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Real-time Identification Method for LCL Filters
Used With Grid Converters

Ville Pirsto, Jarno Kukkola, F. M. Mahafugur Rahman, and Marko Hinkkanen
Aalto University School of Electrical Engineering

Espoo, Finland

Abstract—This paper presents a real-time algorithm for iden-
tifying the inductance and capacitance values of LCL filters used
with grid converters. As a side product, the grid inductance seen
from the point of common coupling is also estimated. A wideband
excitation signal is added to the converter voltage reference.
During the excitation, the converter currents and the converter
voltage reference are sampled. The samples are preprocessed in
real time by removing DC biases and significant grid-frequency
harmonics. Parameters of a discrete-time model are estimated at
each sampling instant with a recursive estimation algorithm. The
model parameter estimates are translated into inductance and
capacitance values. The method can be embedded to a control
system of PWM-based converters in a plug-in manner. Only the
DC-link voltage and converter currents need to be measured.
Simulation and experimental results are presented for a 12.5-
kVA grid converter system to evaluate the proposed method.

Index Terms—Grid converter, LCL filter, real-time identifica-
tion, recursive parameter estimation

I. INTRODUCTION

In the last decade, the cost of producing electricity using
renewable energy resources, such as wind and solar, has re-
duced greatly. As a result, the penetration of renewable energy
sources in the electric grid has increased enormously. These
renewable energy sources are connected to the grid through
a converter equipped with a filter, typically of an L or LCL
type. The LCL filter has gained popularity due to its higher
attenuation above its resonance frequency compared to an L
filter of equal magnetic volume [1]. However, the resonant
modes of the LCL filter make the control of the converter more
challenging. These resonant modes are typically damped with
active damping methods that are implemented in the converter
control systems. Many of the active damping methods require
knowledge of the filter parameters, e.g., [2]–[5].

Even if the nominal parameters of the LCL filter are
known, manufacturing tolerances and aging phenomena cause
uncertainties in the parameters. If the physical parameters of
the LCL filter could be identified on converter startup and
readily during operation, adaptive control could be employed
for improved performance [6]. Additionally, knowledge of the
changes in the filter parameters could potentially be used
for condition monitoring and fault diagnosis, e.g., tracking
long-term evolution of the filter capacitances for pre-emptive
maintenance [7].

Closely related to the identification of an LCL filter, there
are numerous methods proposed for real-time identification
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of the grid impedance, e.g., [8]–[13]. The identification has
been carried out using Fourier analysis [8], recursive parameter
estimation [9], [10], model predictive control [11], extended
Kalman filter [12], and wavelets [13].

Off-line methods for identifying the LCL filter of a grid con-
verter have been proposed in [14]–[17]. In [14]–[16], methods
for identifying a discrete-time state-space model of the LCL
filter are presented. In [17], the inductance and capacitance
values of the LCL filter are identified offline using an indirect
identification approach. In [18], the values of these LCL filter
parameters are identified as an online batch process, yielding
estimates during operation each time the identification method
is run. Despite the number of different methods proposed for
real-time identification of the grid impedance, no real-time
identification method for parameters of an LCL filter has yet
been proposed.

In this paper, an enhanced version of method [18] is
proposed with the following improvements:

1) The proposed method can run continuously to provide
real-time estimates of the filter parameters and the grid
inductance.

2) The number of parameter estimation algorithms is re-
duced to one, simplifying the identification method with-
out compromising accuracy.

Additionally, the proposed real-time implementation allows for
distributing the computational costs over the run time of the
algorithm. Simulation and experimental results are presented
for a 12.5-kVA grid converter.

II. SYSTEM MODEL

A space-vector model for an ideal LCL filter connected
between the converter and the grid is shown in Fig. 1, where
Lfc is the converter-side inductance, Cf the filter capacitance,
Lfg the grid-side inductance, and Lg the grid inductance. In the
identification method, the grid inductance Lg is included in the
estimate of the grid-side inductance, i.e., the method estimates
the sum Lgt = Lfg+Lg. A lossless model is assumed in order
to simplify the proposed method. A hold-equivalent discrete-
time model of the LCL filter in stationary coordinates can be
written as

x(k + 1) = Φx(k) + Γcuc(k) + Γgug(k)

ic(k) = Ccx(k)
(1)
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Fig. 1. Circuit model of an ideal LCL filter connected to an inductive grid
in stationary coordinates.

where x = [ic,uf , ig]
T is the state vector and Cc = [1, 0, 0].

