described above, the ε-SVM model in this study 

employs the ICA to effectively search its parameters for improved 
prediction accuracy.  

V. PREDICTION ACCURACY EVALUATION 

To evaluate the accuracy of the devised hybrid ICA-SVM 

heat demand forecasting strategy, the MAPE (mean absolute 
percent error), RMSE (root mean squared error) and NMAE 

(normalized mean absolute error criteria are utilized. They are 
defined as follows. 

         𝑀𝐴𝑃𝐸 =
100

𝑁
∑ |

𝐻ℎ
𝑎−𝐻ℎ

𝑓

𝐻ℎ
𝑎 |𝑁

ℎ=1                                                 (10) 

where, Hh
a  and Hh

f  are the actual and forecasted values of the heat 

demand at hour h, respectively, and N is the forecasting horizon 
and its value is 24 for day-ahead forecast. 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝐻ℎ

𝑎 − 𝐻ℎ
𝑓

)
2

𝑁
ℎ=1                                   (11) 

     𝑁𝑀𝐴𝐸 =
1

𝑁
∑

|𝐻ℎ
𝑎−𝐻ℎ

𝑓
|

𝐻𝑝𝑒𝑎𝑘

𝑁
ℎ=1                                               (12)        

where, Hpeak is the building peak aggregate district heat demand.  

VI. CASE STUDY AND EXPERIMENTAL RESULTS 

In this paper, the hybrid ICA-SVM model is developed for 
24h-ahead building district heat demand forecasting. District heat 

demand data of four building types (customer classes) in the 
Otaniemi area of Espoo, Finland have been used to construct and 

validate the forecasting model. The buildings are Building A 
(residential building type), Building B (educational building type, 

contains classrooms and laboratories), Building C (office building 
type), and Building D (mixed use building, contains computer 

laboratories and health care center).  

The buildings have a peak (in the three years period: 2015 - 

2017) aggregate district heat demand of 720 kW, 25,210 kW, 710 
kW, and 7,740kW, respectively.  

The prediction performance of the devised forecast model is 
verified with a one-year (2017) window length testing data. 

However, to illustrate the testing results here, the model testing 
result is given for randomly chosen four weekdays and four 

weekends/holidays representing the weekdays and weekends of 
the four seasons of the year: summer weekday (Wednesday - July 

26, 2017), summer weekend (Sunday - July 16, 2017), fall 
weekday (Thursday - Oct 12, 2017), fall weekend (Saturday - Oct 

28, 2017), winter weekday (Monday - January 9, 2017), winter 

holiday (Sunday - January 1, 2017), spring weekday (Tuesday – 
April 18, 2017), and spring weekend (Saturday – April 8, 2017). 

Hence, particular days with better heat demand profiles are not 
chosen deliberately. This demonstrates an irregular forecast 

accuracy distribution in the testing year that reveals the actual heat 
consumption in the buildings.  

The forecast results are presented for the random testing 
days with one-hour time resolution. The heat demand forecasts by 

the proposed hybrid ICA-SVM method are depicted in Figures 4 
- 5, for weekdays and weekends/holidays, respectively. The 

forecast plots are shown for the residential building only, due to 

limitation of space. 

 
Figure 4. Real vs. forecasted district heat demand in weekdays 

for Building A – residential building 

 

Figure 5. Real vs. forecasted district heat demand in weekends 

for Building A – residential building 

As it can be observed in Figures 4 - 5, the forecasts by the 

devised hybrid ICA-SVM model follow the actual heat demand 
trends with smaller gaps (errors).  



Tables I provides the values of the criteria employed to 

estimate the forecasting error of the proposed hybrid ICA-SVM 
model for 24h-ahead forecasting of building district heat demand. 

As given in Table I, the proposed building heat demand 
forecasting model has effectively achieved very accurate values in 

all the evaluated accuracy criteria. The model has given accurate 
and acceptable forecasting accuracy for all building types. 

Specifically, the model has achieved an excellent performance 
(MAPE of 8.08%) for the residential building type and relatively 

lowest accuracy (MAPE of 16.12%) for the educational building 
type.  

Table II presents a performance comparison between the 

devised hybrid ICA-SVM based building district heat demand 
forecasting strategy and other five strategies (Persistence, ANN, 

GA-ANN, SVM, and GA-SVM), based on the MAPE criteria. 

