Remiro, Aingeru; Ochoa, Aitor; Arandia, Aitor; Castano, Pedro; Bilbao, Javier; Gayubo, Ana G.

On the dynamics and reversibility of the deactivation of a Rh/CeO2-ZrO2 catalyst in raw bio-oil steam reforming

Published in:
International Journal of Hydrogen Energy

DOI:
10.1016/j.ijhydene.2018.12.073

Published: 28/01/2019

Published under the following license:
CC BY-NC-ND

Please cite the original version:
On the dynamics and reversibility of the deactivation of a Rh/CeO$_2$-ZrO$_2$ catalyst in raw bio-oil steam reforming

Aingeru Remiroa*, Aitor Ochoaa, Aitor Arandiaa,b, Pedro Castañoa, Javier Bilbaoa and Ana G. Gayuboa

aDepartment of Chemical Engineering, University of the Basque Country (UPV/EHU), P.O. Box 644-48080, Bilbao, Spain.

bDepartment of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Espoo, 02150, Finland

*e-mail: aingeru.remiro@ehu.eus Phone: +34946015361. Fax:+34946013500

Abstract

The deactivation mechanism of a commercial Rh/CeO$_2$-ZrO$_2$ catalyst in raw bio-oil steam reforming has been studied by relating the evolution with time on stream of the bio-oil conversion and products yields and the physicochemical properties of the deactivated catalyst studied by XRD, TPR, SEM, XPS, TPO and TEM. Moreover, the reversibility of the different deactivation causes has been assessed by comparing the behavior and properties of the catalyst fresh and regenerated (by coke combustion with air). The reactions were carried out in an experimental device with two units in series: a thermal treatment unit (at 500 $^\circ$C, for separation of pyrolytic lignin) and a fluidized bed reactor (at 700 $^\circ$C, for the reforming reaction). The results evidence that structural changes (support aging involving partial occlusion of Rh species) are irreversible and occur rapidly, being responsible for a first deactivation period, whereas encapsulating coke deposition (with oxygenates as precursors) is reversible and evolves more slowly, thus being the main cause of the second deactivation period. The deactivation selectively affects the reforming of oxygenates, from least to greatest reactivity. Rh sintering is not a significant deactivation cause at the studied temperature.

Keywords: bio-oil, hydrogen, steam reforming, Rh catalyst, deactivation
1. Introduction

The development of thermochemical routes for sustainable H₂ production from biomass receives a great attention [1], in order to satisfy the increasing H₂ demand in ammonia production (fertilizers), in refinery (hydrotreatment and hydrocracking) and as a fuel [2]. Among these routes, the reforming of bio-oil (liquid product from fast pyrolysis of lignocellulosic biomass) is of great interest because the pyrolysis may be performed in delocalized units with different biomass types, with a simple design and environmentally friendly [3-4]. The stoichiometry of SR of bio-oil reaction is given by Eq. (1) (which involves the water gas shift (WGS) reaction):

$$C_nH_mO_k + (2n-k) H_2O \rightarrow n CO_2 + (2n+m/2-k) H_2$$ \hspace{1cm} (1)

Under suitable reaction conditions, it generates a product stream composed roughly of 70 % of H₂, 26 % of CO₂ and 4 % of CO [5]. The interpretation of the results in SR of real bio-oil turns out more complex than that of the individual model compounds [6-9], due to the different reactivity of the oxygenates, the synergy of their corresponding reforming reactions and, particularly, to the rapid deactivation of the catalyst [10-12]. The main deactivation causes of the catalyst are the blockage of metallic sites due to deposition of encapsulating coke and the sintering of metal crystallites [10-12]. Since the principal cause of coke deposition is the repolymerization of some oxygenates in bio-oil (mainly phenol compounds), the use of a thermal step prior to the catalytic reactor, for the controlled polymerization of the pyrolytic lignin, can partially solve this problem [13-16].

In previous works, the authors have used this operation strategy, with two-steps in line, in order to study the effect of the operating conditions in the product distribution and the pathway of the oxidative steam reforming (OSR) of bio-oil using a commercial Rh/CeO₂-ZrO₂ catalyst [17,18]. This catalyst has been proved to be more stable than those prepared with Ni as active phase, being noteworthy a significantly lower sintering under OSR conditions [19]. Although OSR turns out appropriate for attaining an autothermic regime in the reactor and decreasing coke deposition (by partial combustion of coke precursors), H₂ yield is noticeably affected by partial combustion of H₂ and bio-oil oxygenates. It was also determined that the relative relevance of the deactivation causes (coking, support degradation and
sintering) is dependent on reaction conditions, with great incidence of steam concentration, temperature and conversion, and also that the relevance of the different deactivation causes varies along TOS. Given the complexity of catalyst deactivation with several causes of different dynamics, the analysis of the evolution of catalyst properties along time on stream and its relationship with the evolution of catalysts behavior along the reaction will be of great help for deepening into the catalyst deactivation mechanism. Moreover, it is important to avoid the non-reversible deactivation causes, so that after a suitable regeneration treatment the catalyst recovers the activity of the fresh catalyst, allowing this way to extend the lifespan in successive reaction-regeneration cycles.

With this background, two main objectives have been pursued in this manuscript in order to study the deactivation of Rh/CeO$_2$-ZrO$_2$ catalyst in bio-oil SR. On the one hand, in order to gain more knowledge into the deactivation mechanism, the evolution with TOS of the kinetic behavior of the catalyst has been related with the deterioration of its properties. For this purpose, the catalysts deactivated for different values of TOS have been characterized in depth by combining several techniques for determining catalyst properties: the porous structure (N$_2$ adsorption-desorption), the coke features (Temperature Programmed Oxidation (TPO)), the metallic species (X-ray diffraction (XRD), Temperature Programmed Reduction (TPR), X-ray Photoelectron Spectroscopy (XPS)) and surface morphology (Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM)). These results have allowed relating the activity loss with the physical, chemical and morphologic changes in the catalyst throughout the reaction. On the other hand, the reversibility of the different deactivation causes has been studied. For that purpose, both the kinetic performance in the SR of bio-oil and the properties of the regenerated catalyst (by coke combustion with air at 600 ºC) has been compared to those of the fresh catalyst.

