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An Adaptive Network Data Collection System in
SDN

Donghao Zhou, Zheng Yan, Senior Member, IEEE, Gao Liu, and Mohammed Atiquzzaman, Senior Member, IEEE

Abstract—Network data collection is a vital part in the process
of network monitoring, traffic billing, network management and
intrusion detection. As a new kind of network architecture, Soft-
ware Defined Network (SDN) provides a possibility of intelligent
and adaptive network data collection with centralized control
and programming. However, existing literatures lack a concrete
solution to economically collect network data, while satisfying the
quality of data processing and analytics. Current data collection
methods are not sufficiently adaptive and intelligent in terms
of network context awareness. In this paper, we propose an
adaptive network data collection system in SDN by automatically
selecting proper data collection nodes based on network status in
a dynamic way. During data collection, network traffic is sampled
by considering flow characteristics in order to effectively reduce
the amount of collected data while ensuring the accuracy of
later data analysis, e.g., malicious traffic detection. A series of
experiments are conducted to test and verify the data collection
system and show its advantages through comparison with existing
works in terms of CPU/memory consumption, storage usage, flow
size recovery, and threat perception.

Index Terms—SDN, network data collection, traffic character-
istics.

I. INTRODUCTION

W ITH the development of the Internet, 5G and IoT, more
and more network devices connect to networks, which

create massive network data. Without any doubt, these data
greatly assist network administrators to understand the network
environment and evaluate its Quality of Service (QoS) [1]. For
example, they can help understanding the temporal and spatial
distribution of network traffic, analyzing the performance of
network links and nodes, and knowing the distribution of
bottlenecks and compromised nodes. Therefore, network fault
location, traffic visualization [2], network routing optimization
[3], [4], attack detection and mitigation [5]–[9] can be realized
accordingly. Network data collection has become a crucial and
essential part in network management and attack detection.

Although there are many big data processing techniques
(e.g., machine learning and deep learning) helping massive
network traffic data processing, current network data collection
is still confronting challenges. If all original data are collected
directly at every network node, the efficiency of data process-
ing and analytics is hard to be achieved. Compressing and
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sampling data can release this problem, but the accuracy of
further analysis might be influenced. Therefore, it is particu-
larly significant to study efficient and effective data collection
methods to collect as few as possible network traffic data in
real time and at the same time to ensure the quality of later
data processing and analytics.

However, current data collection methods are not suffi-
ciently adaptive and intelligent [16], [25]. Complex manual
modification and configuration lead to high error rate in net-
work monitoring, controlling, evaluating and traffic account-
ing. They can hardly identify network situation and targeted
data according to packet rate, network security level, attack
types, and the purpose of data usage. While network data
collectors execute the tasks of data collection, the security and
availability of the network must be ensured. Unfortunately,
proper security policies and data collection strategy to detect
and mitigate attacks are still open to be investigated. Tradi-
tional networks lack network awareness and do not have the
capability of programming for adaptive and intelligent data
collection [10], [11].

Concretely, there are still some open issues in the process of
network data collection. First, traditional networks cannot be
aware of global topology and adaptively adjust data collection
strategy in real time [26]. Corresponding policies are managed
and changed by a network manager manually. Second, prior
data collection methods do not balance between collection
and resource consumption [14]–[16]. Third, the requirement
of adaptivity of network data collection to network and traffic
status is hard to meet by prior arts [17]–[21]. Fourth, the
process of network data collection may influence normal
network traffic, the quality of networking service could be
impacted by it. How to avoid such an influence of data
collection on the quality of networking service should be well
considered. Traditional network is lack of network situation
awareness and does not have the capability of programming.
Therefore, accurate, real-time and effective data collection is
difficult to achieve.

Software Defined Network (SDN) achieves the separation of
traffic control and forwarding, abstracts the control functions
of a network from data plane and infrastructure, and enables
network managers to concentrate on the logical realization of
network functions. At the same time, the logical centralization
of SDN architecture makes network management more flexible
and efficient in terms of network perception, management
and resource allocation. SDN provides logically centralized
control and open programming interfaces, which facilitates
the adaptability of network data collection and enables the
collection to be performed according to traffic and network



JOURNAL OF LATEX CLASS FILES 2

status. However, based on our thorough surveys [17], [26], the
literature still lacks a concrete solution to economically collect
network data, while satisfying the needs of data processing and
analysis at the same time.

In this paper, we propose an adaptive network data collec-
tion system in SDN, aiming to answer such questions as what
data, where, how and when to collect them. In this paper, we
propose an adaptive network data collection system in SDN,
aiming to answer such questions as what data, where, how
and when to collect them. Through network status evaluation,
the system adaptively selects proper collection nodes for the
purpose of reducing the redundancy of collected data and
ensuring complete traffic perception at the same time. During
data collection, it employs dynamic probability generation and
in-flow sampling to determine sampling and collection rules
for further reducing the redundancy of collected traffic data,
but simultaneously ensuring the accuracy of attack detection.

We propose a node selection module to decide the nodes
for network data collection. According to a network topology
and the availability of nodes and links, we find all blocked
nodes in the network topology in order to figure out root
nodes of blocked traffic, thus we can decide data collection
nodes (i.e., blocked root nodes) in abnormal status. In case
that the network status is normal, the node selection module
selects central nodes of link intersection and access nodes of
an island as data collection nodes. As an intelligent and dis-
tributed method for data collection, our system helps collect-
ing, detecting and mitigating malicious traffic in blocked root
nodes. It avoids collecting data in all influenced nodes, thus
improving collection efficacy. We further design an adaptive
data collection algorithm to reduce collected data volume at
an individual collection node. The algorithm first divides an
online flow into a number of segments. The length of the
segment is increased with the increase of its order number.
Then, sampling with a probability adjusted based on the flow
length is applied in data collection. The sampling probability
is decreased with the length of flow increasing. Thus, our
collection method can reduce redundant collected data for
elephant flows and increase perception on mice flows. This
design is effective in time-sensitive circumstances, e.g., when
DDoS attacks occur. It also considers the content information
of a flow in order to achieve accurate and high-quality data
collection by identifying the differences between flows. In
summary, by perceiving network status, data collection nodes
are selected adaptively based on network topology in order to
decide where to collect data. Then, they sample packets from
traffic flows with dynamic probability in order to reduce the
volume of collected data, thus we figure out how and when to
collect data and what data should be collected.