The system matrices Φ,Γc, and Γg can be calculated from
their continuous-time counterparts (cf. Appendix A).

Due to the finite computation time of the control algorithm,
the converter voltage reference uc,ref is delayed by one
sampling period, i.e., uc(k) = z−1uc,ref(k), where z−1 is
the backward-shift operator. Taking the computational delay
into account, the converter current ic can be obtained from
the state-space model (1) as

ic(k) = Yc(z)uc,ref(k) + Yg(z)ug(k) (2)

where the pulse transfer operator Yc(z) is given by

Yc(z) = z−1Cc (zI−Φ)
−1

Γc (3)

and the pulse transfer operator Yg(z) is obtained similarly. A
block diagram representation of the discrete-time LCL filter
model (2) is shown in Fig. 2. Knowledge of the structure of
Yc(z) is important for selecting a suitable identification model,
and it can be expressed as

Yc(z) =
B(z)

A(z)
=
z−1(b1z

−1 + b2z
−2 + b1z

−3)

1 + a1z−1 − a1z−2 − z−3
(4)

where [17]

a1 = −1− 2cos(ωpTs)

b1 =
Ts + Lgt sin(ωpTs)/(ωpLfc)

Lfc + Lgt

b2 = −2Tscos(ωpTs) + 2Lgt sin(ωpTs)/(ωpLfc)

Lfc + Lgt

(5)

where Ts is the sampling period of the converter control system
and ωp is the resonance frequency of the LCL filter given by

ωp =

√
Lfc + Lgt

LfcCfLgt
(6)

III. IDENTIFICATION MODEL

Choice of the identification model structure is crucial for
obtaining accurate results. The most common discrete-time
identification model structures are divided into equation-error
and output-error models [19]. Equation-error models include
an error term that passes through the same denominator
polynomial as the input signal. Such models correspond well
to the model of an LCL filter, as both inputs uc,ref and
ug pass through the same denominator polynomial A(z) to
ic. Therefore, an autoregressive-moving-average (ARMAX)

Yc(z)

Yg(z)

Σ

ug(k)

uc,ref (k) ic(k)

Fig. 2. Block diagram representation of the discrete-time LCL filter model.
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Fig. 3. ARMAX model structure.

equation-error model, shown in Fig. 3, is used. Out of the
available equation-error models, ARMAX is selected due to
the flexibility it offers for modelling the error term. The
discrete-time ARMAX model can be expressed as [19]

A(z)i(k) = B(z)u(k) + C(z)e(k) (7)

where i(k) is the preprocessed converter current ic(k) cor-
responding to the model output, u(k) is the preprocessed
converter voltage reference uc,ref(k) corresponding to the
model input, and e(k) represents white noise with zero mean.
The structures of polynomials A(z) and B(z) are selected
identical to the denominator and the numerator of Yc(z) given
in (4), respectively. As a result, the parameters in polynomials
A(z) and B(z) of the identification model (7) can be related
to the parameters of the LCL filter through (5). For describing
the noise, a second-order polynomial

C(z) = 1 + c1z
−1 + c2z

−2 (8)

is found sufficient.
If the identification model (7) is compared to the equation

(2) for the converter current, it can be observed that it does
not include the effect of the grid voltage ug. However, this
exclusion does not pose a problem since the significant compo-
nents of the grid voltage ug are removed by preprocessing the
input-output data, as will be discussed in Section IV-B. Minor
components originating from the grid voltage are mostly
modeled by the noise term.

The ARMAX model (7) can be written as a regression
model

y(k) = ϕT(k)θ + e(k) (9)

where the regressed variable is

y(k) = i(k)− i(k − 3) (10)

and the regressor vector ϕ and the parameter vector θ are

ϕ(k) =


i(k − 2)− i(k − 1)
u(k − 2) + u(k − 4)

u(k − 3)
e(k − 1)
e(k − 2)

 θ =


a1
b1
b2
c1
c2

 (11)
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Fig. 4. Block diagram of the identification method embedded to a grid converter system.

respectively. The parameter vector includes the model parame-
ters of polynomials (4) and (8). The regression model (9) will
be employed in the identification method as described in the
next section.

