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Abstract

Motivation: A prime challenge in precision cancer medicine is to identify genomic and molecular

features that are predictive of drug treatment responses in cancer cells. Although there are several

computational models for accurate drug response prediction, these often lack the ability to infer

which feature combinations are the most predictive, particularly for high-dimensional molecular

datasets. As increasing amounts of diverse genome-wide data sources are becoming available,

there is a need to build new computational models that can effectively combine these data sources

and identify maximally predictive feature combinations.

Results: We present a novel approach that leverages on systematic integration of data sources to

identify response predictive features of multiple drugs. To solve the modeling task we implement a

Bayesian linear regression method. To further improve the usefulness of the proposed model, we

exploit the known human cancer kinome for identifying biologically relevant feature combinations.

In case studies with a synthetic dataset and two publicly available cancer cell line datasets, we

demonstrate the improved accuracy of our method compared to the widely used approaches in

drug response analysis. As key examples, our model identifies meaningful combinations of fea-

tures for the well known EGFR, ALK, PLK and PDGFR inhibitors.

Availability and Implementation: The source code of the method is available at https://github.com/

suleimank/mvlr.

Contact:muhammad.ammad-ud-din@helsinki.fi or suleiman.khan@helsinki.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Identifying the genomic and molecular features predictive of drug re-

sponse in cancer cells is one of the prime aims of computational pre-

cision medicine. The identified features may help the clinician to

choose therapies tailored to an individual cancer patient and may

also reveal mechanisms of drug actions. Recent large scale high-

throughput screening experiments have opened new opportunities

to build computational models of drug response predictions, by pro-

viding genomic and molecular profiles and drug response measure-

ments on several hundreds of human cancer cell lines (Barretina

et al., 2012; Basu et al., 2013; Garnett et al., 2012; Iorio et al.,

2016). Furthermore, the potential of genomic and molecular

features to predict drug responses in cell lines has been demonstrated

in many recent studies (Costello et al., 2014; Cortés-Ciriano et al.,

2015; De Niz et al., 2016; Jang et al., 2014; Zhang et al., 2015).

However, the small sample size in most of drug response studies

poses a challenging prediction task with a limited statistical strength

resulting into uncertain predictions.

A promising direction is to help the learning process by formulat-

ing the problem as integrating multiple data sources, which are ei-

ther readily available from high-throughput experiments or

extracted from external sources as known prior knowledge. The

underlying assumption is that some or all of the data sources may

exhibit a signal (set of features) predictive of the response variable.
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For example, the expression patterns in only a small subset of the

pathways may be linked to drug response, or a mutated gene present

in one data source may show up- or down-regulation of its expres-

sion in the other data source. Modeling the combination of shared

signals from multiple sources may reveal hidden statistical relation-

ships which may not be obvious from the data itself and are relevant

for the drug response prediction task. There is a need to develop

computational methods, commonly referred to as multi-view learn-

ing, that can effectively infer these signals from the data sources.

Here, a key methodological challenge involves determining what is

the ‘useful signal’ (combination of predictive features) to extract.

Another, closely-related problem of multi-task allows learning a

task from other related tasks. For example, predicting one drug re-

sponse alone can be considered as an individual task, whereas two

drugs whose responses are highly correlated can provide statistical

boost when learned together. This is especially beneficial when the

number of samples are small, or when the samples come from a di-

verse collection such as in the pan-cancer scenario.

A naive approach comprises of combining the different data

sources into one data source and the use of a discriminative model

to learn a set of potentially predictive features by explicitly optimiz-

ing a cost function. However, such a discriminative model may re-

sult in too simple approach requiring strong regularization to

eliminate the false positives, and it may be difficult to fully exploit

the multi-view nature of the data to extract the relevant signal.

Kernel-based multi-view and multi-task predictive models have

shown to provide effective learning among distinct data sources and

drug classes (Ammad-ud din et al., 2016, 2014; Cichonska et al.,

2015; Costello et al., 2014). Although these models can result in

highly accurate response predictions, they are less powerful in their

capability to identify the most predictive features (e.g. genes or mu-

tations), making their practical usefulness quite limited for transla-

tional applications. While modeling the non-linear interactions of

the signaling network in an interpretable fashion is an ongoing chal-

lenge, a simple formulation would be to model the linear combin-

ation of features and their networks that are relevant for drug

response prediction.

In this study, we present a Bayesian multi-view multi-task sparse

linear regression model for cellular drug response prediction (illus-

trated in Fig. 1). The method solves the prediction problem by learn-

ing a model from multiple input data sources (here groups of

molecular features) and output variables (here groups of drug re-

sponses). The model additionally identifies feature combinations

from the relevant data sources by assuming structured sparsity. The

proposed formulation assumes that only a few of the input data

sources and features are predictive of a particular group of drugs,

which share highly correlated response patterns. Hence addressing

the small sample size and high-dimensionality problem in drug re-

sponse prediction.

To capitalize on the proposed assumption, multiple input data

sources are generated based on prior biological knowledge; here we

extracted Functional-Linked-Networks of genes (FLNs) of the re-

cently studied human cancer protein kinomes (Fleuren et al., 2016).