To be specific, the contributions of this paper can be
summarized as below.

1) We design and develop an adaptive network data col-
lection system in SDN, which is one of the first to realize
network-status-aware data collection in SDN. It can dynam-
ically and adaptively select a small number of nodes as
data collectors based on network status. It can also properly
sample segments from flows to achieve high efficiency and low
resource consumption of data collection. Meanwhile, it helps

detecting sensitive network events (e.g., link flooding attacks)
with high accuracy.

2) We propose a network measurement and evaluation
model to quantify the status of a network node and a link.

3) We present a node selection algorithm to choose appro-
priate nodes for network data collection based on network
topology and traffic distribution, as well as the status of a
network node and a link. Instead of collecting data from
all nodes, our system avoids collected data redundancies and
incomplete traffic perception.

4) We further propose dynamic probability generation and
in-flow sampling that can determine appropriate sampling
and collection rules according to the time distribution and
flow distribution of traffic. It not only effectively reduces
the redundancy of data in collection, but also has time-
sensitive capability and the ability of timely sensing traffic
in a malicious environment, e.g., during DDoS attacks.

The rest of this paper is organized as follows. Section II
briefly overviews background and related work. Section III
presents our proposed system architecture and detailed system
design, followed by system test and evaluation in Section IV.
Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we briefly describe the current state of art
of network data collection.

Network Data Collection
Libpcap is a powerful open source software library, which

provides a system-independent and user-level network data
packet capture interface. It is the most common functional
component in network data collection. Many network moni-
toring software (e.g., Wireshark, Tcpdump) and packet-based
collection methods rely on libpcap. However, Libpcap cannot
solve the open problems listed in the introduction.

NetFlow, a classical network data collection method, pro-
vides the capability of packet-based collection on switches.
However, with the increase of network data, NetFlow over-
whelms switches due to resource constraints. Although some
mitigation methods were proposed [14]–[16], they cannot
achieve ideal balance between resource consumption and data
collection, especially when DDoS attacks occur. NetFlow
reduces the scale of collected data by sampling. However, with
the increase of peak rate of DDoS, this method is prone to
overwhelm switches.

Sketch-based data collection [17]–[21] is widely used in
network data collection and network measurement. In [19],
Yu et al. proposed a data collection framework named OpenS-
ketch. It records the number of packets per flow with multiple
hash tables instead of collecting packets or flows directly.
It provides three unique channels for hashing, filtering and
counting three kinds of messages and realizes fast storage. In
[18], Huang et al. combined a sketch-based mechanism and
a counter-based mechanism to adapt to the flow distribution
of elephant flows for such flows’ detection. According to the
characteristics of SDN, Huang et al. improved the adaptability
of overload flow detection [20] and flow size estimation [21]
in sketch-based data collection.
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Fig. 1. System Architecture.

Sketch-based methods not only aggregate network data, but
also help detecting DDoS attacks caused by elephant flows
with high accuracy. However, they have three main flaws.
First, they are not available and effective for other network
attacks. Second, sketches are usually deployed in some fixed
nodes such as gateway, which is hard to sense the global
traffic status in a network. Third, sketches lack capacity of
tracing, which make this kind of methods take the risk of
the false positive due to hash collisions. Jing et al. [27],
[28] proposed novel reversible sketch-based methods based
on Chinese Remainder Theorem for collecting and storing
network data. They used the compressed data to detect and
mitigate amplification attacks and DDoS flooding attacks. But
their methods do not solve the questions on where, how and
when to collect data in an adaptive and automatic way.

Flow-based data collection is another common way of
collecting network data. Based on the prominent role played by
elephant flows in network monitoring, Jose et al. detected and
identified convergent flows with a small number of flow tables
in switches [22]. As a result, the adaptivity of the distribution
of elephant flow was achieved during data collection. However,
only intersection nodes are chosen to collect network data,
which ignores adaptation of collection positions. In [23],
Flowsense was proposed. It relies on passive detection at
switches. According to each Flow-Removed message from
OpenFlow switches, a data collection module in controller is
triggered. It collects all network data when flows come in,
which might lead to a heavy overload. In addition, hysteresis is
another problem in real-time scenarios. In [6], [8], two network
data collection methods based on active measurement were
proposed. However, both methods only filter flow, which are
coarse-grained. Meanwhile, they consume many computing
and storage resources in a high-speed network and in attack
scenarios due to a high sampling frequency. Chowdhury et al.
proposed PayLess [29], which adaptively aggregates statistics
collection. However, a high volume of network data is col-
lected in the case that a large amount of traffic occurs, since
the distribution of traffic flows is not considered. Therefore,
PayLess brings about many collected data redundancies.

Based on the above literature review and many literature
surveys [35]–[37], we can see that it lacks an effective data
collection method in SDN that can dynamically and adaptively

select a small number of nodes as data collectors based on
network status in order to collect as few as possible data, but
at the same time, the collection still helps detecting sensitive
network events with high accuracy. Therefore, in this paper,
we aim to propose such a data collection system in SDN.

III. SYSTEM DESIGN

This section describes the system model, the system
overview, the model of network measurement and evaluation,
the mechanisms of node selection and adaptive data collection.

A. System Model

SDN is an important network architecture that simplifies
network management. In SDN, the network control is sepa-
rated from the data forwarding plane. The former is logically
centralized, and the latter performs strategies from the former.
Thus, we can implement new control functions in SDN by
writing software logic in the control plane. As a result, the
control plane can help SDN to support different services and
achieve various applications [12], [13]. As shown in Fig. 1,
the system is composed of four parts: network terminal, data
plane, controller plane and remote server. The SDN controller
analyzes and processes network packets and flow information.

Network Terminal: It is the user to visit a network. During
visiting, SDN switches in data plane will receive and forward
its packets.

Data Plane: It is responsible for matching and forward-
ing packets passing through SDN networks. The data plane
consists of SDN switches. Switches record flow information
and statistical information in flow tables. The controller plane
can request these records and ask switches to execute their
policies.