2. Materials and Methods

2.1. Catalyst and characterization techniques

The Rh/CeO$_2$-ZrO$_2$ catalyst (hereafter denoted Rh/ZDC), with 2 wt % Rh, was supplied by Fuel Cell Materials. The physicochemical properties of the fresh, reduced, deactivated and regenerated catalyst
samples have been characterized with several techniques, as follows. The specific surface area, average pore diameter and pore volume were determined by N2 adsorption-desorption (Autosorb iQ2 equipment from Quantachrome). The TPR profiles were obtained in a Micromeritics AutoChem 2920 with a 50 cm³/min reducing stream of 10 vol % H2/Ar mixture, and a heating ramp of 7 °C/min from 30 to 900 °C. The XRD spectra were obtained in a Philips X’PERT PRO diffractometer operating at 40 kV and 40 mA in theta-theta configuration with a secondary monochromator with CuKα1 radiation at a wavenumber of 1.5418 Å. An energy dispersive PIXcel detector was used with an active length of 2θ = 3.347 Å. The Rh particle size distribution (PSD) of the fresh and deactivated catalysts was estimated from TEM images, obtained in a Philips SuperTwin CM200, by counting more than 200 metal particles. The coke on spent catalysts has been analyzed by Temperature Programmed Oxidation (TPO) in a Thermo Scientific TGA Q5000TA IR thermobalance. The procedure consisted on the stabilization of the sample temperature at 50 °C, followed by the feeding of 50 cm³ min⁻¹ of N2/O2 (25 vol % of O2) and the heating up to 800 °C with a ramp of 5 °C min⁻¹.

2.2. Bio-oil composition

The raw bio-oil was supplied by BTG Bioliquids BV (Hengelo, The Netherlands) and it was obtained by flash pyrolysis of pine sawdust in an plant with a capacity of 5 t h⁻¹ and with a conical rotary reactor. The water content is 26 wt % (determined by Karl-Fischer), and its density is 1.105 g ml⁻¹. The composition, determined by GC/MS analysis (Shimadzu QP2010S device, with a BPX-5 column of 50
m in length, 0.22 mm diameter and 0.25 µm thick), is reported in Table 1, being the main compounds: acids, ketones, phenols, levoglucosan, esters, aldehydes, alcohols, and ethers.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Raw bio-oil</th>
<th>Bio-oil after thermal treatment</th>
<th>50 min</th>
<th>100 min</th>
<th>240 min</th>
<th>360 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_oxygenates (%)</td>
<td></td>
<td></td>
<td>1</td>
<td>7</td>
<td>9</td>
<td>30</td>
</tr>
<tr>
<td>Ketones</td>
<td>15.55</td>
<td>37.32</td>
<td>58.6</td>
<td>43.05</td>
<td>28.93</td>
<td>23.41</td>
</tr>
<tr>
<td>acetone</td>
<td>1.8</td>
<td>10.03</td>
<td>58.6</td>
<td>43.05</td>
<td>8.94</td>
<td>7.34</td>
</tr>
<tr>
<td>1-hydroxy-2-propanone</td>
<td>7.44</td>
<td>20.38</td>
<td>-</td>
<td>-</td>
<td>14.13</td>
<td>12.54</td>
</tr>
<tr>
<td>Acids</td>
<td>35.32</td>
<td>45.96</td>
<td>-</td>
<td>6.28</td>
<td>32.64</td>
<td>36.94</td>
</tr>
<tr>
<td>acetic acid</td>
<td>17.07</td>
<td>35.51</td>
<td>-</td>
<td>6.28</td>
<td>30.92</td>
<td>35.23</td>
</tr>
<tr>
<td>Esters</td>
<td>9.41</td>
<td>2.13</td>
<td>-</td>
<td>-</td>
<td>3.22</td>
<td>2.68</td>
</tr>
<tr>
<td>Aldehydes</td>
<td>6.24</td>
<td>3.08</td>
<td>-</td>
<td>-</td>
<td>10.03</td>
<td>10.1</td>
</tr>
<tr>
<td>Phenols</td>
<td>15.36</td>
<td>6.51</td>
<td>41.4</td>
<td>47.14</td>
<td>17.87</td>
<td>19.34</td>
</tr>
<tr>
<td>phenol</td>
<td>0.31</td>
<td>1.77</td>
<td>26.5</td>
<td>31.26</td>
<td>5.23</td>
<td>5.57</td>
</tr>
<tr>
<td>2-methylphenol</td>
<td>0.73</td>
<td>1.86</td>
<td>11.98</td>
<td>10.92</td>
<td>4.78</td>
<td>5.3</td>
</tr>
<tr>
<td>Ethers</td>
<td>0.48</td>
<td>0.72</td>
<td>-</td>
<td>-</td>
<td>2.09</td>
<td>2.36</td>
</tr>
<tr>
<td>Alcohols</td>
<td>2.55</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.6</td>
<td>1.79</td>
</tr>
<tr>
<td>Levoglucosan</td>
<td>10.9</td>
<td>2.82</td>
<td>-</td>
<td>2.05</td>
<td>0.97</td>
<td>0.42</td>
</tr>
<tr>
<td>Others</td>
<td>4.19</td>
<td>1.46</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Not identified</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.48</td>
<td>2.65</td>
<td>2.96</td>
</tr>
</tbody>
</table>

Table 1. Evolution with TOS of the concentration (in wt %) of oxygenate compounds (water-free basis) in the liquid (analyzed by GC/MS) at the outlet the reforming reactor, under reaction conditions shown in Figure 1.