1.1 Contributions
Specifically, our contributions are 2-fold:

1. We propose a novel formulation of Bayesian multi-view multi-

task linear regression. The method is simple to use and it pro-

vides straightforward means to identify feature combinations

that are most predictive of drug responses.

2. We introduce a way for incorporating prior biological know-

ledge, in the form of Functional-Linked-Networks (FLNs) for

drug response modeling. Instead of using a single data source

comprising the genome-wide features, we treat FLN-based

groups of features as multiple input data sources. Here the key

assumption is that biologically meaningful grouping of the fea-

tures introduces additional structure that is valuable for predic-

tion of drug responses.

We first demonstrate the model’s predictive power on a synthetic

dataset. We then show the significantly better performance of our

approach on predicting drug responses in two publicly available

cancer datasets. Finally, we examine the inferred relationships be-

tween drug responses, FLNs and molecular features in the larger

dataset, elucidating drug action mechanisms.

2 Computational models in drug response
prediction

The main idea of the computational models is very simple: given

genome-wide features of the cell lines as input (also known as inde-

pendent variables or covariates) and drug responses as target (output

or dependent variables), learn a regression model of the drug sensi-

tivity. The regression model can predict responses to new cell lines

and can help interpreting features relevant to the response prediction

task.

Nonlinear regression models such as kernel methods, support

vector regression, neural networks and random forests have been

well-studied for drug response prediction on new cancer cell lines

(Ammad-ud din et al., 2014; Ammad-ud din et al., 2016; Cichonska

et al., 2015; Costello et al., 2014; Dong et al., 2015; Menden et al.,

2013; Ospina et al., 2014; Riddick et al., 2011; Zhang et al., 2015).

Kernel-based methods have shown better predictive accuracy but

lacks the ability to infer what genes are predictive of drug responses.

Similarly, the random forest regression is built on the ensemble ap-

proach and is expected to provide high prediction accuracy, how-

ever its interpretability at the level of FLNs is currently limited.

Although the method can handle a large number of features, the

number of regression trees needed would also be very high raising

potential complexity issues.

On the contrary, in most translational applications, the objective

is to identify features and networks that are relevant to the drug re-

sponse prediction, linear models become a natural choice. A con-

venient aspect of the linear models is that they are easier to interpret

and provide a straightforward analysis on the relationship between

the genomic and molecular features and drug responses.

2.1 Linear regression
Consider X 2 RN�D a matrix of genome-wide features and

~y 2 RN�1, the vector of drug responses. Here N denotes the number

of samples (cell lines) and D represents the number of features

(genes). Linear regression models the drug responses ~y as a linear

combination of unknown weight vector b 2 R1�D and the features

X as

~y � XbT

The machine learning goal is then to learn the optimal b to gain in-

sights into important features. In genomic and molecular data, since

the number of features is often much higher than the number of sam-

ples, the inference becomes ill-posed and suffers from over-fitting.

A frequent solution is to introduce regularization that penalizes the
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complexity of the model. The widely used elastic net regularization

by Zou and Hastie (2005), is represented as:

bb ¼ argmin
b

jjY�Xbjj22 þ ðajjbjj1 þ
ð1 � aÞ

2
jjbjj22Þ � k

Here k>0 is the penalty parameter that controls the amount of

regularization and shrinking of the weight vector b. The penalty re-

duces to the ridge regression (Hoerl and Kennard, 1988) when a¼0,

and the lasso regression (Tibshirani, 1996) when a¼1. For all

a 2 ð0;1Þ, it is the combination of the ridge and lasso regression.

To identify genomic and molecular features predictive of drug re-

sponses in cancer cell lines, linear regression models employing

ridge, lasso and elastic net regularizations have been used in numer-

ous benchmark experimental studies (Barretina et al., 2012; Basu

et al., 2013; Garnett et al., 2012; Iorio et al., 2016) and they have

served as popular comparison models in the context of drug re-

sponse prediction in various applications (Chen et al., 2015; Cortés-

Ciriano et al., 2015; Costello et al., 2014; De Niz et al., 2016; Jang

et al., 2014), as well as in this paper.

Additionally, several extensions of linear models have also been

studied for modeling drug responses including sparse partial least

squares (sPLS) and sparse group lasso (SGL). In particular, sPLS is

used for simultaneous dimension reduction and feature selection

(Chun and Keleş, 2010), while SGL extends lasso regression to

groups of features (Chun and Keleş, 2010). For drug response data-

sets of higher order, joint tensor models can be useful to analyse fea-

ture relationships (Khan and Kaski, 2014; Khan et al., 2016).

3 Materials and methods

3.1 Bayesian multi-view multi-task linear regression
We formulate the multi-view multi-task linear regression (MVLR)

problem for a collection of v¼1,. . ., V input matrices (views or data

sources) XðvÞ 2 RN�Dv and outcome matrix Y 2 RN�T , as a joint re-

gression that learns each views contribution to the multiple

regression task while pruning out any excessive views. This is

achieved by incorporating two characteristics, i) controlling each

view’s (XðvÞ) activation through a view-specific parameter for multi-

view learning; ii) performing simultaneous regression sharing infor-

mation from multiple tasks (T) in Y. Here, a view is said to be active

when (at least) some of its features are predictive of the outcome.