Controller Plane: It is the core part of an SDN network.
All control policies are sent from this plane. In the proposed
system, adaptive data collection is realized by link discovery
module, topology management module, device management
module, adaptive data collection module and message forward-
ing module. Collection nodes in open networks are not trusted,
since they might be compromised or behave maliciously. The
data collected from untrusted collection nodes might disturb
adaptive data collection and collected data analytics. In order
to achieve trustworthy data collection, the controller can adopt
some trust evaluation and sustainment mechanisms [38]–[40]
to evaluate the credibility of collection platforms and assure
their trustworthiness as expectation for ensuring the trust of
collected data. Once the trusted environments in collection
nodes are destroyed, the controller can discover these nodes
and apply correct collection strategies to exclude the data
provided by them. However, trustworthy data collection is
beyond the scope of this paper.

Link Discovery Module: This module is responsible for
link discovery and maintenance of link state in networks. The
module asks switches alive to respond its requests. By this
way, this module keeps and updates the state of links.

Topology Management Module: It is responsible for
discovering network connections and island partitions based
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on topology computing. SDN is not only deployed in all SDN-
based networks. There are many hybrid application scenarios
with SDN and non-SDN devices. There exist islands that con-
sist of directly connected SDN routers. The router connecting
with non-SDN node is the access router (AR). It’s the entrance
and export of an SDN island that communicates with non-
SDN networks. The topology manager module computes the
distance of SDN routers to judge if there is an island and what
the topology is.

Device Management Module: It identifies Virtual Local
Area Network (VLAN) and Media Access Control (MAC)
address for network devices and defines device addresses.

Network Measurement and Evaluation Module: Firstly,
the module measures the factors of link availability: packet
loss, delay and occupied bandwidth, and obtains the factors of
node availability from the historical data of nodes: the lasting
time of denial of service (DoS) attack and malicious packet
rate. Secondly, through the availability factors of links and
nodes, the module evaluates the availability of links. Then,
corresponding evaluation results can be obtained.

Node Selection Module: This module finds all central
nodes and access nodes of the network according to the
island partition and link topology. Then, the module judges the
availability of nodes and links. As a result, this module applies
the node selection algorithm to find appropriate data collection
nodes in order to reduce the amount of data collected and
ensure the integrity of traffic as far as possible.

Adaptive Tra f f ic Collection Module: This module de-
pends on the node selection module for data collection. The
module only collects data from the selected nodes. According
to the characteristics of traffic, an adaptive data collection
algorithm is applied to sample the flow in order to reduce
the amount of redundant data. The characteristics of traffic
are various. They can be packet rate, flow distribution, and so
on.

Message Forwarding Module: This module is respon-
sible for generating the policies to forward packets between
devices.

Remote Server: It is used to store the collected data for
further processing.

B. System Overview

The network terminals (e.g., hosts, laptops and mobile
devices) enter SDN networks through network connection.
An SDN switch in the data plane reports its own statistical
information and stores flow information into the SDN con-
troller. The monitoring mechanism of PACKET_IN message in
SDN provides the controller good awareness about flows. The
system obtains the arrival time of flow from the PACKET_IN
message and the statistical message from the switch.

In the controller plane, the link discovery module, the topol-
ogy management module and the device management module
get the information of network topology, equipment and links
from PACKET_IN messages, which helps the controllers to
sense network topology changes. The network measurement
and evaluation module is responsible for matching specific
PACKET_IN messages to sense topological traffic and traffic

changes. Then it realizes the measurement and evaluation on
time delay, packet loss rate and bandwidth. According to the
network topology information and network evaluation results,
the node selection module determines whether the network is
in a blocking state. If it is in this state, the module finds the
blocking roots in the blocking topology as collection nodes.
Otherwise, the central nodes of the link intersection and access
nodes of network islands are selected. When the node selection
is finished, the adaptive network traffic collection module
adopts different sampling algorithms on new and old flows in
order to collect data with low redundancy. The module sends
generated traffic sampling strategies to the forwarding module.
The forwarding module generates flow table modification
information, which is then sent to SDN switches through
southward interface. The switches collect and save network
data in a remote server.

In the following subsections, we introduce the core modules
of the system, namely network measurement and evaluation
module, node selection module and adaptive traffic collection
module, since a traditional SDN has other function modules.
We assume that the parameters (e.g., the low bound of a
factor and its weight) can be set based on experiences or by
using some methods, e.g., gradient descent, and we do not
consider involved security and privacy issues, since our goal
is to propose an adaptive data collection system in SDN.

C. Network Measurement and Evaluation Model

This subsection presents a link availability model and a
node availability model that play important roles in evaluating
network status.

Link Availability Model
Due to the continuity of network state, the current link

availability is highly related to historical link availability.
However, the longer the interval is, the less the correlation of
current and historical link availability. The threshold number
of interval slots is defined as K . Given time ti, t j, j ≥ i, we can
ignore the correlation when j − i ≥ K such that the correlation
is less than a threshold δ. Qt is the link availability at time
t, and QGt is defined as the global link availability at time t,
which is related to previous K time slots. We use the global
link availability to replace the availability at a single time
slot to make decision. Because the link availability relates
to current and historical availability with different weights. It
gradually changes and is not affected by system instability. In
addition, the procedures conducted by other modules are based
on link availability. However, the modules cannot parallel
their work, so that their processing time is not synchronized.
The global link availability can be predicted, which helps
the synchronization of different modules and improves the
accuracy of their processing results. For getting the global
link availability QGt at time t, we need to evaluate the impact
factors of instantaneous link availability.

1) Impact Factor Evaluation
Time delay (td), packet loss (pl) and bandwidth (bd) are the

essential factors to evaluate link availability [24], [35]–[37].
Assume Mω is the measurement value of factor ω. Thus, we
can define evaluation value of td, pl and bd as Mtd , Mpl and
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Mto. Moreover, their superior bounds are Mtd_sl , Mpl_sl and
Mto_sl and their low bounds are Mtd_ll , Mpl_ll and Mto_ll ,
respectively.

When the measurement value of td, pl and bd of a link is
large than its superior bounds, the link is overloaded. When the
measurement value of td, pl and bd of a link is smaller than
its low bounds, the change of this factor has little influence
on the link availability.

We define the evaluation value of td, pl and bd as Etd , Epl

and Ebd , where Eω ∈ [0, 1].




Etd = 1, Mtd < Mtd_ll

Epl = 1, Mpl < Mpl_ll

Ebd = 1, Mbd < Mbd_ll

(1)




Etd = 0, Mtd > Mtd_sl

Epl = 0, Mpl > Mpl_sl

Ebd = 0, Mbd > Mbd_sl

(2)

When Mω_ll ≤ Mω ≤ Mω_sl , Eω is decreased with the
increase of Mω . Mtd , Mpl and Mbd can be normalized into
[0, 1] by using a formula (Mω − Mω_ll)/(Mω_sl − Mω_ll).

