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Levitation Control for a Double-Sided Bearingless
Linear Motor Based on Feedback Linearization

Seppo E. Saarakkala, Maksim Sokolov, Reza Hosseinzadeh, and Marko Hinkkanen
Aalto University School of Electrical Engineering, P.O. Box 15500, FI-00076 Aalto, Espoo, Finland

Abstract—This paper deals with levitation control for a double-
sided bearingless linear-motor system. Analytical design rules
for a state-feedback gain and a state observer are derived. To
decouple the production of forces in thrust- and normal-force
directions, feedback-linearizing control based on the magnetic
model is proposed. The proposed control design is tested in
an experimental system consisting of four individually supplied
linear-motor units in a double-sided configuration. The results
from time-domain simulations and experimental tests suggest
that the proposed control design can successfully provide smooth
transition to contactless operation and retain the stable levitation
during the movement in the thrust-force direction.

Index Terms—Bearingless, control, levitation, linear motor.

I. INTRODUCTION

A linear motor system is an attractive alternative as a propul-
sion source for various applications requiring linear movement,
such as urban rail transit [1], wave-energy generation [2],
electromagnetic launch systems [3], [4], machine tools [5], and
elevator systems [6], [7]. In addition to the thrust force, linear
machines also produce a normal force component. As depicted
in Fig. 1, a bearingless linear motor system can be formed,
when several individually controlled motor units are arranged,
e.g., in a two-sided or four-sided configuration. The thrust and
normal forces of the individual motor units are controlled to
create the required linear motion and the remaining degrees
of freedom are stabilized with an active levitation control.

Active levitation control is a widely studied subject in the
field of active magnetic bearings (AMBs). Several different
control structures have been proposed for AMB control,
simple proportional-integral-derivative (PID) controller being
the most common one [8]. The nonlinearities of the elec-
tromagnetic force actuator (e.g., magnetic saturation of the
iron core and the voltage saturation of the supply device) as
well as the structural bending modes of the rotor cause the
major challenges, making the simple PID levitation controller
sometimes an inadequate choice. Therefore, the AMBs are
often treated as systems with uncertainties and robust-control-
theory design tools are applied [8], [9]. Alternatively, if the
force actuator nonlinearities are known, feedback linearization
is a powerful tool to tackle them [10]. State-feedback control
methods, on the other hand, may be applied to controlling the
bending modes of the rotor [11], [12].

In contrast with control of conventional motors equipped
with the AMBs, levitation control of bearingless motors (linear
or rotating) has an additional challenge: the force production in
the traction and levitation directions becomes coupled, because
the magnetic circuit is shared. Decoupling methods have been
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Fig. 1. Example configuration of a bearingless linear motor system, consisting
of a beam with rails and a mover with eight motor units: (a) cross-section in
the xy plane; (b) cross-section in the yz plane.

proposed, e.g. [13], [14], but only a few of these methods take
properly into account both the effects of magnetic saturation
and airgap variation [14]. Moreover, systematic design rules
for levitation control of bearingless motors are not available,
apart from a recent work [15]. However, the levitation control
design in [15] is based on applying a linear motor model.
Instead of systematically synthesizing the levitation control
system, proportional-derivative (PD) or PID controllers, with
trial-and-error tuning, are used [13], [16]–[18].

This paper proposes a feedback-linearization state-space
levitation control method for a double-sided bearingless linear
motor drive. The main contributions can be summarized as
follows:

1) Analytical design rules for the levitation controller (in-
cluding the feedback gain and the state observer) are
presented.

2) A feedback-linearization structure, based on the mag-
netic model of the motor, is developed. This structure
decouples the thrust- and normal-force production and
makes the levitation-control loop independent of the
inner force-control loops.

3) Robustness against parameter errors and sensitivity to
measurement noise is analyzed by means of time-
domain simulations.

A similar control structure is applied in the simulation study
[19], but analytical design rules for the controller gains are
not provided. The developed controllers is experimentally
evaluated with a system consisting of four 2-kW linear flux-
switching permanent-magnet (FSPM) motor units in a double-
sided configuration.
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Fig. 2. Electrical dynamics of an FSPM motor unit modelled in dq
coordinates, rotating at ωm = (2π/τ) · dx/dt.