Figure 1 illustrates MVLR model for the joint regression prob-

lem from the multiple views XðvÞ 2 RN�Dv , each representing an

FLN of genes. More formally, the bðvÞ are feature-level coefficients

that regress each of the corresponding views. Here, the view-specific

weights hðvÞ controls the activation at the view-level, effectively lim-

iting the search space to the predictive views (FLNs). The regression

for multiple tasks is modeled through the wt weights that span

across the set of drugs. The subscripts v, t and i index views, tasks,

and training samples, while the total numbers of input views, tasks,

and training samples are denoted by V, T and N, respectively.

We next formulate a Bayesian treatment of the MVLR by com-

plementing it with priors for model parameters. The distributional

assumptions for multi-view learning combined with multiple task

learning for Y are as follows,

yt � N
XV
v¼1

ðXðvÞbðvÞÞwt; st

 !

bðvÞdv
� Cauchyð0; kðvÞdv

hðvÞÞ

hðvÞ � DirðahÞ

kðvÞdv
� Cauchyþð0; bkÞ

wt � DirðawÞ

st � Cauchyþð0;bsÞ ;

where Cauchy(a, b) is the Cauchy distribution parameterized by lo-

cation a, scale b, and Dir is a Dirichlet prior with concentration par-

ameter a. The bðvÞ coefficients are modeled using a Cauchy prior

centered at zero to induce regularization. The multi-view learning is

achieved through the view-level parameters hðvÞ, which control the

Fig. 1. Flow chart of the Bayesian multi-view multi-task linear regression approach. Left: The learning data consists of multiple data sources (here FLNs) extracted

using prior knowledge and denoted by Xð1Þ::XðV Þ. Right: The model combines multi-view and multi-task learning to systematically identify feature combinations

(bð1Þ1 ; bð1Þ2 ; bð2Þ1 ; bð3Þ1 ; bðvÞDv
) predictive of drug responses. The view-weights h(v) control the view-specific feature weights bðvÞ which are predictive of the drug re-

sponses and are shared across all the drugs. This structured formulation allows identification of predictive views as well as features. The responses of multiple

drugs are modeled by drug specific weights wt

Multi-view multi-task linear regression i361
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variance for all coefficients bðvÞ in the corresponding view. As

hðvÞ � 0, all bðvÞ for the view v approach zero, while as hðvÞ increases

each bðvÞdv
is then controlled primarily by the corresponding feature-

level variance kðvÞdv
. This structured-sparsity formulation allows the

model to identify the relevant views as well as the predictive fea-

tures, while pruning out the excessive views. The hðvÞ are modeled

using a Dirichlet prior to induce view-level regularization, which

matches our application assumption that only a subset of the views

are relevant for the task. The multi-task parameters wt model the re-

gression for multiple joint tasks.

On the distributional choices, the Cauchy is a long tailed prior

that concentrates most of the mass around the area where values are

expected, though also leaves a considerable mass in the tails. It’s use-

fulness has been demonstrated previously in regression settings

(Gelman et al., 2008). Our Dirichlet-Cauchy formulation, may also

be seen as an extension of a global-local shrinkage construction,

where the local shrinkage is enforced by the Cauchy while Dirichlet

controls the view-level shrinkage. For single input, global-local

shrinkage priors have shown robust performance when the features

are sparse, with the normal-Cauchy based horseshoe prior outper-

forming the laplace (Carvalho et al., 2010). For the variance param-

eter st we use the half-Cauchy prior of Gelman et al. (2006). Our

formulation can also be seen as an extension of the sparse group reg-

ularizer (Simon et al., 2013) in a Bayesian hierarchical formulation

with joint multi-task learning. The model is implemented in STAN

(Carpenter et al., 2017) and inference is performed via variational

approximation.

3.2 Publicly available datasets and preprocessing
In this study, we used two publicly available cancer datasets to ana-

lyze cellular drug response predictions.

3.3 Genomics of drug sensitivity in cancer
The first drug response data originated from Genomics of Drug

Sensitivity in Cancer (GDSC) project by Wellcome Trust Sanger

Institute (Yang et al., 2013). For our analysis, we used data from

124 human cancer cell lines and 47 anti-cancer drugs (belonging to

the class of kinase inhibitors), for which complete measurements

were available, and the drug response range was consistent with ear-

lier publications (Garnett et al., 2012; Menden et al., 2013). Drug

response measurements were summarized as log IC50 values, denot-

ing the concentration of a drug required to inhibit the cell line’s

growth by half. Additional information about drugs were also avail-

able, for instance, their primary therapeutic targets.

The drugs were grouped into 16 classes based on their primary

target, sample size and batch information. Specifically, drugs be-

longing to each target class and batch effect were considered an in-

dependent group. For example, two EGFR inhibitors, Erlotinib and

Lapatinib were profiled in a single batch and show comparable re-

sponse, while other two Gefitinib and BIBW2992 were profiled in

the second batch showing correlated response; and were therefore

considered as independent groups for the modeling. Supplementary

Material Information section on "Cancer Data Sets" describes the

batch identification procedures and the groups in detail.