In previous studies, many algorithms were proposed to
evaluate link availability with td, pl and bd. Generally, the
evaluation algorithm based on absolute values is a common
and effective evaluation method. It has gotten some good re-
sults in practice. But herein, Gaussian function is used instead
of absolute values as the attenuation factor of exponential
function. In theory and practice, it is proved to have better
results than the absolute values in the following aspects:

1) The Gaussian function based evaluation value is more
stable near the low and superior bounds. The evaluation
value attenuation near the low and superior bounds is smaller
compared to the absolute value based evaluation.

2) The Gaussian function based evaluation value decays
sharply when it is far away from the lower bound, and the
decaying rate is more obvious than that of absolute value based
evaluation value. This feature can well present actual situation
of network links.

As a result, we adopt the Gaussian function as our
evaluation model when Mω_ll ≤ Mω ≤ Mω_sl , Eω =

e−2[(Mω−Mω_ll )δω/(Mω_sl−Mω_ll )]2 , where ω is equal to td, pl
or bd, and δω is a fixed value to control the variance of Eω .

2) Instantaneous Link Availability
The instantaneous QoS is evaluated with td, pl and bd as

follows. There are different requirements for td, pl and bd
in different network and business scenarios. For instance, td
and bd are important for game server clusters while pl is not
so essential for them. However, the clerking business services
require low pl but td while they are not the first thing to
fulfill. Therefore, our system gives coefficients f td , fpl , fbd
to balance the importance of each factor, f td + fpl + fbd = 1.
Then we have

Qt = Jtd_sl f tde−2Jt d_ll [(Mt d−Mt d_ll )δt d/(Mt d_sl−Mt d_ll )]2

+ Jpl_sl fple−2Jpl_ll [(Mpl−Mpl_ll )δpl/(Mpl_sl−Mpl_ll )]2

+ Jbd_sl fbde−2Jbd_ll [(Mbd−Mbd_ll )δbd/(Mbd_sl−Mbd_ll )]2,
(3)

where

Jω_sl =



0, Mω > Mω_sl

1, Mω ≤ Mω_sl
(4)

and

Jω_ll =



0, Mω < Mω_ll

1, Mω ≥ Mω_ll
(5)

We have calculated the evaluation of link availability at
time t and the time before it. In the evaluation model with
memory characteristics, there are two common evaluation
methods, namely the evaluation method based on memory
attenuation factor and the evaluation method based on time
window. The memory attenuation factor based evaluation
usually weights the historical time by an exponential function,
which can realize the fast attenuation in continuous time.
The time window based evaluation adopts linear weighting
for evaluation values in previous slots. Compared with the
exponential method, it is more stable and can provide a better
evaluation with strong historical correlation. Because the time
to collect data about the link is discrete, a great amount of link
evaluation information is mastered, and the global availability
is highly related to historical evaluation values. Therefore, the
time window method is used to obtain the global availability
value QGt at time t. According to the link evaluation values
Qt−K+1,Qt−K+2,Qt−1, . . ., Qt at the previous K time slots, we
can get QGt =

∑k=K−1
k=0 (K − k)Qt−k/

∑k=K−1
k=0 (K − k). QGt is

the global evaluation value of the link, which represents the
availability of the link.

Node Availability Model
Denial of Service (DoS) and malicious behaviors are the

most significant issues influencing the availability of network
nodes. To evaluate the availability of network nodes, we must
consider these issues to react security threats. Therefore, the
time of DoS (ts) and malicious packet rate (mr) are proposed
to evaluate the availability of network nodes. Similar to the
evaluation of link availability, we evaluate the availability of a
node St and its global availability SGt at time t. SGt is related
to the availability of the node at previous K ′ time slots.

Mts and Mmr are the measurement values of ts and mr ,
respectively. The superior bound of ts and mr is Mts_sl
and Mmr_sl , and their low bounds are Mts_ll and Mmr_ll ,
respectively.

If the evaluation Ets of ts and the evaluation Emr of mr are
in the scope of [0, 1], we can obtain




Ets = 1, Mts < Mts_ll

Emr = 1, Mmr < Mts_ll
(6)




Ets = 0, Mts > Mts_sl

Emr = 0, Mmr > Mmr_sl
(7)

When the measurement values of ts and mr and the ca-
pability of judgement are accurate enough, the low bound
that is provided to adjust fault tolerance can be reduced.
Mts_ll = Mmr_ll = 0 is acceptable. However, the superior
bound is not recommended to set as 1 in order to ensure a
good capability to detect unavailable network nodes, security
events and threats happened on the nodes as early as possible.
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Fig. 2. Abstracted Graph of Network Topology.

Fig. 3. Topology with Blocked Links.

Similar to the availability of network links, the evaluation
of each factor is obtained by using the Gaussian function,
Eω = e−2[(Mω−Mω_ll )δω/(Mω_sl−Mω_ll )]2 , where ω is either ts
or mr .

As mentioned above, the node availability evaluation is
mainly based on two factors, i.e., ts and mr . Similar to link
availability, the requirements of accuracy and sensitivity of
node availability are diverse in different scenarios.

For the most scenarios of enterprise services, ts is a very
important factor, which determines the stability and QoS.
However, there are few concerns on mr . In other scenarios, mr
is vital due to strict security requirements, such as the entrance
of data center, firewalls, and Intrusion Detection Systems
(IDS). To satisfy the requirements of different scenarios, we
set adjustable weights for adapting to different scenarios, i.e.,
f ts + fmr = 1, where f ts and fmr are the weights of ts and
mr , respectively. Thus, we can get the node evaluation St ,
St = f tsEts + fmrEmr . Based on Eω , we can obtain

St = Jts_sl f tse−2Jt s_ll [(Mt s−Mt s_ll )δt s/(Mt s_sl−Mt s_ll )]2

+ Jmr_sl fmre−2Jmr_ll [(Mmr−Mmr_ll )δmr /(Mmr_sl−Mmr_ll )]2

(8)
where

Jω_sl =



0, Mω > Mω_sl

1, Mω ≤ Mω_sl
(9)

and

Jω_ll =



0, Mω < Mω_ll

1, Mω ≥ Mω_ll
(10)

Based on the evaluation St−K′+1,St−K′+2, . . ., St−1, St
of previous K ′ time slots, we can get the final evalua-
tion value that represents the availability of nodes, SGt =∑k=K′−1

k=0 (K ′ − k)St−k/
∑k=K′−1

k=0 (K ′ − k).