II. MODELING OF AN FSPM LINEAR MOTOR SYSTEM

A. Electrical Subsystem

Fig. 2 shows the lumped-element dynamic model of an
FSPM motor unit in dq coordinates [20]. The voltage equations
in dq coordinates are

dψd

dt
= ud −Rid + ωmψq (1a)

dψq

dt
= uq −Riq − ωmψd (1b)

where ψd, ψq are the flux-linkage components, ud, uq are the
voltage components, R is the resistance, ωm = (2π/τ) ·dx/dt
is the electrical angular speed, and τ is the pole pitch of the
rail. As shown, e.g. in [20], the currents can be modeled as
functions of the flux linkages and the airgap y,

id = id(ψd, ψq, y) iq = iq(ψd, ψq, y) (2)

Alternatively, the reciprocal relationships ψd = ψd(id, iq, y)
and ψq = ψq(id, iq, y) could be used. These functions are
generally nonlinear because of the magnetic saturation.

In accordance with Fig. 2, the rate of change of the magnetic
field energy is

dW

dt
=

(
id

dψd

dt
+ iq

dψq

dt

)
+

2π

τ
(ψdiq − ψqid)

dx

dt

− Fx
dx

dt
− Fy

dy

dt
(3)

The thrust force and the normal force, respectively, are

Fx = Fx(ψd, ψq, y) =
2π

τ
(ψdiq − ψqid) (4a)

Fy = Fy(ψd, ψq, y) = −∂W
∂y

(4b)

Naturally, the airgap y can change in bearingless motors.
Alternatively, the forces may be expressed as functions of
the currents as Fx = Fx(id, iq, y) and Fy = Fy(id, iq, y).
If spatial harmonics were taken into account, the currents and
forces would depend on the position x as well.

B. Mechanical Subsystem

The mechanical configuration is shown in Fig. 3(a). A rigid
mechanical structure is assumed. The rotational movements
around the x and y directions are mechanically prevented, and
the rotational movement around the z direction is neglected.
The actuators in the upper section (units 1 and 2) and in the
lower section (units 3 and 4) are assumed to be identical and
decoupled. Therefore, the model is considered for the upper
section only. The motion equations in the x direction are

m
dvx
dt

= ΣFx + Fx,d
dx

dt
= vx (5)

where vx is the linear velocity, ΣFx = Fx1 +Fx2 is the thrust
force, Fx,d is the external disturbance force (which includes
the gravitational force −mg and other external forces affecting
in the x direction), and m is the mass (half the total mass of
the mover). The motion equations in the y direction are

m
dvy
dt

= ∆Fy + Fy,d
d∆y

dt
= vy (6)

where vy is the linear velocity, ∆y = (y1 − y2)/2 is the
differential airgap, ∆Fy = Fy2 − Fy1 is the differential
normal force, and Fy,d is the external disturbance force.
The overall system is nonlinear due to the force expressions
(4). Furthermore, the open-loop system is unstable in the y
direction.

III. LEVITATION CONTROL SYSTEM

Fig. 3(b) shows the overall structure of the controller applied
for the upper section. The levitation controllers for the upper
and lower sections are identical and independent of each other.
The cascaded control system includes the inner and outer
control loops and a decoupling block between them. The
levitation controller drives the measured differential airgap ∆y
to zero using the differential normal force ∆Fy. The traction
controller provides the total thrust force reference, which is
equally shared between the motor units.

A. Feedback Linearization and Decoupling

For given ΣFx,ref , ∆Fy,ref , ∆y, and F0, the force references
for each motor unit are

Fx1,ref = Fx2,ref = ΣFx,ref/2 (7a)
Fy1,ref = F0 − ∆Fy,ref/2 (7b)
Fy2,ref = F0 + ∆Fy,ref/2 (7c)

where F0 is a common-mode attraction-force component, and
it can be arbitrarily selected within the boundaries of the
maximum motor current. If the static nonlinearities in (2) and
(4) are known, the flux linkages of each motor unit can be
solved as functions of the force references and the airgap.
Using (2), the flux references are finally mapped to the current
references, which are fed to the current controllers, as shown
in Fig. 3(b). The system seen by the traction and levitation
controllers becomes linear and decoupled.