IV. IDENTIFICATION METHOD

A block diagram of the proposed identification method
embedded to a PWM-based grid converter system is presented
in Fig. 4. Sampling of the converter currents is synchronized
with the PWM and the digital control system is assumed to
cause a delay of one sampling period. The DC bus voltage
udc is measured for the PWM and the converter current ic is
controlled by the converter.

A block diagram of the identification algorithm is presented
in Fig. 5. While the system is being excited by a wideband
excitation signal v(k), the following steps are taken at each
sampling period:
A) Converter voltage reference uc,ref and converter currents

ic are sampled.
B) Samples of the converter voltage reference and converter

currents are preprocessed by removing the significant
grid-frequency harmonics from the acquired samples.

C) Estimates of the ARMAX model parameters θ̂ are up-
dated.

D) Parameter estimates θ̂ are translated into inductance and
capacitance estimates L̂fc, Ĉf , and L̂gt.

A. Excitation and Sampling

During identification, an excitation signal v(k) = vα(k) +
jvβ(k) is added to the converter voltage reference calculated
by the converter control system, as shown in Fig. 4. In order
to successfully identify the LCL filter, the power spectrum
of the excitation signal should be wide enough to excite
the resonance frequency (6) of the LCL filter sufficiently.
A maximum-length binary sequence (MLBS) is used as the
excitation signal due to its ease of implementation, determin-
istic behavior, repeatability, wide power spectrum, and lowest
possible crest factor [19], [20]. In this paper, the MLBS is
injected into vβ while vα = 0. As a result, only the b and c
phases are excited and thus only the imaginary components of

the sampled signals are processed. This slightly increases the
accuracy of the parameter estimation as the effect of inverter
nonlinearities is reduced [18]. The choice of amplitude of the
MLBS signal is a compromise between excitation power and
distortion of the grid currents.

B. Harmonic Removal

In practice, the grid voltage includes some low-order har-
monics in addition to its fundamental component. In order
to increase the accuracy of the parameter estimates obtained
from the method, significant grid-frequency harmonics should
be removed from the current and voltage samples to eliminate
the effect of the grid voltage on the estimates. The selected
harmonic components are removed from the samples as

u(k) = ucβ,ref(k)−
∑
m

um(k) (12)

i(k) = icβ(k)−
∑
m

im(k) (13)

where um and im are the mth-order harmonics for the voltage
and current, respectively. In this paper, the harmonic compo-
nents m = [0, 1, 5, 7] are removed from the samples. As a
result, the sum in (12) becomes

∑
m um(k) = u0(k)+u1(k)+

u5(k) + u7(k) and the sum in (13) can be written similarly.
The DC component m = 0 is removed due to a possible bias
in the measurement sensors.

There are several different algorithms for computing har-
monic components from a signal, the standard method for
batch processes being the discrete Fourier transform (DFT).
The DFT of a signal, e.g., current i, calculated from N
previous samples at time k for a mth-order harmonic can be
expressed as

Im(k) =
N−1∑
n=0

i(q + n)W−mn
N ∀m ∈ {0...N − 1} (14)

where q = k −N + 1 and WN = ej2π/N [21].
For computing a limited number of harmonics efficiently in

real time on a sample-by-sample basis, sliding DFT (SDFT)
algorithms are a superior tool. The SDFT algorithms leverage
the fact that only one element in the sample buffer changes
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i0(k) + i1(k) + i5(k) + i7(k).

between the sampling instants by modifying the result of
the DFT from the previous sampling instant accordingly. The
traditional SDFT can be derived from (14) as [22]