3.4 Triple negative breast cancer
The second data contained responses of 301 approved and investiga-

tional anti-cancer drugs measured on 19 triple negative breast can-

cer (TNBC) cell lines at Institute for Molecular Medicine Finland

FIMM (Gautam et al., 2016). The response data were summarized

with a drug sensitivity score (DSS) (Yadav et al., 2014). For our case

study, we focused on the set of 14 drugs belonging to the class of

kinase inhibitors and 17 cell lines whose gene expression measure-

ments were available from the GDSC project (Iorio et al., 2016).

The drugs were grouped into 6 classes based on their primary target

information (Supplementary Material Section on "Cancer Data

Sets").

In this article, we used gene expression profiles to represent the

cell lines. Several studies including the benchmark drug sensitivity

prediction challenge showed that the gene expression was the most

predictive "omic" data source amongst others (Costello et al.,

2014).

3.5 Functional-linked-networks
To incorporate prior biological knowledge, we extracted FLNs of

known human cancer protein kinases. This was done as a three-step

process. First, we obtained the set of 45 kinase families represented

by 91 driver kinases in human cancers from (Fleuren et al., 2016).

Fleuren et al. (2016) demonstrated that members of these kinase

families are commonly dysregulated in cancer.

In the second step, we exploited the knowledge of kinase families

in a biologically meaningful way to build functional linked net-

works. Specifically, for each of the 45 families, we used genes corres-

ponding to the set of driver proteins to extract FLNs from the

GeneMANIA prediction server (Warde-Farley et al., 2010).

GeneMANIA takes in the list of genes and returns an extended list

of genes, that are predicted to be functionally related using a large

set of association data, such as protein and genetic interactions,

pathways, co-expression, co-localization and protein domain simi-

larity. The recommended default settings of the GeneMANIA server

were used to extract the FLNs.

Finally, we take the genes participating in the FLNs as features

and split the gene expression data into ‘views’, as shown in Figure 1.

More specifically, a view comprises expression profiles of the genes

that belong to an FLN, and thereby represent a kinase family. As an

example, the EGFR kinase family contains EGFR, ERBB2, ERBB3

and ERBB4 driver kinases, and is represented by an FLN of 24

genes. The total number of genes in the 45 FLNs are listed in

Table 1, while the description of FLNs along with the number of

genes in each FLN, and the drug groups are provided in the

Supplementary Material Information.

3.6 Experimental setup
We compared the performance of our multi-view model with the

most widely used linear regression models in drug response predic-

tion problems over a grid of modeling choices, as shown in Table 2.

Particularly, we learned regression models by varying the amount of

input data (i.e. AllGenes, FLNsGenes, L1000Genes) and regulariza-

tion parameters (i.e. ridge, elastic net and lasso). FLNsGenes

denotes the setting when the linear regression is learned using the

non-redundant set of genes derived from FLNs. We also used the set

of 1000 genes (L1000Genes) provided by the LINCS project as a

benchmark, denoting a common set of genes that are widely

Table 1.Multi-view data used in the drug response predictions

Datasets Cell lines Drugs All genes FLNs (genes)

GDSC 124 47 13321 45 (816)

FIMM 17 14 17420 45 (935)

Note: In parenthesis, the number of genes found in FLNs.

i362 M.Ammad-ud-din et al.
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expressed in diverse cellular processes and are representative of the

genome.

We performed a leave-one-out cross validation (LOOCV) pro-

cedure, where in each fold one cell line is completely held-out (as a

test cell line) and models were trained on the remaining cell lines

(training data). The gene expression and drug response measure-

ments were normalized to have zero mean and unit variance. An in-

dependent model was learned for each of the drug groups.

We used sparse linear regression model implemented in the

glmnet R-package (Friedman et al., 2010). The sparse linear regres-

sion has two parameters to be optimized: a (elastic net mixing par-

ameter) and k (the penalty parameter), as discussed in section 2. For

elastic net predictions, we performed a nested 10-fold cross valid-

ation procedure on the training data, to choose optimal values for a
2 ½0:1;0:9� with an increment of 0.1 and k (from 100 values). We fi-

nally selected a combination of a and k values that gave minimum

average error over the internal 10 fold cross-validation on training

data. To obtain the ridge and lasso predictions on the test cell line,

we fixed a¼0 and a¼1 and choose k analogously.
With MVLR, we can encode our prior belief through a stronger

feature-level sparsity when the number of views are small

(ah; aw;bk; bs set to 1,1,0.1,1) in the synthetic data case, and stron-

ger view-level sparsity when the number of views is large in the two

drug response applications (ah; aw;bk; bs set to 0.1,0.1,1,1).

However, in the absence of prior belief’s the hyper-parameters can

also be learned using cross-validation. We evaluated the predictive

performance of the methods in the unnormalized space using

correlations (Spearman and Pearson) and root-mean-squarred error

(RMSE) averaged over all the drugs in each drug-group. The RMSE

was normalized to compute NRMSE such that the baseline (mean

prediction) NRMSE is 1. The run time of MVLR and elastic net al-

gorithms were less than 60 seconds for one cross-validation fold on

the larger dataset (GDSC) using a Mac Book Pro (2.9Ghz, Intel

Core i7, 16GB RAM; MVLR: 43 sec, Elastic Net: 11 sec).

4 Results and discussion

4.1 Synthetic dataset
We first demonstrate in a simulated example the model’s ability to

correctly prune out the excessive views, as well as precisely identify

the sparse feature weights. We plot the behaviour of elastic net re-

gression simultaneously, for illustration purpose.