The nonlinear functions in (2) and (4) can be determined,
e.g., by completing a series of static finite-element-method
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Fig. 3. (a) Mechanical configuration of the double-sided linear bearingless machine consisting of four individual motor units. (b) Traction and levitation
controllers for the upper section (motor units 1 and 2). The decoupling and feedback linearization block includes a nonlinear mapping from the force references
and airgap positions to the current references. The upper and lower sections share the same traction controller. The lower section has its own levitation controller.

(FEM) simulations and storing the results in the form of look-
up tables. Alternatively, explicit functions can be used [20].
The design of the feedback linearization is discussed in more
detail in Section IV-B.

B. State Feedback Control

A hold-equivalent exact discrete-time state-space represen-
tation of (6) is

xs(k + 1) = Axs(k) + B∆Fy(k) + BFy,d(k)

∆y(k) = Cxs(k) (8)

where xs = [vy,∆y]T is the state vector and Fy,d is the
external disturbance force. The system matrices are

A =

[
1 0
Ts 1

]
B =

[
Ts

m
T 2
s

2m

]
C =

[
0 1

]
(9)

where Ts is the sampling interval. As shown in Fig. 4, a state-
feedback control law is used

∆F ′y,ref(k) = −Kxs(k) + kI∆yI(k) (10)

where K = [k1, k2] and kI are the feedback gains. The integral
state is defined as

∆yI(k + 1) = ∆yI(k) + ∆yref(k) −Cxs(k)

+
1

k2
[∆Fy,ref(k) − ∆F ′y,ref(k)] (11)

where the limited differential-force reference ∆Fy,ref can be
calculated as a function ∆y and the given maximum d-axis

current id,max using (16). In the linear operation region, the
augmented closed-loop system is[

xs(k + 1)
∆yI(k + 1)

]
=

[
A−BK BkI

−C 1

]
︸ ︷︷ ︸

Acl

[
xs(k)

∆yI(k)

]

+

[
0
1

]
∆yu,ref(k) +

[
B
0

]
Fy,d(k) (12)

The characteristic polynomial of the closed-loop system is
Bfb(z) = det(zI − Acl). Here, the three poles are divided
into a real pole and a pair of complex poles, Bfb(z) =
(z + a)(z2 + bz + c), leading to the following feedback gains

k1 = m
a− b+ c+ 7

4Ts
k2 = m

3a+ b− c+ 5

2T 2
s

kI = m
a+ b+ c+ 1

T 2
s

(13)

C. State Observer

The state-feedback control law requires information both
from the differential airgap ∆y and from the linear velocity
vy, but only the differential airgap is available as a feed-
back signal. The velocity vy could be calculated as a direct
differentiation of the measured differential airgap, vy(k) =
[∆y(k) − ∆y(k − 1)]/Ts, but this approach is very noise
sensitive. A more elaborate solution is to use a full-order state
observer to estimate the state vector as

x̂s(k + 1) = Ax̂s(k) + B∆Fy,ref(k)

+ L[∆y(k) −Cx̂s(k)] (14)
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Fig. 4. Levitation controller. The discrete-time state-space controller consists
of an integrator, a state feedback and a state observer. The shaded area
shows limitation of the force reference and a back-calculation anti-windup
mechanism. The maximum force is determined based on (16) using the
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TABLE I
PARAMETERS OF THE LEVITATION CONTROL SYSTEM

Current control
d-axis inductance Ld 100 mH
q-axis inductance Lq 100 mH
Closed-loop bandwidth αc 2π · 700 rad/s
Sampling time Tsc 62.5 µs

Feedback linearization
Nominal airgap yN 1.05 mm
Current stiffness kx 70 N/A
Current stiffness ky 130 N/A
Force coefficient fy 6.0 kN
Force coefficient cy 0.3 1/mm

Levitation control
Total mass of the mover 2m 100 kg
Real-valued control pole ap 2π · 5 rad/s
Natural frequency of the complex control poles ωs 2π · 50 rad/s
Damping of the complex control poles ζs 0.8
Natural frequency of the complex observer poles ωo 2π · 250 rad/s
Damping of the complex observer poles ζo 0.8
Sampling time Ts 125 µs

where L = [l1, l2]T is the observer gain. The observer gain is
defined by the desired second-order characteristic polynomial,
Bo(z) = det(zI−A + LC) = z2 + dz + e, giving

l1 = (e+ d+ 1)/Ts l2 = d+ 2 (15)

IV. CONTROL DESIGN EXAMPLE

This section provides a design example for the proposed
levitation controller. The most important aspects related to the
implementation and parametrization of the control system are
covered. The system parameters are collected in Table I.