Im(k) = W−mn
N [Im(k − 1) + i(k)− i(k −N)] (15)

where n = mod(k,N). However, this form of the SDFT
suffers from numerical instabilities and accumulated errors due
to a complex pole on the unit circle [23]. Hence, a guaranteed
stable and accurate variant of the sliding DFT, the modulated
sliding DFT (mSDFT), is used instead [23]. The structure of
the mSDFT is presented in Fig. 6, which depicts the extraction
of the harmonics from the converter current samples used
in the identification. The mSDFT consists of a comb filter
acting as a sample buffer and one resonator for tracking each
harmonic of interest. Mathematically, N -point mSDFT of a
signal, e.g., current i, at time k for a mth-order harmonic can
be expressed as [23]

Ĩm(k) = Ĩm(k − 1) +W−mn
N [i(k)− i(k −N)] (16)

Im(k) = W
m(n+1)
N Ĩm(k) (17)

where the tilde indicates that the DFT bin calculated in (16)
has phase error that is corrected with (17). Finally, as shown
in Fig. 6, the spectral bins are transformed into instantaneous
values of the harmonics as

im(k) =

{
1
N Re{Im(k)} if m = 0
2
N Re{Im(k)} else

(18)

C. Model Parameter Estimation

A recursive prediction error (RPE) algorithm [24] is used for
computing the estimates â1, b̂1, and b̂2 of the ARMAX model
parameters a1, b1, and b2 (cf. Appendix B). Estimates for the
noise polynomial parameters ĉ1 and ĉ2 are also obtained in
the process.

For tracking time-varying parameters with the RPE algo-
rithm, either a forgetting factor λ less than unity needs to
be used or the covariance matrix P needs to be actively
modified. If neither of these modifications is employed, the
tracking capability of time-varying parameters is severely
hindered due to the covariance wind-up phenomenon [6]. In
the covariance wind-up, the values of a number of elements
in the covariance matrix tend to zero, causing the estimation
algorithm to become insensitive to certain parameter changes.

1) Constant Forgetting Factor: If a forgetting factor less
than unity is used, i.e., λ < 1, the elements of the covariance
matrix P are prevented from tending to zero. The smaller the
forgetting factor is, the more sensitive the estimation algorithm
becomes to parameters changes. However, decreasing the for-
getting factor causes the estimation algorithm to become more
sensitive to noise and thus realistic values for the forgetting
factor are often limited close to unity [24].

2) Variable Forgetting Factor: Another possible modifica-
tion is to modify the covariance matrix P actively during oper-
ation based on some predetermined condition for which there
are numerous different possibilities [6], [25]. For example,
the diagonal elements can be modified based on the trace of



the matrix or the whole covariance matrix can be modified
regularly based on time k.

As the RPE algorithm is a gradient method, the algorithm
might temporarily stray from the correct parameter estimate
vector if the covariance matrix is modified too aggressively.
Therefore, the covariance matrix is indirectly modified by al-
tering the forgetting factor during the operation. This alteration
amounts to scaling each element of the covariance matrix
proportionally to its value to avoid aggressive modifications
(cf. Appendix B). As a result, consistent parameter estimates
are obtained. In this case, the forgetting factor can be expressed
as a function of time k as

λ(k) =

{
x if mod(k,M) = 0

1 else
(19)

where x < 1 and M is the number of samples between
modifications of the covariance matrix. The selection of M
should be based on how frequently the parameter estimates
are required and on the available computational resources.

One of the benefits of regular modification of the covariance
matrix compared to using a constant forgetting factor less than
unity is that the estimates converge quickly to a less noisy
value after modification of the covariance matrix due to the
unity forgetting factor. Therefore, the most accurate parameter
estimates between covariance matrix modifications can be
obtained right before the forgetting factor is altered. Instead of
updating the inductance and capacitance estimates each sam-
pling period, the estimates can be updated only once every M
samples in this case. Mathematically, the parameter estimates
are updated at time k if mod(k,M) = M − 1. Furthermore,
as the estimates are updated more seldom, computational
resources can be saved. A drawback of this modification is
that the parameter variations are not immediately seen in the
estimates.