D. Node Selection Module

On basis of the network awareness and evaluation offered
by the network measurement and evaluation module, the node
selection module can obtain a complete traffic topology. Based

on the topology, it selects multiple nodes to collect data. Thus,
an intelligent and adaptive distributed data collection system
can be realized in order to reduce redundant data collection
and mitigate the awareness limitation of network traffic.

The topology is abstracted as a directed graph, and the
direction of edges is the direction of traffic. The direction of
traffic is usually bidirectional, and thus the direction of edges is
marked bidirectionally. As a result, we aim to select nodes in a
topology. Given a directed topology graph ~G = (~V, ~E), where
~V represents the set of all nodes in the graph, and ~E represents
the set of all directed edges. Fig. 2 is an abstracted network
structure. Circular nodes represent switches and routers in the
network. Square nodes are hosts. There are bidirectional links
between switches or routers, marked as bidirectional solid
lines. The link between the host and the switch or router is
marked as a dotted line.

According to the blocking state of network links, the
network node selection module runs in two modes, namely
normal mode and abnormal mode. In the normal mode, the
module first identifies all central nodes and access nodes,
and then SDN controller collects flow information from these
nodes. Central nodes are the intersection points of multiple
links. Because the switch or router is rarely connected to
the host in the core network. Theoretically, the traffic passing
through the switch or router also passes through the central
or access nodes. In Fig. 3, s2 and s6 are central nodes with a
large amount of flow, while s11, s12, s71 and s72 are access
nodes that connect to the routers, switches or hosts of non-
SDN networks. External large-scale or malicious traffic flows
into SDN networks must pass through these access nodes.
When any central or access node is blocked, the network
will change into the abnormal data collection mode, where
our system locates the blocked roots by applying a blocked
root discovery algorithm. Only the flows passing through the
blocked roots will be collected in order to reduce the volume
of collected network data.

Due to the requirements of reflecting network congestion,
we need to figure out the traffic topology about network
blocking. Directed edges in the topology represent all links
that are blocked. These edges are still oriented, and the
direction of the edges is the direction of large flows. However,
if there is no large flow in the link, corresponding edges will
not appear in the traffic topology. Furthermore, if a node does
not connect with any blocking edges, it disappears from the
blocking traffic topology. Therefore, the original topology can
be simplified to a blocking traffic topology. Fig. 3 shows
an blocking traffic topology. The directed edges labeled by
red solid lines are blocked edges. The circles connected with
these blocking edges are blocked nodes. The edges labeled by
black dotted lines are non-blocked edges. These edges are not
considered in blocking analysis.

Moreover, in order to enhance the robustness of the system,
some special conditions should be taken into consideration as
follows.

1. Some loops might exist in the blocking traffic topology.
For example, when two malicious hosts continuously send a
large amount of traffic to another host, a loop appears in the
topology. In fact, there are many loops in the blocking traffic



JOURNAL OF LATEX CLASS FILES 7

Input: Nonempty blocked graph ~G = (~V, ~E ).
Output: A set C of nodes, which contains all blocked roots in graph

~G.
Step 1: Let C = ∅;
Step 2: If ~V = ∅ then

return C;
end if

Step 3: If we have found all nodes v whose in-degree is 0 then
put all discovered nodes into set C, and remove them from ~G
and corresponding links; Get new ~G = (~V, ~E );

else
If ~G = ∅ then
return C;

else // Loops exist in ~G.
go back to Step 1;

end if
end if

Step 4: Search the node which has the max degrees in ~V ; Put it into C
and remove it and its links from ~G; Go back to Step 3.

Algorithm 1: Finding Blocked Root Nodes

topology.
2. When both directions have large traffic, a blocked edge

is bidirectional.
3. The blocking of network links is continuous. When a

link is blocked by large traffic, its downstream link is also
blocked until the traffic is diverted to several different links.
The blocking depends on the bandwidth of switches, which is
applicable in peer-to-peer and downlink networks.

The process of node selection is described as below.
Step 1: The controller discovers the network topology and

computes the availability of network topology, and find out all
central and access nodes.

Step 2: The availability of all edges can be calculated. If
the evaluation value of an edge is lower than a threshold,
this link is marked blocked, Otherwise, the link is marked as
an unblocked one. If all links are available, the normal flow
sampling mode is turned on, the central and access nodes are
selected as data collection nodes; otherwise, go to Step 3.

Step 3: The abnormal traffic mode is triggered, and the node
selection module discovers the blocked root node.

Step 4: The blocked node collects and forwards the specified
network traffic to a remote server according to the flow table
policy specified by the controller.

The algorithm for finding blocked root nodes is described
in Algorithm 1.

E. Adaptive Traffic Collection Module

With the development of 5G and big data, the volume of
traffic is huge in the process of network data collection. How
to control the volume of data collected from the selected
collection nodes, reduce the data redundancy and ensure
the recoverability of information as far as possible is a big
challenge in the process of data collection. In order to solve
these problems, traffic sampling is used in data collection. At
present, many flow sampling algorithms have been proposed
to guide data collectors to realize the restorable ability of
flow distribution when the collected data is compressed. In
addition, some algorithms [23], [27] reduce the redundant in-
formation of flows based on in-flow sampling. Packet sampling

methods are time-sensitive data collection methods, which
usually adjust collection strategies at time intervals. However,
flow sampling is the time-insensitive sampling method, which
cannot adapt to real-time situations, i.e., DDoS and other real-
time network attacks. At the same time, it heavily depends on
the response speed and detection accuracy of servers.

Current packet sampling methods usually depend on time
intervals and do not consider large traffic or ordinary network
scenarios so that the accuracy of data collection cannot be
ensured. Besides, these methods lack the adaptivity to flow
distribution, which becomes worse in elephant flows and loses
the perception of mice flows. The main reasons that result
in aforementioned problems are two aspects. On one hand,
many packet sampling methods are applied in specific network
situations. On the other hand, the lack of network situation
awareness and the lag of network processing in traditional
networks limit the ability of sampling algorithms. With the
advent of 5G, SDN becomes its mainstream network archi-
tecture. An SDN-based data collection algorithm is urgently
needed and simultaneously overcomes the flaws of traditional
sampling algorithms. We propose some requirements of SDN
based sampling algorithms.