A. Experimental System

The experimental setup used in this example is shown in
Fig. 5, and it consists of four three-phase linear FSPM motor
units, corresponding to Fig. 3. Each motor unit is supplied with
an individual three-phase inverter and equipped with sensors
for measuring the airgap length and the linear position on the
rail. Furthermore, the phase currents and the DC-link voltage
of each unit are measured for the current control loops.

Fig. 5. Experimental setup.

B. Feedback Linearization

The force production of an FSPM motor unit is analyzed
by means of static FEM simulations. The current components
(id, iq) and the force components (Fx, Fy) were solved as
a function of the flux linkages and airgap (ψd, ψq, y) in
predefined operating points. The operating points were chosen
to cover the whole operating range of the motor in terms of
allowable currents and possible airgap variation [20].

Based on the FEM analysis, the forces in (4) are approxi-
mated in this paper as

Fx = kxiq (16a)

Fy = −kyid − fy
(1 + cyy)2︸ ︷︷ ︸

f0(y)

(16b)

where kx and ky are the force-actuator current stiffnesses,
f0(y) is the normal force caused by the permanent magnets
only, and cy and fy are force coefficients. The normal-force
references Fy1,ref and Fy2,ref of the motor units from (7) are
mapped to the current references using (16),

id1,ref = −F0(∆y) − ∆Fy,ref/2 + f01(y1)

ky
(17a)

id2,ref = −F0(∆y) + ∆Fy,ref/2 + f02(y2)

ky
(17b)

iq1,ref = iq2,ref =
ΣFx,ref

2kx
(17c)

where f01(y1) and f02(y2) are the normal forces of motor units
1 and 2, respectively, caused by the permanent magnets only.
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Fig. 6. (a) Common-mode attraction force F0 as a function of differential
airgap ∆y. (b) d-axis current references as a function of differential force
∆Fy,ref at ∆y = 0.7 mm.

Here, the common-mode normal-force component is selected
as

F0(∆y) = −f01(y1) + f02(y2)

2
(18)

which results in the control strategy where id1,ref = −id2,ref .
To evaluate the accuracy of the simplified feedback lin-

earization, Fig. 6 compares the numerical values obtained
from (17) and (18) to the corresponding FEM results. As an
example, Fig. 6(a) shows the common-mode attraction force
F0 as a function of ∆y, and Fig. 6(b) shows the d-axis current
references as a function of differential force ∆Fy,ref at ∆y
= 0.7 mm. Fig. 6 confirms that the approximate model in
(16) matches reasonably well with the FEM results, when the
control strategy (18) is chosen. Even if the force approximation
in (16b) is slightly inaccurate, the integral action of the
levitation controller (11) compensates for the modeling errors
seen in Fig. 6. If a better accuracy is required, feedback
linearization could be directly implemented in the form of
look-up tables based on the static FEM data.

For the inner control loops, cf. Fig. 3(b), identical
proportional-integral (PI) current controllers are applied for all
four motor units. Their tuning is based on the internal model
control (IMC) principle [21]. If the current-control bandwidth
αc is chosen significantly higher (preferably more than ten
times) than the approximate levitation-control bandwidth, the
current references (17) can be realized fast enough.