TABLE I 

ERROR ANALYSIS OF THE PROPOSED MODEL FOR BUILDING A – RESIDENTIAL 

BUILDING 

Day Type MAPE (%) RMSE (kW) NMAE (%) 

Winter 
Weekday 5.91 25.76 2.73 

Holiday 7.14 28.32 3.02 

Spring 
Weekday 7.08 26.02 2.91 

Weekend 5.59 17.10 1.98 

Summer 
Weekday 10.60 10.31 1.21 

Weekend 12.54 11.81 1.41 

Fall 
Weekday 8.79 19.85 2.19 

Weekend 6.94 21.30 2.39 

Average 
Weekday 8.10 20.49 2.26 

Weekend 8.05 19.63 2.20 

Total Average  8.08 20.06 2.23 

TABLE II 

COMPARATIVE MAPE (%) FOR BUILDING A – RESIDENTIAL BUILDING  

Day Type Persistence ANN 
GA-

ANN 
SVM 

GA-

SVM 

ICA-

SVM 

Winter 
Wd1 12.70 7.39 6.55 6.11 6.03 5.91 

Hd2 21.60 9.04 7.54 7.41 7.32 7.14 

Spring 
Wd 13.83 8.97 7.98 7.44 7.26 7.08 

We3 15.06 6.68 5.99 5.86 5.72 5.59 

Summer 
Wd 11.22 13.59 11.96 11.14 10.87 10.60 

We 19.27 14.92 13.59 13.29 12.99 12.54 

Fall 
Wd 16.23 10.99 9.74 9.08 8.97 8.79 

We 16.32 8.50 7.54 7.37 7.28 6.94 

Average 
Wd 13.50 10.24 9.06 8.44 8.28 8.10 

We 18.06 9.78 8.67 8.48 8.33 8.05 

Total 

Average  15.78 10.01 8.86 8.46 8.31 8.08 

1Wd = Weekday, 2Hd = Holiday, 3We = Weekend 

The devised hybrid model provides the lowest forecast error; 
the total mean MAPE obtained, respectively for the residential 

type, educational type, office type and mixed-use type buildings, 
is 8.08%, 19.3%, 13.71% and 11.04%.  

The devised model total mean MAPE increment compared 

to the other five models is 48.79%, 19.3%, 8.80%, 4.49 and 
2.77%, respectively, for the residential building type, 42.22%, 

18.99%, 9.8%, 4.84% and 2.89%, respectively, for the educational 
building type, 48.34%, 35.72%, 23.74%, 15.21% and 9.26%, 

respectively, for the office building type, and 56.50%, 34.08%, 
21.42%, 13.14% and 9.36%, respectively, for the mixed-use 

building type. The same training dataset were used for each of the 
presented models and each model was implemented with its 

optimal parameters and setups. 

VII. CONCLUSIONS 

This paper developed a new and effective hybrid model for 

24h-ahead forecasting of district heat demand of buildings using 
a predictor dataset that consists of district heat consumption 

history, meteorological parameters, seasonal variations, and 
building occupancy. The devised hybrid model is based on the 

hybridization of the ICA and SVM. A two-year (2015 - 2016) 
window length training data of predictor variables is utilized to 

develop the forecast model of the devised model. The forecasting 
accuracy of the devised model is tested with a one-year (2017) 

window length testing data. The modeling approach has the ability 
to learn any time when there is a new training dataset. The 

application of the devised model for 24h-ahead building heat 
demand forecasting is novel and effectively successful. The total 

mean values of MAPE, NMAE and FS, obtained for randomly 
chosen four weekdays and four weekends/holidays in the testing 

year, are 8.08%, 2.23% and 54.23%, respectively, for the 
residential type building, 16.12%, 2.63% and 17.80%, 

respectively, for the educational type building, 13.71%, 3.96% 
and 61.17%, respectively, for the office type building, and 

11.04%, 3.59% and 50.62%, respectively, for the mixed-use type 
building. The devised model outperforms other five evaluated 

heat demand forecasting models, regarding forecasting accuracy 
measures for all the building types. Therefore, the presented 

numerical results and performance comparisons verify the 
capability and suitability of the devised hybrid model for a day-

ahead (short-term) heat demand forecasting in building energy 
systems. 
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