2.3. Reaction equipment and operating conditions

The reactions were carried out with a continuous feed of raw bio-oil in an automated reaction equipment (MicroActivity Reference from PID Eng&Tech) with two units, which has been described in detail elsewhere [19]. In the first unit (thermal step, at 500 ºC) around 14.1 wt % of oxygenates in the raw bio-oil (water free basis) are deposited as pyrolytic lignin. Consequently, the composition of the bio-oil after the thermal treatment differs from that of the raw bio-oil, as shown in Table 1. The molecular formula of the treated bio-oil (that entering the reforming reactor) is C_{4.12}H_{6.91}O_{2.73} (on a water-free basis) and that of the raw bio-oil is C_{4.6}H_{6.2}O_{2.4}. In the second unit in line (catalytic reforming reactor in fluidized bed regime), the catalyst is mixed with inert solid (SiC) (inert/catalyst mass ratio > 8/1) in order to
ensure a correct fluidization regime. An injection pump (Harvard Apparatus 22) was used for feeding the bio-oil (0.08 ml/min), and the water was co-feed with a 307 Gilson pump. The product stream composition was analyzed in-line with a MicroGC 490 from Agilent, equipped with 4 analytic channels: molecular sieve MS5 (for H\textsubscript{2}, N\textsubscript{2}, O\textsubscript{2}, CH\textsubscript{4} and CO); Plot Q (for CO\textsubscript{2}, H\textsubscript{2}O and C\textsubscript{2}-C\textsubscript{4} hydrocarbons); CPSIL (for C\textsubscript{5}-C\textsubscript{11} hydrocarbons, which were not detected in this study), and; Stabilwax (for oxygenated compounds).

The catalyst is reduced in-situ (in a H\textsubscript{2}-N\textsubscript{2} stream (10 vol % H\textsubscript{2}) at 700 °C for 2 h) before each reforming reaction. The following reforming conditions have been used: atmospheric pressure; 700 °C; space time of 0.15 g\textsubscript{catalyst}/g\textsubscript{bio-oil}; steam/carbon (S/C) molar ratio of 6. These values of temperature and S/C ratio are suitable for maximizing H\textsubscript{2} yield [17-19], whereas the low value of space time is suitable for obtaining a fast enough deactivation rate so that it facilitates the interpretation of results. At the end of each run a representative sample of the product stream at the reactor outlet has been condensed in a Peltier cell in order to analyze its composition in the CG/MS analyzer. Thus, the effect of deactivation on the composition of the stream of unreacted oxygenates was determined (selective deactivation).

Moreover, a reaction-regeneration cycle has been performed to test the recovery of activity and the properties of the catalyst. In this run, the reaction conditions have been those previously described (with 6 h TOS), and the regeneration has consisted in the coke combustion in-situ (in the reforming reactor) in air stream (50 ml/min) at 600 °C for 4 h.

2.4. Quantification of catalyst behavior

The kinetic behavior of the catalyst has been quantified with the following terms:

\[X_{\text{bio-oil}} = \frac{F_{\text{in}} - F_{\text{out}}}{F_{\text{in}}} \quad (2) \]

\[Y_{\text{H}_2} = \frac{F_{\text{H}_2}}{F_{\text{H}_2}^0} \quad (3) \]
Carbon-containing products yield: \[Y_i = \frac{F_i}{F_{in}} \] (4)

where: \(F_{in} \) is the C molar flow-rate of oxygenates in the bio-oil at the reactor inlet, which has been calculated by subtracting the C in the pyrolytic lignin deposited in the thermal step to the C in the bio-oil fed to the system; \(F_{out} \) is the C molar flow-rate of bio-oil oxygenates at the outlet of the reactor, which has been calculated from the molar fraction of individual oxygenates (determined by microGC analysis) and the total mole number in the outlet stream (determined by C mass balance for the reforming reactor); \(F_{H2} \) is the \(H_2 \) molar flow rate in the product stream; \(F_{H2}^0 \) is the stoichiometric molar flow rate, whose value is 2.18 \(F_{in} \) (calculated from Eq. (1) and considering the molecular formula of the bio-oil entering the reforming reactor); \(F_i \) is the C molar flow rate of each product containing carbon, which includes \(CO_2, CO, CH_4 \) and light hydrocarbons (HCs), the latter resulting from the cracking/decomposition reactions of bio-oil.

3. Results

3.1. Deactivation stages

Figure 1 shows the evolution with TOS of bio-oil conversion and product yields in SR of bio-oil, up to 360 min on stream. Taking into account the evolution of the results, five successive stages or catalyst deactivation states can be distinguished, with two sharp changes in the bio-oil conversion and products yields corresponding to different fast deactivation periods. The first period in Figure 1 (stage 1) corresponds to thermodynamic equilibrium conditions, with constant values of the bio-oil conversion and products yields (full bio-oil conversion and 0.95 of \(H_2 \) yield). Stage 2 corresponds to a short period of fast deactivation, which is followed by a new pseudostable state (stage 3), in which the catalyst still keeps high activity (0.95 of bio-oil conversion and around 0.7 of \(H_2 \) yield). Subsequently, a second fast catalyst deactivation period is observed (stage 4), with a rapid and more pronounced decrease in \(H_2 \) and \(CO_2 \) yields than that observed in the first deactivation period, and a parallel rapid increase in HCs yields. Once the catalyst has achieved a high deactivation level, the variation in the bio-oil conversion and products yields takes place slowly (stage 5) as they reach the values corresponding to thermal routes.
It is noteworthy that the catalyst keeps a residual activity for WGS reaction in stage 5, due to the ability of CeO$_2$-ZrO$_2$ support as a promoter of the Rh active sites [20,21].