1. The algorithm should be time-dependent in order to react
quickly in time-sensitive networks.

2. The algorithm should realize the ability of flow aware-
ness.

3. The algorithm has a certain in-flow sampling mechanism
for reducing the size of elephant flows and its influence.

The following algorithm that satisfies the aforementioned
requirements is proposed to adapt to flows, which is described
in Algorithm 2.

Step 1: When a packet m passes through a network data
collector, the flow tables in the collector attempt to match the
packet according to the flow information of m.

Step 2: If m matches a flow table (i.e., it belongs to
an old flow), the count ocountm−1 of the old flow will be
increased by 1. Its corresponding segment threshold will be
checked. When the segment threshold is reached, the data
collector performs collection operations. Otherwise, the packet
belongs to a new flow. Assume the current new flow count is
ncountm−1. According to the dynamic probability generation
in the controller, the dynamic probability p is generated. If the
new flow count ncountm reaches ncountm−1 + 1 = b1/pc, m
is collected and the count is returned to 0. Otherwise, the new
flow count is increased by 1 to ncountm = ncountm−1 + 1,
and m is not collected. End this operation until another new
packet comes in.

Most operations, such as counting, comparison and collec-
tion are carried out in the data plane. Only the update of p in
Step 2 and the generation of collection threshold by in-flow
sampling in Step 3 are carried out in the controller plane. Thus,
collection and processing efficiency can be achieved.

The dynamic probability generation and the in-flow sam-
pling are described below.

Dynamic Probability Generation
In order to realize real-time awareness of network attacks

such as DDoS and malicious network behaviors, collectors



JOURNAL OF LATEX CLASS FILES 8

Input: A packet m that passes through a network data collector,
m′ = ∅, countm = {ocountm, ncountm = ∅},
ocountm−1, ncountm−1.

Output: m′ and countm = {ocountm, ncountm }
Step 1: Employ flow tables to match m;
Step 2: If flow tables match m then // m belongs to an old flow.

ocountm = ocountm−1 + 1;
If ocountm reaches a threshold then
m′ = m;

end if
else // m belongs to a new flow.

Generate p with Dynamic Probability Generation;
If ncountm reaches ncountm−1 + 1 = b1/pc then
m′ = m;
ncountm = 0;

else
ncountm = ncountm−1 + 1;

end if
end if

Step 3: Return m′ and countm = {ocountm, ncountm }.
Algorithm 2: Adaptive Traffic Collection
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Fig. 4. Sample Diagram of Segment Partition for Flow Sampling.
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Fig. 5. An Example of Sampling with A Fixed Probability: Arrival of The
First Packet.
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Fig. 6. An Example of Sampling with A Fixed Probability: Arrival of The
Second Packet.
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Fig. 7. An Example of Sampling with A Fixed Probability: Arrival of The
Third Packet.

should make corresponding behavior changes according to
changing traffic.

The Poisson sampling algorithm is an important and adap-
tive flow sampling algorithm recommended by RFC2330. It
provides some ideas for the design of probability generation

algorithm. The algorithm shows that in a time-dependent sys-
tem, the factors at current period can be generated according
to the factors at previous periods. The factors can be the
packet interval of sampling, the time interval of sampling, etc.
However, the Poisson sampling algorithm is not suitable for
flow sampling, since the former depends on sampling intervals
but the latter relies on the probability. Due to the correlation
of flows between adjacent periods, Poisson sampling is used
to adjust the sampling probability.

Suppose the sampling probability at time t is P(t). If time t1
and t2 belong to a same sampling period, they have the same
sampling probability. In other words, if t1, t2 ∈ [(n − 1)T, nT],
n = 1, 2, . . ., and t1 ≤ t2, we can get

P(t1) = P(t2), (11)

where T is a fixed time interval. According to the Poisson
sampling algorithm, the sampling probability is related to the
last sampling time slots. Therefore, the average change rate of
the last periodic probabilities can be calculated as follows.

P′(t) =
1

b N2 c
2

b N2 c∑
i=1

P(t − iT ) − P(t − iT − b
N
2
cT ). (12)

In fact, the probability change rate ∆(P(t)) = P(t)−P(t−T )
is related to not only the average change rate at the last N slots
but also the probability at the last time slot. In the investigation
of flow sampling algorithm, it can be found that the change
rate of the sampling probability decreases with the increase of
the number of packets and the sampling probability of the flow
sampling algorithm. Therefore, the change rate of probability
at time t is computed as follows.

∆(P(t)) = P(t) − P(t − T ) ∼
b′

a′P(t − T )2 + 1
. (13)

a′, b′ are the coefficients to adjust the change rate. With
the relation ∆(P(t)) ∼ P′(t), we can obtain ∆(P(t)) =
k ′b′P′(t)/[a′P(t − T )2 + 1], where k ′ is the proportionality
coefficient ensuring that the equation is true. Furthermore, we
get P(t) = P(t − T ) + bP′(t)/[aP(t − T )2 + 1], where b = b′

and a = a′. Finally, we can obtain

P(t) = P(t−T )+
b
∑ b N2 c

i=1 P(t − iT ) − P(t − iT − b N2 cT )

b N2 c
2(aP(t − T )2 + 1)

(14)

In-Flow Sampling
Effectively handling elephant flows is an important objective

in network data collection. Due to the Pareto’s Law of real
traffic in networks, a great number of collection resources
are consumed when the elephant flows happen. However, an
elephant flow is full of redundant information because of the
high correlation of packets in the same flow. Therefore, in-flow
sampling is proposed based on the correlation of packets in
the same flow in order to reduce the volume of collected data.
It consists of two stages, namely flow partition and sampling
with a probability. The sampling probability decreases with
the increase of the flow size.

In flow partition, an online flow whose current length is
L can be divided into several segments. The length of each
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Fig. 8. An Example of Fat-Tree Topology.

segment is Ni , i = 1, 2, . . . , l, where l is the number of
segments. With the increase of i, the length of Ni increases.

In each segment, packets are sampled by a fixed probability.
For the i-th segment of a flow, its length is Ni . The probability
of each packet being sampled is 1/Ni . With the increase of
i, Ni increases, thus the sampling rate is reduced, so that less
data are collected in the situation of elephant flows.