To demonstrate the ability of our method in a multi-view example

case, four views were generated XðvÞ 2 RN�Dv , for v¼1: 4, N¼40

and Dv¼4565 dimensions in each view v, such that the first two

views were embedded with 10% features whose combinations were

predictive of the response variables (Y 2 RN�T , T¼6), while the re-

maining two views were composed of random features. Figure 2, left

shows the loadings used to create the response variables in all the four

views, and the corresponding estimates of the model parameters by

our method. Our model correctly segregates the views relevant for the

predictions from the excessive ones, as well as correctly identifies the

feature weights for the predictive features. The feature weights

learned by the elastic net by concatenation of the features from mul-

tiple views is also plotted. While the embedded features are correctly

identified by both methods, deviations in the excessive views were

pruned out only by the multi-view formulation.

We next evaluate the models performance over the spectrum of

small sample and high-dimensional settings (Fig. 2, right).

Specifically, we generate data analogous to the above settings v ¼ 1

: 4; Dv ¼ 4565 while varying the number of samples on x-axis. We

repeat each experiment 50 times with noise varying between 1-25%

of the variation of data, to obtain robust estimates; and plot the

average LOOCV performance, using correlation and NRMSE. Our

multi-view regression performs consistently well, and is especially

beneficial when the sample sizes are small.

We also validate our model on single-view datasets, confirming

that it performs comparably to the existing methods in identifying

Table 2. Computational models of drug response predictions

Method Regularization Data Abbreviation

Bayesian multi-view Structured priors FLNs MVLR

Multi-task

Linear regression Ridge All genes R:AllGenes

FLNs genes R:FLNsGenes

L1000 genes R:L1000Genes

Elastic Net All genes EN:AllGenes

FLNs genes EN:FLNsGenes

L1000 genes EN:L1000Genes

Lasso All genes L:AllGenes

FLNs genes L:FLNsGenes

L1000 genes L:L1000Genes
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Fig. 2. Performance of the method on synthetic dataset. Left: The figure demonstrates the models functionality by effectively shutting down excessive views to

prune the search space, and its ability to identify the features weights correctly. The true weights corresponding to the four views are shown along with the

weights learned by our model and elastic net regression. The view-sparsity in MVLR shuts down the irrelevant views. Right: Prediction performance of our model

and the comparison approach when the number of sample size is varied. Each point represents the average prediction performance over 50 experiments with

error bars indicating one standard error over the mean. The structured sparsity assumptions of our model are especially beneficial when the sample sizes are

small in comparison to the number of dimensions
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analogous and correct set of features in the synthetic data

(Supplementary Fig. S1).

4.2 Cancer datasets
We next compare the MVLR method with the alternatives on two

case studies GDSC (pan-cancer) and FIMM (TNBC), and report their

predictive performances in the LOOCV procedure for the different

drug groups. Figure 3 shows the predictive performances of all the

methods on the GDSC (left) and FIMM (right) datasets. MVLR out-

performed its competitor in both case studies. The predictive perform-

ance obtained by MVLR was found to be significantly higher than the

others (p<0.01; one-sided paired Wilcoxon signed-rank test, cor-

rected for multiple testing, Supplementary Table S5) in GDSC dataset.

Also in the smaller FIMM dataset, the predictive performance ob-

tained by MVLR was also found to be significantly higher than the

others (P<0.05; one-sided paired Wilcoxon signed-rank test, cor-

rected for multiple testing, Supplementary Table S9).

Figure 3 demonstrates the predictive performances over the

drugs groups for each method. As the key observation, multi-view

regression combined with prior biological knowledge improves the

drug response predictions. MVLR supplemented with FLNs outper-

formed ridge, elastic net and lasso regressions either supplemented

with or without FLNs/L1000 information. This result confirms that

standard linear regression model does not seem to greatly benefit

from the prior knowledge mainly due to the lack of systematic

multi-view modeling approach. When using FLNs information, the

performance was not better than using the full set of genes (i.e.

AllGenes), except for the R:FLNsGenes scenario in FIMM dataset.

Moreover, we also observed in our feasibility tests that the predic-

tion performance did not improve even if the linear regression was

applied in a heuristic multi-view setting (for instance concatenating

the FLNs with duplicates to make one big input data matrix X).

Secondly, the biological knowledge (FLNs) and the molecular fea-

tures showed response predictive signal, outperforming the baseline

performance. The baseline prediction for the test sample is obtained

as the mean of the training drug response data. Notably, the mean

prediction of uncentered data yields a correlation of –1, when using

LOOCV (See Empirical evidence of mean prediction correlation’ in

the Supplementary Material Information); implying that negative

correlations in Figure 3 represent lower prediction performances

that are closer to the baseline.