Figure 1

The two different deactivation periods in Figure 1 give evidence of the existence of different deactivation causes, which have different dynamics. For a better identification of the deactivation causes and their dynamics, the catalyst deactivated for different values of TOS (selected because of their significance on the results shown in Figure 1) have been characterized in depth with the techniques described in Section 2.1. The selected TOS values are as follows: i) 50 min, prior to the first rapid deactivation period (state of incipient deactivation, with almost total conversion); ii) 100 min, at the end of the first rapid deactivation period. The comparison of the properties of this deactivated catalyst with those of fresh catalyst and that used for 50 min TOS will allow to ascertain the causes of the first deactivation period; iii) 240 min, just at the end of the intermediate pseudostable period (prior to the second deactivation period); iv) 360 min TOS, at the end of the reaction, corresponding to a highly deactivated catalyst. New runs of different duration (50, 100 and 240 min) have been performed in the conditions of Figure 1 in order to obtain the deactivated catalyst samples in these values of TOS. It is noteworthy that the results of evolution with TOS of bio-oil conversion and products yields (Figure S1, Supplementary Information) confirm the reproducibility of the runs.
It is worth mentioning that, although the global conversion of the bio-oil oxygenates is considered in Figure 1, in fact, each oxygenated compound has a different reaction rate and is selectively affected by the deactivation. Table 1 shows the yield and mass composition of the liquid fraction (non-reacted oxygenates) in the product stream (dry basis) for different TOS values. These results allow determining the selective effect of deactivation in the reforming of the different families of bio-oil oxygenates. As observed, in conditions of incipient deactivation (50 min TOS, when the conversion is practically complete in Figure 1) the only oxygenates detected in the output stream are acetone and phenols, and just at the end of the first period of fast deactivation (100 min TOS), they are still the most abundant compounds, although the presence of other oxygenates begins to be remarkable, mainly acetic acid. The significant presence of phenols and acetone at a low TOS reveals the selective deactivation of the catalyst for the reforming of these compounds with respect to other oxygenates, due to their low reactivity. In addition, the high concentration of acetone at the beginning of the test could be a consequence of interconversion reactions of carboxylic acids, aldehydes and esters towards ketones, which seem to be highly favored at the beginning of the reaction, probably due to the activity of CeO$_2$-ZrO$_2$ support (especially of the latter) in the ketonization reactions [6,22,23]. The deactivation of the catalyst for the reforming of other oxygenates is already evident after 240 min TOS, when their presence in the liquid product is significant, with the concentration of acids and aldehydes (especially the former) being higher than those of esters and ethers. This way, as the catalyst gets more deactivated the composition of the liquid product resembles that of the thermally treated bio-oil, although some differences are expected because of some thermal interconversions of oxygenates occurs at 700 ºC in the fluidized bed reactor.

3.2. Coke deposition

The coke deposited on the deactivated samples has been studied by two techniques described in Section 2.1: i) TPO analysis, for determining the nature and location of the types of coke, based on their combustion temperature; ii) XPS analysis, for identifying and quantifying the functional groups of coke. Figure 2 shows the TPO profiles of the catalyst samples spent at different values of TOS. A peak deconvolution of these profiles allows the identification of up to three coke types or fractions: coke Ia,
with a peak maximum at ca. 275-310 °C; coke Ib, 325-335 °C; coke II, 360-410 °C. According to the literature, the difference in the combustion temperature is mainly due to the differences in the chemical nature and coke location [17,24-31]. Thus, the peak at low combustion temperature (coke Ia) is amorphous and encapsulates the metallic sites, so that its combustion is catalyzed by these sites. The peak at intermediate combustion temperatures (coke Ib in Figure 2) is assigned to a coke fraction in the metal-support interface, that is, located further from metal sites and, thus, its combustion being partially catalyzed [18,32-36]. Finally, the peak at the highest combustion temperature (coke II) is ascribed to a coke fraction deposited on the catalyst support, which is further from metal sites and whose combustion is not catalytically activated. Moreover, this coke fraction usually possesses a significant amount of highly ordered polyaromatics, and is mainly formed from thermal decomposition mechanisms of oxygenates from bio-oil and reaction byproducts (mainly from light hydrocarbons) [27,29,30,37]. It should be noted that this allocation of the coke peaks, based on their relation with the metal sites, is based on the fact that the catalytic activation by the metal is the main cause of the different combustion temperature of the coke fractions. However, this interpretation may be partially masked by the different H/C ratio of the coke fractions, as the combustion is favored with an increase of H/C ratio [38].

In order to estimate the proportion of each coke type, the TPO profiles have been deconvoluted with Origin software and the results are summarized in Table 2, which include the following parameters: (i) the temperature of each peak maximum (T_{max}); (ii) the percentage of each coke peak (wt% of the coke peak referred to the total coke mass); (iii) the content of each coke peak (wt% of the coke peak referred to the catalyst mass), (iv) and the total content of coke. The results show an increasing trend with TOS in the T_{max} values corresponding to the coke deposited on metal sites (coke Ia) and on the support (coke II), suggesting a carbonization process of these two coke fractions, which evolve with TOS by means of deoxygenation, dehydrogenation of aliphatics and aromatization [28,30,39]. The T_{max} corresponding to the coke deposited on the metal-support interface (coke Ib) remains almost constant with TOS (at 330 ± 6 °C), suggesting that its nature and location is not significantly altered during the coking process.
The total coke content increases in an approximately linear trend, from 1.6 wt % at 50 min, up to 12.8 wt % at 360 min (Table 2). However, the percentage and content of each coke type evolve differently with TOS. Thus, at lower values of TOS (up to 100 min), coke is preferentially deposited on the Rh sites (coke Ia), involving a 90 wt % of the total coke (Table 2). Above 100 min, the deposition of coke on the metal sites (coke Ia) continues, attaining a maximum content of 6.74 wt % at 240 min, but its percentage within the total coke mass decreases (to 78 and 42 wt %, at 240 and 360 min, respectively), because coke is more heterogeneously located and both the percentage and the content of the coke deposited on the metal-support interface (coke Ib) and on the support (coke II) is increased. Thus, the percentage of these latter coke fractions increases from 7 wt % (coke Ib) and 3 wt % (coke II) at 50 min, up to 37 wt % (coke Ib) and 21 wt % (coke II) at 360 min. This increase in the heterogeneity of the coke is explained because coke deposition takes place gradually further from the metal sites as they are being gradually
covered with coke. Moreover, the content of the coke deposited on the metallic sites (coke Ia) apparently
decreases above 240 min. This slight decrease could be the consequence not only of the location but
also of the composition (H/C ratio) of coke, and both have an influence on the position of combustion
peaks. Consequently, the slight decrease in coke Ia above 240 min could be also attributed to a partial
evolution towards more carbonized structures, which could contribute to the coke Ib combustion peak.
In any case, the difference of the results is small and can partially contribute to this difference the error
inherent to the identification of peaks by deconvolution.