Given a real number µ > 1, an online flow with length L
can be divided into l segments. The length of the i-th segment
can be denoted as

Ni =




1, i = 1

dµ

i−1∑
k=1

Nke −

i−1∑
k=1

Nk, 1 < i < l

min{L, dµ
i−1∑
k=1

Nke −

i−1∑
k=1

Nk }, i = l

(15)

Note that l and Ni are unique when L and µ are determined.
Fig. 4 shows Ni and the summation of the length of the last l

intervals. Moreover, the bottom of Fig. 4 shows a special case
to illustrate the regular length Ni of the i-th segment Si when
µ = 2. In the sampling process, µ is usually set as a value
slightly larger than 1 in order to avoid the excessive growth
of Ni . In our design, only one data packet is collected in each
segment. Therefore, when i increases, the sampling rate of
the algorithm decreases. Specifically, for the first i segments
whose total length is dµ

∑i−1
k=1 Nke, only i packets are collected,

and the sampling rate in each segment is 1/Ni . This reduces
the number of collected packets compared to dividing flows
with the same length and sampling a packet from a segment.
In addition, the larger µ is, the lower the sampling rate.

The packets in Si are denoted as PAi j, j = 1, 2, . . . , N in
order. PAi j’s direct collection probability Pdiri j is computed,
Pdiri j = 1/Ni[1 − ( j − 1)/Ni].

When a packet in Si is collected, remaining packets in this
segment are not collected. Therefore, the probability Psam

of PAi j being sampled from Si satisfies Psami j = (1 −∑j−1
s=1 Psamis )Pdiri j . According to the calculation of recursive

formula, the final probability of PAi j being sampled can
be computed, Psami j = 1/Ni , which means that for any
k ∈ [1, Ni], the sampling probability is fixed and equal to
1/Ni .

In order to illustrate the sampling process, Fig. 5-Fig. 7
show a special case in which packets are sampled from an
online flow. As shown in Fig. 5, Si is the current segment of
an online flow, and its length is Ni . However, since the flow is
online, its last segment length cannot be guaranteed to reach

Ni . As shown in Fig. 5, only one packet belongs to the last
segment of the flow. If the packet is not collected, collectors
wait for the next packet belonging to this segment.

As shown in Fig. 6, the next packet of the flow enters.
The packet is the second packet of Si . Its direct probability
Pdiri2 = 1/Ni (1−1/Ni). Since the probability that PAi1 is not
sampled is 1 − 1/Ni , the probability that PAi2 is eventually
sampled is Psami2 = 1/Ni . If PAi2 is still not sampled, the
collector waits for the next packet.

Fig. 7 shows the scenario of the third packet coming
in. According to the same calculation as the second packet
entering, Psami3 = 1/Ni . If PAi3 is not sampled, subsequent
packets are sampled with a less direct probability. Thus, the
probability of all packets being sampled in this segment is
fixed.

Estimation of Flow Size and Maximum Error
The flow size is the number of packets in a flow. We attempt

to estimate the size of original flow based on the number l of
sampled packet, which is an important factor to evaluate the
availability of the sampling algorithm.

Suppose f n(x) is an n-order function of f (x), namely

f n(x) =

n︷             ︸︸             ︷
f ( f (. . . f (x))). Given a real number µ > 1, we

define f (x) = dµxe, and L(l) = f l (N1) = f l (1). In addition,
we use a common estimation (i.e., mathematical expectation
E(L)) of a real flow. When the number of sampled packets is l,
L belongs to [ f l−1(1) + 1, f l (1)] and the sampling probability
is fixed at 1/[ f l (1) − f l−1(1)]. Therefore, the mathematical
expectation of the real flow is E(L) = [ f l (1)+ f l−1(1))]/2. In
theory, the maximum deviation rate ε of the estimated value
can be obtained, ε = [ f l (1) − E(L)]/ f l (1) = [dµ f l−1(1)e −
f l−1(1)]/2dµ f l−1(1)e = d(µ − 1) f l−1(1)e/2dµ f l−1(1)e. In
fact, µ is usually less than 1.05, and thus the estimated ε
is generally less than 2.5%.

IV. TEST AND EVALUATION

We evaluated the performance of our proposed system with
a proof-of-concept prototype implementation. Then, we com-
pared our system to other flow-based methods, e.g., Payless-
Based Plan (PBP) [29] and sketch-based method [32], since
current data collection methods can be categorized into flow
and packet based ones and our system belongs to flow based
data collection methods.

A. Metrics

We evaluated our system based on the following metrics. (1)
The CPU consumption change with the increase of time; (2)
The memory consumption change with the increase of time;
(3) The storage usage change with the increase of the number
of input packets; (4) The flow size recovery: the ability that
the number of all packets of a flow can be predicted by using
the packets sampled in this flow; (5) The threat perception:
the ability of perceiving mainstream DDoS attacks.

B. Experimental Settings

Our implementation was completed in a laptop that runs
the Ubuntu operating system 14.04 with Intel Core i7-8550
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Fig. 9. CPU and Memory Consumption.

CPU @1.8GHz and 8G RAM. We used Floodlight 1.2 as
SDN controller in four kinds of traffic cases as described
below. Our implemented virtual network adopted a fat-tree
topology, which was built by the Mininet 2.2.1 simulation tool.
An example of fat-tree topology is shown in Fig. 8. Based
on our testing environment, we set f td = fpl = fbd = 1/3,
Mtd_sl = 10ms, Mtd_ll = 1000ms, Mpl_sl = 1%, Mpl_ll =

20%, Mbd_sl = 10∗8bit, Mbd_ll = 100Mbit, N = 6, T = 34ms,
µ = 1.005, a = b = 1, and the initial sampling probability as
P = 0.5.

C. Traffic Cases

Jing et al. claimed that DDoS attacks mainly include direct
DDoS attacks, reflective amplification DDoS attacks and link
flooding attacks [30]. The data packets of direct DDoS attacks
and reflective amplification DDoS attacks are similar, and
many data packets come from the same flow. Therefore, we

can detect a large volume of flows for recognizing direct DDoS
attacks and reflective amplification DDoS attacks. Although
these three types of attacks cause a large volume of traffic,
link flooding attacks are different from direct DDoS attacks
and reflective amplification DDoS attacks due to various traffic
characteristics. A small volume of flows can also lead to the
unavailability of networks [31]. As a result, we can categorize
current DDoS attacks into three classes due to the type and
distribution of traffic flows, namely elephant flow, mice flow
and link flooding based DDoS attacks. In our experiments, we
considered the following four traffic cases.