In GDSC dataset, when predicting responses to EGFR inhibitors

(Erlotinib and Lapatinib, see methods for drug groups), MVLR

demonstrated better performance then linear regression. Whereas

EN:FLNsGenes (Spearman correlation¼0.272), L:FLNsGenes

(0.233), EN:FLNs (0.272) and L:FLNs (0.233) gave slightly better

predictions than MVLR (0.218) for the Gefitinib and BIBW2992

(EGFR inhibitors). As expected, MEK inhibitors were predicted

with high accuracy with all the methods. Most of the drug groups

were consistently predicted better by MVLR than with any variant

of the standard linear regression. While predicting GW843682 and

BI-2536 (PLK inhibitors), Sunitinib and Sorafenib (PDGFRA,

PDGFRB, KDR, KIT, FLT3 inhibitors) and TW-37 and Obatoclax-

Mesylate (BCL inhibitors) MVLR gave correlation values of 0.151,

0.214 and 0.173 compared to –0.367, –0.425 and –0.881, respect-

ively. Similar trends in predictive performances can be observed in

Pearson correlation and NRMSE from the Supplementary Material

Information (Supplementary Fig. S8 and S2–S4).

Likewise, in FIMM (TNBC) dataset, MVLR shows robust pre-

dictions for PI3K, PLK and ABL inhibitors, compared to other meth-

ods. Linear regression also performs well in predicting responses to

MTOR and PI3K/MTOR inhibitors, nevertheless does not outper-

form the MVLR method. On the other hand, in case of CDK inhibi-

tors, linear regression gave slightly improved predictions with

EN:AllGenes (0.206), R:FLNsGenes (0.246), EN:FLNsGenes

(0.227) and L:FLNsGenes (0.227) compared to MVLR (0.202).

Supplementary Material Information (Supplementary Fig. S9 and

Tables S6–S8) demonstrates the comparison results in the form of

Pearson correlation and NRMSE.
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higher than the others shown on x-axis (P<0.05; one-sided paired Wilcoxon signed-rank test corrected for multiple testing). Here, negative correlations corres-

pond to poor performance as the baseline performance is –1, which is obtained using the mean of the training drug response data as predictions for the test

sample
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In the case of a single cancer subtype when the number of sam-

ples is often quite limited, evaluating the predictions becomes a chal-

lenging task. We therefore investigate the reproducibility of the

predictions on FIMM TNBC dataset (n¼17), and compute the vari-

ance of the performance scores across ten model runs. The results

show that the prediction performance of our model is similar with

standard deviations between 0.05 and 0.12 for different drug groups

(Supplementary Table S10).

In addition to the widely used linear approaches in drug response

modeling, we also investigate MVLR in comparison to other compu-

tational methods. Specifically, we compare the model’s performance

to sparse partial least squares (sPLS; Chun and Keleş, 2010), sparse

group lasso (SGL; Simon et al., 2013), random forest (RF; Ishwaran

et al., 2008) and support vector machine (SVM; Tuia et al., 2011),

using comparable multi-task variants where available. Table 3

shows the prediction correlation averaged over all the drug groups,

while individual performances can be found in Supplementary

Tables S11–S13. MVLR demonstrates better mean prediction correl-

ation in comparison to all the methods (except SVM in FIMM data-

set); and significantly outperforms linear methods sPLS and SGL

with p¡0.05, one-sided paired Wilcoxon signed-rank test in the

GDSC dataset. Notably, our method provides mechanistic interpret-

ations at the level of both, FLNs and genes, in contrast to SVM and

RF.

4.3 Inferring gene-FLNs-drug response relationships
The use of multi-view data and model not only improves the predic-

tion performance, but also helps to infer gene-FLNs-drug response

relationships. We further analyze the FLNs-drug response relation-

ship in the GDSC dataset, followed by the subsequent analysis for

the well known EGFR, ALK, PLK and PDGFRA, PDGFRB, KDR,

KIT, FLT3 inhibitors. To focus on the most predictive FLNs we con-

sider the top-3 FLNs identified by the model for each drug group, in

the subsequent analysis.

Figure 4 illustrates the FLNs-drug response relationships in the

form of an eye diagram. A striking characteristic of the model is evi-

dent from the findings. In the case of four different inhibitor classes,

MVLR identifies top predictive FLNs correctly. For the remaining

Table 3. Prediction performance measured as the Spearman correl-

ation averaged over the drug groups

MVLR sPLS SGL RF SVM

GDSC 0.375 0.330 0.338 0.359 0.363

FIMM 0.336 0.273 0.300 0.295 0.349
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classes either the direct FLN is not available or MVLR has identified

a downstream FLN which may require further lab validation (for in-

stance MAPK for BCL inhibitors, PEK for CDK, PI3K, MTOR and

PLK target groups). Nevertheless, the identified FLNs already serve

as proof-of-concept positive controls for the validation of the model.

These FLNs include EGFR, FGFR, PKC, SGK and STKR predictive

of EGFR inhibitors (erlotinib, lapatinib, gefitinib and BIBW2992),

ALK, BRD and STK7 predict ALK inhibitors (NVP-TAE684 and

PF-02341066), PLK, PEK and EPH are found predictive of PLK in-

hibitors (GW843682X and BI-2536) and PDGFR, CAMKL and

AKT predict PDGFRA, PDGFRB, KDR, KIT, FLT3 inhibitors (suni-

tinib and sorafenib) respectively. It is biologically meaningful that

the inhibitors are related to these FLNs, making it possible to inhibit

the corresponding gene activities in the respective FLNs.

We next analyze the combination of features from these FLNs

and the drug responses, visualized as heatmaps (drawn using the

Complexheatmap package in R programming language (Gu et al.,

2016)).