<table>
<thead>
<tr>
<th>Property</th>
<th>Peak</th>
<th>50 min</th>
<th>100 min</th>
<th>240 min</th>
<th>360 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{max} ($^\circ$C)</td>
<td>Ia</td>
<td>278</td>
<td>286</td>
<td>302</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>Ib</td>
<td>329</td>
<td>333</td>
<td>325</td>
<td>336</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>363</td>
<td>373</td>
<td>403</td>
<td>411</td>
</tr>
<tr>
<td>Coke percentage (wt %, with respect to total coke mass)</td>
<td>Ia</td>
<td>90</td>
<td>90</td>
<td>78</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Ib</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>3</td>
<td>3</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>Coke content (wt %, with respect to catalyst mass)</td>
<td>Ia</td>
<td>1.44</td>
<td>1.89</td>
<td>6.74</td>
<td>5.42</td>
</tr>
<tr>
<td></td>
<td>Ib</td>
<td>0.12</td>
<td>0.15</td>
<td>0.51</td>
<td>4.70</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>0.04</td>
<td>0.06</td>
<td>1.34</td>
<td>2.67</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1.6</td>
<td>2.1</td>
<td>8.6</td>
<td>12.8</td>
</tr>
</tbody>
</table>

Table 2. Deconvolution results of the TPO profiles in Figure 2.

In order to examine the evolution of coke composition, the nature of the coke deposited on the catalysts
deactivated at different values of TOS was analyzed by XPS spectroscopy. Figure 3 shows the XPS
spectra in the C 1s region corresponding to the uppermost layers of surface coke. The corresponding
spectrum at 50 min is not shown, due to the low intensity (i.e. high noise-to-signal ratio) of the XPS
spectrum, because of the low coke content deposited at that time. The XPS profiles in Figure 3 have
been deconvoluted (with CasaXPS software) in five peaks, corresponding to different functional groups,
as indicated in Table 3 [27,40-42]. This table includes; i) the contributions (relative intensities) of these
five bands (named I to 5) with respect to the whole XPS spectrum; ii) the total concentration of the C
1s region with respect to the global spectrum, denoted as ‘C 1s’, which provides a rough comparison of
the coke content in the uppermost layers of the deactivated catalyst; iii) the atomic contribution (%) of
the bands 1 and 2 (assigned to a carbon atom not bonded to an oxygen atom) referred to the C 1s concentration (denoted as ‘(1 + 2)/C 1s’); iv) the atomic contribution (%) of the bands 3 and 4 (assigned to a carbon atom bonded to an oxygen atom) referred to the C 1s concentration (denoted as ‘(3 + 4)/C 1s’). The last two values allow to analyze the concentration of non-oxygenated and oxygenated coke, respectively.

Figure 3

The results in Table 3 show that as TOS is increased, there is a higher surface carbon content, in line with the total content of coke deposited (Table 2), and the content of oxygenated bonds within coke (contribution of bands 3 and 4) is decreased. It is noteworthy that the percentage of coke type I (a and b) (97, 84 and 79 wt % at 100, 240 and 360 min, respectively (Table 2)), shows a similar trend with TOS to the oxygenated fraction of coke (values of 18.7, 14.2 and 13.8 % for ‘(3 + 4)/C 1s’ in Table 3), suggesting that coke I is the main responsible for the oxygenated nature of the coke deposited. Thus, this result is coherent with the aforementioned statement that bio-oil oxygenates are the precursors of
encapsulating coke (coke Ia), thus leading to a relatively highly hydrogenated and/or oxygenated nature (higher H/C and/or O/C ratio). The coke deposited on the metal-support interface (coke Ib) is also thought to contribute to the oxygenated nature of coke deposited, although to a lesser extent than coke Ia. Moreover, the lower combustion temperature of coke I (a and b) in the TPO profiles (Figure 2) is coherent with their oxygenated nature, as the combustion of carbonaceous materials is favored by the presence of oxygenated compounds, according to the literature [43,44].

<table>
<thead>
<tr>
<th>Bond</th>
<th>Position (eV)</th>
<th>Atomic concentration (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>100 min</td>
</tr>
<tr>
<td>1: \text{C–C, C–H}</td>
<td>284.6</td>
<td>21.1</td>
</tr>
<tr>
<td>2: \text{C–COO and/or defects}</td>
<td>285.7</td>
<td>5.8</td>
</tr>
<tr>
<td>3: \text{C=O, O–C–O, C–O–C=O}</td>
<td>286.7</td>
<td>3.1</td>
</tr>
<tr>
<td>4: \text{O–C=O}</td>
<td>288.3</td>
<td>4.1</td>
</tr>
<tr>
<td>5: \delta\rightarrow\delta^*</td>
<td>290.7</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Table 3. Evolution with TOS of the structural properties and composition (atomic concentrations) of surface coke based on the C 1s region in XPS.

3.3. Support deterioration (aging)

The surface properties (BET surface area, pore volume and mean pore diameter) for the Rh/ZDC catalyst fresh, fresh-reduced and used for different TOS values are gathered in Table 4. The results show that the BET surface area and pore volume undergo a noticeable deterioration during the reduction (before the reaction) and this deterioration is even more noticeable during the reaction, especially in the first 50 min TOS. For these three samples, the mean pore diameter has an opposite trend, so that it increases (more noticeably from the fresh to the fresh-reduced sample). The three surface properties decrease as TOS increases from 50 to 360 min, the decrease in BET surface area and pore volume being more
noticeable between 100 min and 240 min TOS, whereas pore diameter decreases more noticeably between 240 and 360 min TOS.