1. Empty: No traffic in the network.
2. DDoS by elephant flow: Multiple elephant flows flood

into a specific network host that leads to overwhelming.
3. DDoS by mice flow: A large volume of mice flows flood

into a specific network host that leads to overwhelming.
4. Link DDoS: A large volume of traffic flows pass through
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Fig. 11. Flow Recovery.

some attacking nodes so that some network links are over-
whelmed.

D. CPU and Memory Consumption

We tested the CPU and memory consumption of PBP [29]
and our system under the aforementioned four cases.

Fig. 9(a) and Fig. 9(b) show the CPU usage and memory
consumption at the controller when links have no traffic. The
CPU usage in our system is about 2% higher than that of the
original floodlight controller. Although our collector consumes
about 40MB more memory than floodlight, this is acceptable
for a network data collection system. We can clearly see that
our system outperforms PBP in this idle state, because it only
checks the states of flows in central nodes when the network
is free from blocking. Therefore, it saves CPU and memory
resources.

In Case 2-4, as shown in Fig. 9(c)-Fig. 9(h), the CPU usage
and memory consumption are quite different between PBP
and our system. Obviously, PBP has a higher CPU usage and
memory consumption than our system, which reduces at least
40% CPU resource consumption when there is flooding traffic.
Because our system checks traffic states in central nodes but
all nodes. Regarding memory, our system can save at least
40MB memory by comparing with PBP, since our system
adopts a sampling flows method. In short, our system achieves
economic CPU and memory consumption with regard to data
collection in different network traffic scenarios.

E. Storage

We also tested the storage resource consumption of our
system, PBP, Flowsense, and a sketch-based collection method
[32]. The testing flows were distributed according to the ratio
of elephant flows to mice flows. Several cases were tested:
1) 80% elephant flows and 20% mice flows; 2) 50% elephant
flows and 50% mice flows; 3) 20% elephant flows and 80%
mice flows.

As shown in Fig. 10, we can observe that the storage con-
sumption of our system is much less than PBP and Flowsense,
since sampling flows in our system reduces much storage
consumption. The sketch-based method performs better than
our system in terms of storage consumption. Because the
sketch-based method only records the number of packets
and stores it in a hash table. It cannot provide sufficient
network information and hardly reflects a complete network
traffic situation. In addition, it suffers from a large distortion
phenomenon.

F. Flow Size Recovery

Flow size recovery is one of important criteria in evaluating
a flow sampling algorithm. The flow size recovery capability
of our system was evaluated and compared with the simple
flow sampling algorithm and the geometric residual sampling
algorithm [33], [34]. The latter two algorithms are very
sensitive to elephant flow and have strong flow recovery ability
due to their low convection collection rate. As shown in Fig.
11, the error rate of flow size recovery of our system is ranged
from -5% to 5%, which is slightly worse than that of the latter
two algorithms. However, when the compression factor in our
system is 1.05 to collect 1000 data packets in the same flow,
the size of collected data in the latter two methods is 10000
data packets. This fact implies that our system can achieve a
similar error rate of flow size recovery to others, but collecting
much less data.

G. Threat Perception

We further evaluate the threat perception ability of our
system in terms of elephant flow, mice flow and link flooding
based DDoS attacks. Based on the recovery of flow size by
the data in Table 1, the threat perception ability of our system
can be evaluated in Table 2 by restoring the number of flow
packets and flows based on packet information collected under
these three attacks.

In the elephant flow-based DDoS attack, the packets of
elephant flow can be detected by our system. The PBP method
can perceive the attack by recording the number of packets.
The sketch-based method can also perceive the DDoS attack
with multiple hash tables. Although the Flowsense based
method can record the flow information, it cannot accurately
and timely perceive the elephant flow based DDoS attack only
when the flows are established and expired.

When the mice flow based DDoS attack occurs, a large
number of packets belonging to new flows will enter switches
or routers, and these flows usually do not have subsequent
packets to maintain the survival of the flows. Therefore,
the number of new flows counted by our prototype system
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TABLE I
COMPARISON OF COLLECTED DATA

Network conditions Our system Flowsense PBP Sketch-based method
The number of packets

of elephant flows The number of flows The number of flows The number of flows The number of packets
of elephant flows

Elephant flow
based DDoS attacks 4963 1134 1207 5325 4972

Mice flow
based DDoS attacks 575 5245 5212 5278 583

Link flood
based DDoS attacks 4901 1083 1125 5332 232

TABLE II
CAPABILITY OF THREAT PERCEPTION

Network conditions Our system Flowsense PBP Sketch-based method
Elephant flow

based DDoS attacks Yes No Yes Yes

Mice flow
based DDoS attacks Yes Yes Yes No

Link flood
based DDoS attacks Yes No Yes No

can be easily detected. The PBP method records the flow
state, and thus it is also efficient to sense this attack. The
Flowsense method uses the method of collecting packets from
multiple network nodes. Although it can detect the attack, its
performance is poor. The sketch-based method can only detect
the elephant flow, but cannot detect mice flows. Thus, it cannot
perceive this kind of DDoS attack.

The link flooding based attack is similar to the elephant
flow based DDoS attack, which can result in blocking some
nodes in the network. Therefore, both our system and the
PBP method can sense it. However, The Flowsense method
is unable to recognize this attack. The sketch-based method
is usually deployed at a gateway or host nodes, thus it cannot
identify the attack on links.

V. CONCLUSION

In this paper, we proposed an adaptive network data col-
lection system in SDN. It employs a network measurement
and evaluation model to quantify network node and link states
for selecting proper nodes for data collection. The selected
nodes adaptively perform flow sampling based on flow char-
acteristics, thus ensuring the economy, efficiency, efficacy and
low resource consumption of data collection. We conducted a
series of experiments based on a proof-of-concept prototype
to evaluate our system and compare its performance with
other methods in terms of CPU/memory consumption, storage
usage, flow size recovery, and threat perception. Experimental
results show that our system outperforms other methods as
a whole. Although our system can help detecting mainstream
DDoS attacks, it might not perceive other types of attacks, e.g.,
impersonation attacks. Future work includes real deployment
in a 5G test-bed system to support 5G network management
and intrusion detection.
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