4.4 EGFR inhibitors
Figure 5a and b illustrates multiple known features as top predictors

of responses to EFGR inhibitors. For example EGFR, ERBB2 and

NRG1 were among the top predictive features identified by the

MVLR method. The over expression of these genes links to the
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weights from the top three FLNs are shown. Feature weights marked with an asterisk (*) are statistically significant (p¡0.05, permutation test). The gene expres-
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response of EGFR inhbitors. As a sanity check, we also validated

these results from the findings reported in the benchmark study that

published the original data (Garnett et al., 2012). Our results were

consistent with their findings. ERBB2 (also known as HER2) over

expression was associated with sensitivity to EGFR-family inhibitors

including lapatinib and BIBW2992. Interestingly, the second most

predictive feature predicting responses to gefitinib and BIBW2992 is

FGFR3 which is a part of FGFR FLN. The role of FGFR signaling

pathway in cancer is highly studied, however its downstream effects

on the EGFR signaling for all types of cancers is not fully under-

stood (Turner and Grose, 2010). Early studies have reported that

over expression of FGFR2 and FGFR3 can mediate resistance to

EGFR inhibitor therapy in lung cancer (Ware et al., 2010) and re-

sistance to HER2 inhibitors in HER-positive breast cancer

(Koziczak et al., 2004). In Figure 5b, the identification of FGFR3

may generate novel hypothesis on the effect of FGFR3 gene on the

EGFR/ERBB2 gene family in oesophagus, stomach and kidney can-

cers (cell line names TE-6, TE-12, EC-GI-10, GCIY, TK10). These

findings either suggests that FGFR3 is involved in EGFR/ERBB2 sig-

naling or it can feed the same type of oncogenic signals as EGFR.

For these cancers, especially FGFR3 may play a kind of co-factor

role with EGFR and may be investigated to design therapeutically

targetted drugs in future.

4.5 ALK inhibitors
Figure 5c shows the predicted features associated with sensitivity to

ALK inhibitors. Among others ALK, CLDN1 and MAPK14 as the

most predictive features identified by MVLR. ALK inhibitors con-

nected to the high expression of ALK gene is biologically plausible.

4.6 PLK inhibitors
Figure 5d represents the top features predictive of responses to PLK

inhibitors. For example PPM1A, VPS33A and PLK3 were among

the top predictors identified by the MVLR method. High expression

of PLK3 and VPS33A genes are positively associated with the sensi-

tivity to PLK inhibitors.

4.7 PDGFRA, PDGFRB, KDR, KIT, FLT3 inhibitors
Figure 5e illustrates the top predictors of responses to sunitinib and

sorafenib, which are essentially the multi-target inhibitors (PDGFRA,

PDGFRB, KDR, KIT, FLT3). MVLR found FLT3 from the PDGFR

FLN as one of the features postively associated with their responses in

blood cell line (MONOMAC6). It is also known that PDGFR inhib-

ition leads to AKT activation (Zhang et al., 2007), supporting the

identification of the AKT-related FLN in the analysis.

The analysis demonstrated that gene-FLNs-drug response rela-

tionships provide biologically meaningful insights. These are well-

studied examples serving as proof-of-concept positive controls, for

the proposed MVLR method. As demonstrated, MVLR was success-

fully able to identify predictive feature combinations within a single

FLN and from across multiple FLNs. This systematic identification

of feature combinations is made possible with a multi-view learning

approach defined with structured sparse priors. The priors allowed

MVLR to choose first the correct FLNs and secondly identify the

feature combinations maximally predictive of drug responses, from

the chosen FLNs.

5 Conclusion

We presented a new Bayesian multi-view multi-task linear regression

model for identifying features predictive of drug responses in cancer

cells. In experiments with a synthetic as well as two publicly avail-

able cancer datasets, the proposed method showed improved pre-

dictive accuracy compared to state of the art linear regression model

in drug response prediction. We also demonstrated the usefulness of

our model, combined with prior knowledge for inferring the rela-

tionships between FLNs and drug responses. The results showed

that the proposed model identified robust and biologically meaning-

ful feature combinations for predicting sensitivity to the well known

EGFR, ALK, PLK and PDGFR inhibitors. This way of identifying

predictive feature combinations using groups of genes (encoded in

the form of FLNs) may enhance our understanding of the action

mechanism of drugs and can potentially be used to identify novel

combination of predictive biomarkers for designing personalized

therapies for cancer patients.
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Chun,H. and Keleş,S. (2010) Sparse partial least squares regression for simul-

taneous dimension reduction and variable selection. J. R Stat. Soc. Ser. B

(Statistical Methodology), 72, 3–25.

Cichonska,A. et al. (2015) Identification of drug candidates and repurposing

opportunities through compound–target interaction networks. Expert

Opin. Drug Discov., 10, 1–13.

Cortés-Ciriano,I. et al. (2015) Improved large-scale prediction of growth in-

hibition patterns using the NCI60 panel. Bioinformatics, 31, btv529.

Costello,J.C. et al. (2014) A community effort to assess and improve drug sen-

sitivity prediction algorithms. Nat. Biotechnol., 32, 1202–1212.

De Niz,C. et al. (2016) Algorithms for drug sensitivity prediction. Algorithms,

9, 77.