<table>
<thead>
<tr>
<th>TOS, min</th>
<th>$S_{\text{BET}}, \text{m}^2\text{g}^{-1}$</th>
<th>$V_{\text{pore}}, \text{cm}^3\text{g}^{-1}$</th>
<th>$d_{\text{pore}}, \text{nm}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (fresh)</td>
<td>85.7</td>
<td>0.315</td>
<td>17.7</td>
</tr>
<tr>
<td>0* (fresh-reduced)</td>
<td>76</td>
<td>0.261</td>
<td>19.2</td>
</tr>
<tr>
<td>50</td>
<td>45</td>
<td>0.223</td>
<td>20.0</td>
</tr>
<tr>
<td>100</td>
<td>44.5</td>
<td>0.218</td>
<td>19.3</td>
</tr>
<tr>
<td>240</td>
<td>37.8</td>
<td>0.166</td>
<td>18.2</td>
</tr>
<tr>
<td>360</td>
<td>36.5</td>
<td>0.135</td>
<td>14.1</td>
</tr>
<tr>
<td>Regenerated**</td>
<td>40.5</td>
<td>0.212</td>
<td>20.9</td>
</tr>
</tbody>
</table>

*Reduced (700 °C, 2 h) **Regenerated (600 °C, with air)

Table 4. BET surface area, pore volume and mean pore diameter of the Rh/CeO$_2$-ZrO$_2$ catalyst fresh, fresh-reduced, deactivated at different TOS and regenerated.

The possible causes for this deterioration of the porous structure can be the aging of the support and the deposition of coke. The comparison of the values for the fresh and the fresh-reduced sample evidences the aging of the support due to the high temperature used for reducing the catalyst (700 °C, for 2 h). Moreover, taking into account the insignificant coke deposition at 50 min TOS (Table 2), the deterioration of the physical properties at the beginning of the reaction should be attributed to a further aging of the support under SR conditions (with a significant concentration of steam in the reaction medium). It is noteworthy that the aging of the support involves an increase in pore diameter, which gives evidence that it involves a collapse of the narrower pores. This significant aging of the support at high temperature is coherent with previous results in literature for catalysts based on CeO$_2$ and CeO$_2$-ZrO$_2$ [45,46]. In a previous work concerning OSR of bio-oil [18] it was proven that this deterioration depends on the reaction conditions, being more noticeable as temperature is increased.
The similar values of the physical properties of the catalyst used for 50 and 100 min TOS evidences that there is not a further aging of the support with TOS. Nevertheless, BET surface area, pore volume and pore diameter decrease noticeably between 100 and 240 min, with this decrease being parallel to the noticeable increase in coke deposition (both encapsulating and structured coke) observed in Figure 2. Consequently, it can be concluded that coke deposition also contributes to the deterioration of the physical properties of the catalyst, although to a much lower extent than the aging of the support.

The SEM images shown in Figure S2 of Supplementary Information for the catalyst fresh and used for different TOS values (50, 100 and 360 min) corroborates the results obtained by N$_2$ adsorption-desorption. Thus, although this technique does not allow observing notable differences between the catalyst samples, in the fresh catalyst (Figure S2a) it is observed a granular surface, whereas the catalyst at 50 min TOS (Figure S2b) possesses flatter surface regions with a lower porosity, which evidences the support aging for this TOS value. The SEM images of deactivated catalyst for high TOS (Figures S2c-d) are similar to those of 50 min, which corroborates that support aging takes place at the beginning of the reaction.

Figure 4 shows the XRD spectra of the fresh catalyst and deactivated at different TOS. The results confirm the presence of mixed oxide Ce$_x$Zr$_{1-x}$O$_2$, but no diffraction peaks corresponding to oxidized or reduced Rh species are observed, because of the low content and high dispersion of Rh on the support [19]. The mixed oxide of the support does not show any significant variation with TOS, as the crystallite size remains constant between 9.8 and 10.8 nm (plane 1 1 1, $\theta = 29.2 ^{\circ}$), calculated by the Scherrer equation. Therefore, sintering of the support is not significant and hence, it is not responsible of catalyst deactivation at studied conditions.
Figure 4

3.4. Changes in the Rh species

The evolution with TOS of the oxidation state of Rh species has been explored by XPS analysis of the fresh-reduced and the deactivated catalysts. In order to avoid the oxidation of the samples prior to XPS analysis, they were passivated in isooctane after being removed from the reactor. Figure 5 shows the XPS spectra in the Rh 3d region, deconvoluted in four bands [47-49]: (1) Rh 3d$_{5/2}$ spin-orbit doublet for Rh0, 307.4 eV; (2) that for Rh$^{3+}$, 309.2 eV; (3) Rh 3d$_{3/2}$ spin-orbit doublet for Rh0, 312.2 eV; (4) that for Rh$^{3+}$, 313.8 eV. Table 5 gathers the relative intensities of the four mentioned bands with respect to the whole XPS spectrum, as well as the evolution with TOS of the oxidation level of Rh, named ‘Rh$^{3+}$/Rh0’, which has been calculated from the ratio between the sum of deconvoluted areas below Rh$^{3+}$ and Rh0 phases. The results for 360 min TOS are not displayed in Figure 5 and Table 5, as no Rh phases were observed in the surface due to the high coke content deposited on the surface at that TOS and the limited detection depth (< 10 nm) of XPS technique [49].
Table 5. Evolution with TOS of the relative intensities of the Rh bands on the Rh 3d region in XPS, and of the oxidations level of Rh ($'\text{Rh}^{3+}/\text{Rh}^0'$.)