D. Translation to Inductance and Capacitance Values

Finally, the discrete-time model parameter estimates are
translated into inductance and capacitance values by express-
ing the parameters Lfc, Cf , and Lgt as functions of the
discrete-time model parameters a1, b1, and b2 in (4) as [17]

ω̂p =
1

Ts
cos−1

(
− â1 + 1

2

)
L̂fc =

2
sin(ω̂pTs)

ω̂p
[cos(ω̂pTs)− 1]

2b̂1

[
cos(ω̂pTs)− sin(ω̂pTs)

ω̂pTs

]
+ b̂2

[
1− sin(ω̂pTs)

ω̂pTs

]
L̂gt = − ω̂pL̂fc[L̂fcb̂2 + 2Ts cos(ω̂pTs)]

ω̂pL̂fcb̂2 + 2 sin(ω̂pTs)

Ĉf =
L̂fc + L̂gt

ω̂2
pL̂fcL̂gt

(20)

where the dependency on time k is omitted to maintain a
level of simplicity. The above equations are calculated every
sampling period for a constant forgetting factor and once every
M sampling periods for a variable forgetting factor.

Fig. 7. Simulated evolution of the LCL filter parameter estimates with λ =
0.995 assuming an ideal system. The identification algorithm is initiated at
t = 0.42 s and two stepwise changes occur: From 8.8 µF to 7 µF in the
filter capacitance Cf at t = 1.2 s and from 6 mH to 3 mH in the grid-side
inductance Lgt at t = 2.4 s.

V. RESULTS

The proposed identification method (cf. Fig. 5) is evaluated
by means of simulations and experiments using a 50-Hz
12.5-kVA grid converter system. During the identification, the
converter is controlled using a state-feedback current controller
[5] tuned according to Appendix C. The switching frequency
of the converter is 5 kHz and the sampling frequency is 10
kHz. A MLBS generated with 9 shift registers is used [20].
The amplitude of the MLBS is selected as ±0.1 p.u. and it is
generated at a frequency equal to the sampling frequency. The
converter is operating under constant load of 0.8 p.u. The base
value of voltage is

√
2/3 ·400 V and the base value of current

is
√

2 · 18 A. The length of the mSDFT buffer is selected as
N = 200 to match the lowest trackable harmonic frequency
with the fundamental frequency of the grid voltage. The initial
values of the mSDFT sample buffer are set to zero.

A. Simulation: Validating the Proposed Identification Method

A simulation model of the system shown in Fig. 4 was
built for validating the presented method. Initially, no grid
harmonics or losses of the filter components are included in
the model. For validation, the PWM is modeled as a zero-
order hold as assumed in the system model. Some noise is
assumed in the identification model (7), and thus white noise
with standard deviation of 0.002 p.u. is included in the current
and voltage measurements. A simulation case with a constant
forgetting factor of λ = 0.995 is presented in Fig. 7. The
identification algorithm is initiated at t = 0.42 s. In the figure,
a stepwise change of filter capacitance Cf from 8.8 µF to 7 µF
occurs at t = 1.2 s and a similar stepwise change of grid-side
inductance Lgt from 6 mH to 3 mH occurs at t = 2.4 s. The
nominal values of the estimated parameters are given by the
red dashed lines. While the parameters remain constant and
the estimation is not in a transient state, the average relative
errors of the estimates with respect to their nominal values are
all 0%.
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Fig. 8. Simulated evolution of the LCL filter parameter estimates with a)
λ = 0.995 and b) variable forgetting factor. The identification algorithm is
initiated at t = 0.42 s and a stepwise change from 6 mH to 3 mH occurs in
the grid-side inductance Lgt at t = 2.4 s.

B. Simulation: Stepwise Change in the Grid-side Inductance

The simulation model was modified to include grid har-
monics and inductor losses. The grid harmonics consist of
5th and 7th harmonics and both have an amplitude of 0.05
p.u. The filter inductors are modeled to include the effects of
DC resistance and eddy currents. Therefore, they are modeled
as an inductance parallel to a resistance and a resistance in
series with the parallel connection of the resistance and the
inductance [17]. For the converter-side inductor, the resistance
value for the series resistor is Rc,s = 102 mΩ and for the
parallel resistor Rc,p = 420 Ω. Similarly for the grid-side
inductor, Rg,s = 68 mΩ and Rg,p = 630 Ω. Measurement
noise with standard deviation of 0.02 p.u. is added to the
current and voltage measurements.