Dong,Z. et al. (2015) Anticancer drug sensitivity prediction in cell lines from base-

line gene expression through recursive feature selection. BMC Cancer, 15, 489.

Fleuren,E.D. et al. (2016) The kinome’at large’in cancer. Nat. Rev. Cancer,

16, 83–98.

Friedman,J. et al. (2010) Regularization paths for generalized linear models

via coordinate descent. J. Stat. Software, 33, 1.

Garnett,M.J. et al. (2012) Systematic identification of genomic markers of

drug sensitivity in cancer cells. Nature, 483, 570–575.

Gautam,P. et al. (2016) Identification of selective cytotoxic and synthetic le-

thal drug responses in triple negative breast cancer cells. Mol. Cancer, 15, 1.

Multi-view multi-task linear regression i367

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/33/14/i359/3953979 by Aalto U
niversity Library user on 02 D

ecem
ber 2019

Deleted Text: l
Deleted Text: l
Deleted Text: )
Deleted Text: I
Deleted Text: )
Deleted Text: I
Deleted Text: )
Deleted Text: I
Deleted Text: )
Deleted Text:  


Gelman,A. et al. (2006) Prior distributions for variance parameters in hier-

archical models (comment on article by browne and draper). Bayesian

Anal., 1, 515–534.

Gelman,A. et al. (2008) A weakly informative default prior distribution for lo-

gistic and other regression models. Ann. Appl. Stat., 2, 1360–1383.

Gu,Z. et al. (2016) Complex heatmaps reveal patterns and correlations in

multidimensional genomic data. Bioinformatics, 32, 2847–2849.

Hoerl,A. and Kennard,R. (1988). Ridge regression, in Encyclopedia of

Statistical Sciences, vol. 8.

Iorio,F. et al. (2016) A landscape of pharmacogenomic interactions in cancer.

Cell, 166, 740–754.

Ishwaran,H. et al. (2008) Random survival forests. Ann. Appl. Stat., 2,

841–860.

Jang,I.S. et al. (2014) Systematic assessment of analytical methods for drug sensitiv-

ity prediction from cancer cell line data. In: Proceedings of the Pacific

Symposium. pp. 63–74. Kohala Coast, Hawaii, USA.

Khan,S.A. and Kaski,S. (2014) Bayesian multi-view tensor factorization. In:

Joint European Conference on Machine Learning and Knowledge

Discovery in Databases. pp. 656–671. Springer Berlin Heidelberg.

Khan,S.A. et al. (2016) Bayesian multi-tensor factorization. Machine Learn.,

105, 233–253.

Koziczak,M. et al. (2004) Blocking of fgfr signaling inhibits breast cancer cell

proliferation through downregulation of d-type cyclins. Oncogene, 23,

3501–3508.

Menden,M.P. et al. (2013) Machine learning prediction of cancer cell sensitivity

to drugs based on genomic and chemical properties. PLoS One, 8, e61318.

Ospina,J.D. et al. (2014) Random forests to predict rectal toxicity following

prostate cancer radiation therapy. Int. J. Radiat. Oncol.* Biol.* Phys., 89,

1024–1031.

Riddick,G. et al. (2011) Predicting in vitro drug sensitivity using random for-

ests. Bioinformatics, 27, 220–224.

Simon,N. et al. (2013) A sparse-group lasso. J. Comput. Graph. Stat., 22,

231–245.

Tibshirani,R. (1996) Regression shrinkage and selection via the lasso. J. R

Stat. Soc. Ser. B Methodol., 58, 267–288.

Tuia,D. et al. (2011) Multioutput support vector regression for remote sensing

biophysical parameter estimation. IEEE Geosci. Remote Sensing Lett., 8,

804–808.

Turner,N. and Grose,R. (2010) Fibroblast growth factor signalling: from de-

velopment to cancer. Nat. Rev. Cancer, 10, 116–129.

Warde-Farley,D. et al. (2010) The genemania prediction server: biological net-

work integration for gene prioritization and predicting gene function. Nucl.

Acids Res., 38 (2), W214–W220.

Ware,K.E. et al. (2010) Rapidly acquired resistance to egfr tyrosine kinase in-

hibitors in nsclc cell lines through de-repression of fgfr2 and fgfr3 expres-

sion. PloS One, 5, e14117.

Yadav,B. et al. (2014) Quantitative scoring of differential drug sensitivity for

individually optimized anticancer therapies. Sci. Rep., 4, 5193.

Yang,W. et al. (2013) Genomics of drug sensitivity in cancer (GDSC): a re-

source for therapeutic biomarker discovery in cancer cells. Nucl. Acids Res.,

41, D955–D961.

Zhang,H. et al. (2007) Pdgfrs are critical for pi3k/akt activation and negatively

regulated by mtor. J. Clin. Invest., 117, 730–738.

Zhang,N. et al. (2015) Predicting anticancer drug responses using a dual-layer

integrated cell line-drug network model. PLoS Comput. Biol., 11,

e1004498.

Zou,H. and Hastie,T. (2005) Regularization and variable selection via the

elastic net. J. R Stat. Soc. Ser. B (Statistical Methodology), 67, 301–320.

i368 M.Ammad-ud-din et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/33/14/i359/3953979 by Aalto U
niversity Library user on 02 D

ecem
ber 2019