<table>
<thead>
<tr>
<th>Bond</th>
<th>Position (eV)</th>
<th>Fresh-reduced</th>
<th>50 min</th>
<th>100 min</th>
<th>240 min</th>
<th>Regenerated-reduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh0-3d$_{5/2}$</td>
<td>307.4</td>
<td>0.81</td>
<td>0.71</td>
<td>0.23</td>
<td>0.11</td>
<td>0.66</td>
</tr>
<tr>
<td>Rh$^{3+}$-3d$_{5/2}$</td>
<td>309.2</td>
<td>0.10</td>
<td>0.25</td>
<td>0.13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rh0-3d$_{3/2}$</td>
<td>312.2</td>
<td>0.47</td>
<td>0.16</td>
<td>0.08</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>Rh$^{3+}$-3d$_{3/2}$</td>
<td>313.8</td>
<td>0.06</td>
<td>0.17</td>
<td>0.09</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

($'\text{Rh}^{3+}/\text{Rh}^0'$) | 0 | 0.14 | 1.08 | 1.16 | 0 |

The reduced fresh catalyst (TOS = 0) only shows the Rh0 phase ($'\text{Rh}^{3+}/\text{Rh}^0' = 0$), whereas the oxidized proportion of Rh during the reaction increases with TOS, from a Rh$^{3+}$/Rh0 ratio of 0.13 at 50 min, up to 1.18 at 240 min, with the maximum oxidation rate in the region between 50 min and 100 min. This progressive oxidation of Rh with TOS is due to the reaction medium with a high content of water.
wt %. Comparing this result with the evolution of bio-oil conversion and products yields with TOS (Figure 1), it is observed that this oxidation of Rh occurs mainly in parallel to the first rapid decrease in the catalyst activity (stage 2 in Figure 1), so that it could contribute to some extent to the deactivation observed in this period (which is mainly due to the aging of the support and the corresponding partial occlusion of Rh species, phenomena studied in Section 3.3).

The growth of the Rh particle size along TOS has been studied by TEM analysis, in order to determine Rh sintering dynamics, and its possible contribution to catalyst deactivation. Figure 6 shows the TEM images of samples deactivated at different TOS values, whereas Figure 7 depicts the evolution with TOS of the particle size distribution (PSD) of the deactivated catalyst samples and the average size for each sample, calculated as the arithmetic mean of more than 200 particles. The average size is 1.4 nm for the fresh catalyst, it grows slightly and almost linearly up to 1.8 nm in 100 min, and subsequently the growth is attenuated, up to 2.1 nm at 360 min, and up to 2.2 nm in 24 h [18]. Moreover, the width of the PSD does not change significantly with TOS. This level of Rh sintering at 700 °C (particle size of fresh-reduced catalyst grows 55 % in 360 min), agrees with previous results in literature for Rh particles supported on CeO$_2$ [50,51]. The trend of Rh particle size growth with TOS does not show a direct relationship with none of the deactivation periods observed in Figure 1 (stages 2 and 4), which proves that it does not significantly contribute to Rh/ZDC catalyst deactivation in the studied conditions (at 700 °C).
Figure 6
3.5. Performance and properties of the regenerated catalyst

In order to analyze the reversibility and relative importance of the different deactivation causes, the catalyst deactivated along 360 min TOS has been regenerated *in situ* (in the fluidized bed reactor) by coke combustion with air at 600 °C for 4 h (in order to assure the complete coke removal), and a run with the regenerated catalyst has been carried out under the same operating conditions as with the fresh catalyst. Figure 8 shows the evolution with TOS of bio-oil conversion and products yields with the regenerated catalyst. At zero TOS, conversion is 93 % and H₂ yield 71 %, lower values than those obtained with the fresh catalyst at zero TOS (100 % and 95 %, respectively, Figure 1), and they are similar to those obtained with the fresh catalyst at 100 min, at the beginning of the pseudostable period (stage 3 in Figure 1). Likewise, the yields of CH₄ and HCs (Figure 8) at zero TOS for the regenerated catalyst are also similar to those obtained with the fresh catalyst at 100 min. Moreover, the regenerated catalyst only shows one deactivation period, whose magnitude is similar to that of the second deactivation period observed for the fresh catalyst. Consequently, CH₄ yield remains constant at approx. 6 % throughout the reaction with the regenerated catalyst, whereas H₂ and CO₂ yields decrease sharply after a pseudostable period, and that of HCs increases. CO yield goes through a maximum with TOS for both the fresh and the regenerated catalysts, even though the maximum is achieved at different TOS for...
each catalyst. This evolution of CO yield is consequence of the opposed effects of the deactivation of WGS reaction (leading to CO increase) and the deactivation of the reforming of HCs and oxygenates (CO decrease), as well as the selective deactivation of WGS reaction over HCs and oxygenates reforming reactions.

Figure 8

These results reveal a partial regeneration of the Rh/ZDC catalyst subsequent to the complete removal of the coke deposited on its surface. Specifically, the loss of activity in the first deactivation stage, assigned to aging of the support, is not recovered, which evidences that it is an irreversible deactivation. On the contrary, the deactivation stage ascribed to the deposition of encapsulating coke is reversible, since the activity loss in the second deactivation period is completely recovered subsequent to coke combustion.

With the aim of corroborating the irreversible nature of the structural changes in the catalyst, the regenerated catalyst has been characterized by several techniques (TPR, XPS and adsorption-desorption of N\textsubscript{2}). Figure 9 shows the TPR profiles of the fresh and regenerated catalysts, and the results evidence a change in the Rh structure. On the one hand, the reduction peak at 200 °C in the fresh catalyst (ascribed by some authors to a bulk-like crystalline Rh\textsubscript{2}O\textsubscript{3} on the surface (large particles) [18]) is absent in the regenerated catalyst. This disappearance of Rh reducible species may be explained by their partial
occlusion due to the aging of the support. On the other hand, the position of the peak ascribed to the
decomposition of well-dispersed and uniformly distributed rhodium oxides shifts toward higher temperature
(from 65 to 98 ºC), which may be due to the mild increase in the metallic particle size [49,52].