Two simulation cases are presented. In the first case, a
constant forgetting factor of λ = 0.995 is used and in the
second case, a variable forgetting factor according to (19) with
x = 0.01 is used to regularly modify the covariance matrix
every M = 500 samples. The evolution of the parameter esti-
mates for constant and variable forgetting factor are presented
in Figs. 8a and 8b, respectively. In the figures, a stepwise

Fig. 9. Measured MLBS excitation signal (first), the space-vector components
of the converter voltage reference (second), and the converter phase currents
(third).

Fig. 10. Sequences of preprocessed voltage u (first) and current i (second)
used in the RPE method.

change in the grid-side inductance Lgt from 6 mH to 3 mH
occurs at t = 2.4 s. After the stepwise parameter change, the
average relative errors of the parameter estimates with respect
to their nominal values are 3% for L̂fc, 3% for Ĉf , and 5% for
L̂gt for constant forgetting factor. The corresponding values
for variable forgetting factor are 2% for L̂fc, 2% for Ĉf , and
5% for L̂gt. Out of the added non-idealities, the increased
measurement noise induces the greatest error to the parameter
estimates while the effect of grid harmonics is roughly 0%.
The resistances cause relative errors of 1% on the inductance
estimates.

C. Experiment: Stepwise Change in the Grid-side Inductance

The estimation cases presented in Figs. 8a and 8b are
repeated experimentally. Fig. 9 shows the injected MLBS ex-
citation vβ , the converter voltage reference components ucα,ref
and ucβ,ref , and the converter phase currents ica, icb, and icc,
when the MLBS is active. Fig. 10 shows the preprocessed
current and voltage sequences i and u from which the grid-
frequency harmonics m = [0, 1, 5, 7] have been removed from.
These current and voltage sequences are used as an input to
the RPE algorithm.

The evolution of the parameter estimates for constant and
variable forgetting factor are presented in Figs. 11a and 11b,



(a)
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Fig. 11. Evolution of the LCL filter parameter estimates with a) λ = 0.995
and b) variable forgetting factor. The identification algorithm is initiated at
t = 0.42 s and a stepwise change from 6 mH to 3 mH occurs in the grid-side
inductance Lgt at t = 2.4 s.

respectively. After the stepwise change of the grid-side induc-
tance, the average relative errors of the parameter estimates
with respect to their nominal values are approximately equal
in both cases, and they are 2% for L̂fc, 8% for Ĉf , and 4%
for L̂gt.

D. Discussion

Based on the simulation and experimental results, the
method converges to correct estimates from its initial state and
it is capable of tracking time-varying LCL filter parameters
with good accuracy with either constant or variable forgetting
factor. Overall, the variable forgetting factor used to modify
the covariance matrix during operation yields slightly more
consistent estimates with reduced computational effort due
to updating the parameter estimates only once every M
samples. The drawback of using variable forgetting factor over
the constant forgetting factor, however, is that the parameter
variations are not immediately seen in the estimates.

As the estimation result obtained from the ideal simulation
model shows, the identification method yields exact estimates
in an ideal case. Therefore, the estimation errors in the
experiments are caused by unmodeled dynamics, nonlinearities

of the system, unbalances in the filter components, and inac-
curacies in the transfer characteristics of the actuator and the
measurement devices, as also seen in the simulations including
some of these non-idealities.

Even though the estimates are found out to consistently
converge to correct estimates, this result cannot be generalized
for every system. Therefore, for systems where convergence
issues arise, a slightly modified version of the RPE algorithm
should be used for obtaining initial rough estimates. This
modification is accomplished by setting the estimates of the
noise polynomials zero, i.e., ĉ1 = 0 and ĉ2 = 0, in the
equations for calculating the approximate gradient (28). After
the transients in the estimates have settled, the approximate
gradient should be calculated normally according to (28).

VI. CONCLUSIONS

This paper presents a real-time identification method for
the inductances and the capacitance of LCL filters used in
grid converters. Furthermore, the method indirectly estimates
the grid inductance as a part of the grid-side inductance.
The method can be embedded to a control system of PWM-
based converters in a plug-in manner. An SDFT algorithm is
used for computing the grid-frequency harmonics to enable
computationally efficient real-time harmonic computation. A
single recursive parameter estimation algorithm is used to
estimate the identification model parameters. Two different
methods are presented to enable tracking of time-varying
parameters with the recursive parameter estimation algorithm
by preventing the covariance wind-up phenomenon. Simula-
tion and experimental results show that the parameters are
estimated with good accuracy and parameter variations are
detected.