C. Considerations for Pole Placement

Because the state vector consists of two states and the
controller is augmented with the integrator, the closed-loop
system (12) is of the third order. Furthermore, the full-order
observer increases the order of the levitation control system
by two, i.e., five poles in total have to be placed. The
desired characteristic polynomial in the discrete-time domain
is B(z) = (z + a)(z2 + bz + c)(z2 + dz + e). However, it
is easier to choose the pole locations in the continuous-time
domain, where the corresponding polynomial is

B(s) = (s+ ap)(s2 + bcs+ cc)(s
2 + dcs+ ec) (19)

The complex-conjugate poles of s2+bcs+cc = s2+2ζsωss+
ω2
s are treated as faster poles (related to the speed-control

loop). If 0.6 < ζs < 0.9 is selected, ωs represents the
approximate −3 dB bandwidth of the speed-control loop. The
real-valued pole s = −ap represents the airgap regulation
dynamics, ap being the approximate −3 dB bandwidth. The
remaining polynomial s2 + dcs + ec = s2 + 2ζoωos + ω2

o is
related to the observer poles. The following rough guidelines
can be used to set the bandwidths

αc < π/(10Tsc) ωs < αc/10

2ωs < ωo < αc/2 ap < ωs/10 (20)

where Tsc is the sampling interval of the current-control loop.
It is worth mentioning that the selection of ωo is a compromise
between the measurement-noise amplification and the effect of
the observer on the dynamic response of the overall control
system. If the noise content in the position measurement is
low, a high value for ωo can be selected and the observer has
negligible effect on the control performance. Furthermore, if
the rail beam has a structural bending mode in a low-frequency
region, it is advisable to relocate the control poles such that
ωs < 5ωr, where ωr is the predicted natural resonant frequency
of the bending mode. Table I gives the numerical values for
the selected design parameters.

The continuous-time coefficients are mapped to their exact
discrete-time equivalents as

a = −e−apTs c = e−bcTs e = e−dcTs

b = −2e−bcTs/2cos
(
Ts
√
cc − b2c/4

)
d = −2e−dcTs/2cos

(
Ts
√
ec − d2c/4

)
(21)

and the corresponding controller gains are calculated using
(13) and (15).
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Fig. 7. Simulation results showing the operation of the proposed levitation control system: (a) reference tracking dynamics; (b) stepwise disturbance-force
rejection; (c) sinusoidal disturbance-force rejection. In each subfigure, the first subplot shows the measured differential airgap ∆y and its reference ∆yref ,
the second subplot shows the measured x-direction position and velocity, and the last subplot shows the measured currents of the motor units.

D. Traction Control

Since traction control is not the main topic of this paper, a
cascaded structure consisting of a proportional position con-
troller and a PI speed controller is applied. Traction control is
parametrized to have slower dynamics than levitation control.
Furthermore, a counterweight is mounted to the system to
compensate for the gravitational force acting on the mover.

V. RESULTS

In this section, the proposed levitation control system is
evaluated by means of time-domain simulations and experi-
mental tests. The experiments were carried out using the test
system shown in Fig. 5. The robustness of the control system
against parameter errors and sensitivity to measurement noise
is analyzed by means of time-domain simulations.

A. Time-Domain Simulations

In the simulation plant model, the electrical subsystems
of two FSPM motor units are modeled using the voltage
equations (1) together with the nonlinear mappings from the
flux linkages to the currents, (2), and from the flux linkages to
the forces, (4). These mappings are implemented in the form
of look-up tables, and they are based directly on the numerical
data from the FEM analysis (without any approximations or
simplifications). The mechanical subsystem is modeled using
(5) and (6), where only the upper section is considered.
The absolute airgaps of the two motor units are defined as
y1 = yN + ∆y and y2 = yN−∆y. The x direction movement
of the two motor units is assumed to be perfectly aligned,
i.e., x1 = x2. The levitation control system [cf. Fig. 3(b)] is
implemented according to the design guidelines and parameter
values given in Section IV.

Fig. 7 shows a set of simulation results for the proposed
levitation controller. Fig. 7(a) shows the initial start-up of the
levitation. Motor unit 2 is initially attached to the rail and the

active levitation starts at t = 0.3 s. Even if the approximate
model (16) is used for feedback linearization, the reference
tracking accuracy of levitation control is still in an acceptable
level. It can be seen that the levitation controller provides
smooth and fast transition to a stable levitation mode. Fig.
7(b) shows the response for a stepwise external disturbance
force Fy,d = 500 N, applied at t = 0.01 s. It can be seen that
the system fully rejects the stepwise disturbance force, and the
maximum deviation in ∆y during the disturbance step is less
than 15% of the nominal airgap. Fig. 7(c) shows the response
for a sinusoidal external disturbance force Fy,d (having the
amplitude of 500 N and the frequency of 150 Hz), which is
applied at t = 0.01 s. The deviation in ∆y in the steady state
is less than 50 µm peak-to-peak, which is less than 5% of the
nominal airgap.