Figure 9

Furthermore, the regenerated catalyst shows a BET specific area of 40.5 m² g⁻¹ and a pore volume and
average pore diameter of 0.212 cm³ g⁻¹ and 20.9 nm, respectively, which are significantly lower than
those corresponding to the fresh catalyst (Table 4), and similar to those of the catalyst deactivated for
50-100 TOS values. These results evidence that aging of the support at the beginning of the reaction (in
the first 50 min) is irreversible. Nevertheless, the BET surface area and pore volume of the regenerated
catalyst are significantly higher than those of the catalyst used for 360 min TOS, which evidences that
the slight deterioration of the support taking place between 100-360 min TOS, assigned to coke
deposition, is reversible. Moreover, taking into account the irreversibility of Rh sintering, the complete
recovery of the activity lost during the second deactivation period for the regenerated catalyst reinforces
the conclusion that Rh sintering is not responsible for the activity loss in this period (which is completely
reversible).

The XPS spectra in the Rh 3d region for the regenerated-reduced catalyst shows only two peaks at 307.4
and 312.2 eV (Table 5), corresponding to Rh⁰-3d₅/₂ and Rh⁰-3d₇/₂, respectively, which evidences that the
oxidized Rh species in the regenerated catalyst can be completely reduced. From these results, it can be concluded that Rh oxidation is not responsible of the irreversible activity loss occurring in the first deactivation period and, overall, it has low impact on catalyst deactivation.

It is worth noting that the irreversible deactivation phenomena only affects the fresh catalyst, as in successive reaction-regeneration cycles the evolution with TOS of bio-oil conversion and products yields are reproduced, (results not shown). Consequently, when operating in reaction-regeneration cycles with this catalyst at a larger scale, the most interesting deactivation results will be those corresponding to coke deposition. The problem of the first irreversible deactivation period in the SR of raw bio-oil with Rh/ZDC catalyst could be avoided by subjecting the catalyst to a prior hydrothermal treatment, at high temperature and with high steam concentration, which causes the irreversible structural changes observed for low values of TOS, thus assuring a reproducible performance in successive reaction–regeneration cycles.

5. Conclusions

The results of the characterization of the Rh/ZDC catalyst deactivated in the SR of bio-oil for different TOS values show changes in the physicochemical and morphological properties of the catalyst along the reaction, which are due to three deactivation causes: structural changes, coke deposition and Rh sintering. Each deactivation cause evolves with different dynamics and has a different impact on catalyst deactivation and, as a result, two different deactivation periods are observed. The first deactivation selectively affects the reforming of \(\text{CH}_4 \) and some oxygenates (mainly phenols), whereas the reforming of HCs and other oxygenates are less affected. It is a consequence of a structural change of the catalyst, which is complex (involving changes in Rh species as a consequence of the aging of the support) and occurs rapidly at the beginning of reaction, when catalyst is subjected at severe reaction conditions (high temperature and high steam concentration). This structural change is irreversible, so that the activity loss in this first deactivation period cannot be recovered subsequent to the regeneration of the catalyst by coke combustion. Moreover, at the beginning of the reaction a partial oxidation from \(\text{Rh}^0 \) to \(\text{Rh}^{3+} \) also takes place, which is completely reversible and has low impact on catalyst deactivation. It should be noted that this deactivation phenomenon is selective. The rapid appearance of phenols in product stream,
and subsequent other oxygenates, reveals that deactivation affects the reforming of oxygenates from
least to greatest reactivity.

The second deactivation period is mainly due to the deposition of encapsulating coke (located on the
metal sites, with non-converted oxygenates, mainly phenolic compounds, as precursors), which is a
reversible deactivation cause, as it can be completely removed by coke combustion at 600 °C. The coke
deposited on metal-support interface and on the support has low effect on deactivation. Similarly, Rh
sintering does not contribute significantly to catalyst deactivation, as it is an emerging deactivation cause
at the studied temperature (700 °C).

Acknowledgements

This work was carried out with the financial support of the Department of Education Universities and
Investigation of the Basque Government (IT748-13), the Ministry of Economy and Competitiveness of
the Spanish Government jointly with the European Regional Development Funds (AEI/FEDER, UE)
(Proyectos CTQ2015-68883-R and CTQ2016-79646-P and Ph.D. grant BES-2013-063639 for A.
Arandia and Ph.D. grant PRE_2016_2_0129 for A. Ochoa).
References

Figure Captions

Figure 1. Evolution with TOS of bio-oil oxygenates conversion and yields of products and deactivation stages in the SR of bio-oil with Rh/CeO2-ZrO2 catalyst. Reaction conditions: 700 ºC; S/C, 6; space time, 0.15 g_{catalyst}/g_{bio-oil} h.

Figure 2. Deconvolution of TPO profiles corresponding to coke deposited on the catalyst at different values of TOS.

Figure 3. C 1s region in the XPS spectra of the deactivated catalyst at different values of TOS.

Figure 4. XRD diffractograms of the deactivated catalysts at different TOS.

Figure 5. Rh 3d region in the XPS spectra of the reduced fresh and deactivated catalysts at different TOS.

Figure 6. TEM images of fresh catalyst (a,b) and of deactivated catalysts at different TOS: 50 min (c), 100 min (d), 240 min (e) and 360 min (f).

Figure 7. Particle size distribution (PSD) of fresh catalyst and of deactivated catalysts at different TOS.

Figure 8. Evolution with TOS of conversion and yield of products in the SR of raw bio-oil over the regenerated catalyst. Reaction conditions: the same as in Figure 1. Regeneration conditions: coke combustion in air and in situ at 600 ºC; time, 4 h.

Figure 9. TPR profiles of the fresh and regenerated catalysts.
Supplementary information

Figure S1. Evolution with TOS of bio-oil oxygenates conversion and yields of products in the SR of bio-oil with Rh/CeO2-ZrO2 catalyst in runs of different duration. Reaction conditions: 700 °C; S/C, 6; space time, 0.15 g\text{catalyst}/g\text{bio-oil} h.

Figure S2. SEM images of the fresh (a) and deactivated catalyst at different TOS: 50 min (b), 100 min (c) and 360 min (d).