APPENDIX A
DISCRETE-TIME MODEL OF THE LCL FILTER

A discrete-time model of an ideal LCL filter in stationary
coordinates is presented below. The state vector is selected
as x = [ic,uf , ig]

T. The sampling of the converter currents
and grid voltages is synchronized with the PWM, which is
modeled as a zero-order hold. Under these assumptions, the
system matrix Φ and the input vector Γc required for solving
Yc(z) are

Φ =


Lfc+Lgt cos(ωpTs)

Lfc+Lgt
− sin(ωpTs)

ωpLfc

Lgt[1−cos(ωpTs)]
Lfc+Lgt

sin(ωpTs)
ωpCf

cos(ωpTs) − sin(ωpTs)
ωpCf

Lfc[1−cos(ωpTs)]
Lfc+Lgt

sin(ωpTs)
ωpLgt

Lgt+Lfc cos(ωpTs)
Lfc+Lgt


(21)

and

Γc =
1

Lfc + Lgt

 Ts +
Lgt sin(ωpTs)

ωpLfc

Lgt[1− cos(ωpTs)]

Ts − sin(ωpTs)
ωp

 (22)

The closed-form expression for the input matrix Γg can be
found in [5].



APPENDIX B
RECURSIVE PREDICTION ERROR METHOD

The RPE algorithm [24] is presented below. It calculates an
estimate θ̂ = [â1, b̂1, b̂2, ĉ1, ĉ2]T based on the prediction error

ê(k) = y(k)− ϕ̂T(k)θ̂(k − 1) (23)

where ϕ̂(k) is the regressor vector (11) with true noise terms
e(k − 1) and e(k − 2) replaced with their estimated values
ê(k − 1) and ê(k − 2), respectively. The parameter vector is
estimated recursively as

θ̂(k) = θ̂(k − 1) + K(k)ê(k) (24)

where the gain K is calculated as

K(k) = P(k)ψ(k) =
P(k − 1)ψ(k)

λ+ψT(k)P(k − 1)ψ(k)
(25)

P(k) =
P(k − 1)

λ
− P(k − 1)ψ(k)ψT(k)P(k − 1)

λ[λ+ψT(k)P(k − 1)ψ(k)]
(26)

where ψ(k) is an approximate gradient given by

ψ(k) =


iF(k − 2)− iF(k − 1)
uF(k − 2) + uF(k − 4)

uF(k − 3)
êF(k − 1)
êF(k − 2)

 (27)

where

iF(k) = i(k)− ĉ1(k)iF(k − 1)− ĉ2(k)iF(k − 2)

uF(k) = u(k)− ĉ1(k)uF(k − 1)− ĉ2(k)uF(k − 2)

êF(k) = ê(k)− ĉ1(k)êF(k − 1)− ĉ2(k)êF(k − 2) (28)

Initial values for θ̂ and P are required in order to start the
algorithm. The initial values are θ̂(0) = 0 and P(0) = I p.u.

APPENDIX C
DESIGN PARAMETERS FOR THE CONTROL METHOD

The parameters for the observer-based current control
method of [5] are ωcd = 2π · 150 rad

s , ζcd = 1, ωcr = ωp,
ζcr = 0.01, ωod = 5ωcd, ζod = 1, ωor = ωp − ωg, and ζor =
0.7. The notation follows that used in [5]. The synchronous
reference frame of the control system was established using a
SRF-PLL tuned with with ζPLL = 0.7 and ωPLL = 2π ·15 rad

s .
The DC-bus voltage is assumed constant.

For direct identification in closed-loop systems, the noise
e affects the input signal u [cf. (7)] through the feedback
loop and results in biased estimates [19]. The level of bias
depends on the accuracy of the selected noise model and on the
controller tuning. Therefore, reduced bandwidth and damping
factors are used for the duration of the identification to reduce
the bias caused by the feedback loop.
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