B. Sensitivity to Parameter Errors and Measurement Noise

The sensitivity against parameter errors is analyzed here
by means of time-domain simulations. Furthermore, in order
to study the measurement-noise amplification of the control
system, a noise component (having a maximum peak-to-peak
amplitude of 40 µm) is added to the simulated differential
airgap ∆y. Similarly, a noise component is added to the
simulated velocity vx. The amplitudes of the noise components
are selected such that they roughly correspond to those seen
in the actual measurements in the experimental setup.

The robustness of the control system against parameter
errors is evaluated using the same reference-tracking test as
in Fig. 7(a). The errors are intentionally introduced in the
feedback linearization parameters and in the mover mass [cf.
Table I for the original values]. Each parameter value is
individually 50% overestimated and 50% underestimated, and
the system is simulated. According to the results, the control
system remains stable in all the simulations and the reference-
tracking accuracy is acceptable. Fig. 8(a) shows the simulation
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Fig. 8. Simulation results demonstrating robustness against parameter errors and measurement noise: (a) cy and fy are 50% underestimated (cy = 0.15
1/mm, fy = 3.0 kN); (b) cy and fy are 50% underestimated and ky is 50% overestimated (cy = 0.15 1/mm, fy = 3.0 kN, ky = 195 N/A). In addition,
the control poles are relocated at higher frequencies in (b). In each subfigure, the first subplot shows the measured differential airgap ∆y and its reference
∆yref , the second subplot shows the measured x-direction position and velocity, and the last subplot shows the measured currents of the motor units.

result from a test where both cy and fy are simultaneously
underestimated by 50% (error in the worse direction). Even
though the system remains stable, the reference tracking is
already severely distorted. If kx is now 50% overestimated,
while keeping cy, fy 50% underestimated, then the system
becomes unstable. However, the system may be stabilized by
relocating the control poles at higher frequencies, e.g., by
selecting ωs = 2π · 100 rad/s and ap = 2π · 10 rad/s. This
is demonstrated with the simulation results in Fig. 8(b). The
stabilization comes at the price of increased measurement-
noise amplification, which can be clearly seen when comparing
the currents in Figs. 8(a) and 8(b).

C. Experimental Tests

There is a risk of having poorly damped structural bending
mode of the rail beam in the experimental system (cf. Fig. 5)
at the frequency region of 150. . .200 Hz. In order to prevent
from exciting this mechanical resonance, the control poles are
shifted to lower frequencies in these preliminary experiments
(ωs = 2π · 15 rad/s and ap = 2π · 1.5 rad/s). Other control
system parameters are selected according to Table I.

Fig. 9 shows results for the reference tracking. The results
showing the operation of the upper section are presented Fig.
9(a) and of the lower section in Fig. 9(b). It can be seen that
even with the lowered levitation control system bandwidths,
a comparatively smooth transition to the stable levitation is
achieved for both sections. Moreover, the corresponding simu-
lation results in Fig. 9(c) agree very well with the experiments.
Fig. 9(b) shows the results of a test, where the actively
levitated mover is travelling 1.3 m in the x direction. The
motion starts at t = 0.25 s, and the motor units reach the
nominal speed vx = 1 m/s during the motion. It can be seen

that the levitation controller successfully maintains the stable
levitation in the y direction.

VI. CONCLUSIONS

A systematic design method for levitation control of a
double-sided bearingless linear motor system is presented in
this paper. To decouple the force production in thrust- and
normal-force directions and to make the levitation-control loop
independent of the inner force-control loops, a magnetic-model
based feedback-linearization is applied. Then, the design rules
for a state-space levitation controller (including the full-order
observer) are obtained using pole-placement methods. The
proposed control design is tested in an experimental system
consisting of four individually supplied linear-motor units in
a double-sided configuration. The results from time-domain
simulations and experimental tests suggest that the proposed
control design can provide smooth transition to contactless op-
eration and to retain the stable levitation during the movement
in the thrust-force direction.
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