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Abstract

1. Leaf-wood separation in terrestrial LiDAR data is a prerequisite for non-

destructively estimating biophysical forest properties such as standing wood

volumes and leaf area distributions. Current methods have not been extensively

applied and tested on tropical trees. Moreover, their impacts on the accuracy of

subsequent wood volume retrieval were rarely explored.

2. We present LeWoS, a new fully automatic tool to automate the separation of leaf

and wood components, based only on geometric information at both the plot and

individual tree scales. This data-driven method utilizes recursive point cloud seg-

mentation and regularization procedures. Only one parameter is required, which

makes our method easily and universally applicable to data from any LiDAR tech-

nology and forest type.

3. We conducted a two-fold evaluation of the LeWoS method on an extensive data

set of 61 tropical trees. We first assessed the point-wise classification accuracy,
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yielding a score of 0.91 ± 0.03 in average. Secondly, we evaluated the impact

of the proposed method on 3D tree models by cross-comparing estimates in wood

volume and branch length with those based on manually separated wood points.

This comparison showed similar results, with relative biases of less than 9% and

21% on volume and length, respectively.

4. LeWoS allows an automated processing chain for non-destructive tree volume and

biomass estimation when coupled with 3D modelling methods. The average pro-

cessing time on a laptop was 90s for 1 million points. We provide LeWoS as an

open source tool with an end-user interface, together with a large data set of la-

belled 3D point clouds from contrasting forest structures. This study closes the

gap for stand volume modelling in tropical forests where leaf and wood separation

remain a crucial challenge.

Keywords: Terrestrial LiDAR, point cloud, tropical forest trees, component separation,

segmentation, regularization, TreeQSM, volume

1 INTRODUCTION

Light Detection and Ranging (LiDAR) has revolutionized tree architecture measurements

in past years (e.g., Dassot et al., 2011; Disney, 2019). Terrestrial Laser Scanning (TLS),

or terrestrial LiDAR, is a ground-based scanning strategy that acquires three-dimensional

(3D) coordinates in combination with radiometric information of objects by emitting laser

pulses with wavelengths in the visible and near-infrared domain (Pfeifer et al., 2008). The

acquired high-density point clouds allow very precise measurements of tree structures in

a non-destructive way. These measurements include forest inventory (Liang et al., 2016),

leaf angle distribution (Vicari et al., 2019b), structural parameters (Wang et al., 2016;

Trochta et al., 2017), above-ground volume and biomass (AGB) (Calders et al., 2015;

Momo Takoudjou et al., 2018; Gonzalez de Tanago et al., 2018). Moreover, allometric

equations can be non-destructively performed with data derived from TLS (Momo Tak-

oudjou et al., 2018; Lau et al., 2019).

However, several of these applications require prior knowledge of either leaf or woody

components of trees. For example, understanding the radiation regime and photosynthetic

processes relies on the quantification of the canopy leaf area and its spatial distribution.
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Presence of wood may lead to a misinterpretation (Li et al., 2017). Accurate estimation

of tree volume and AGB using Quantitative Structural Models (QSM, Raumonen et al.,

2013) expects only woody structures. Presence of leaves is known to overestimate AGB

(Calders et al., 2015). Moreover, opportunities for new applications such as mass and

energy exchange, and net primary production partitioning of different components will

emerge if leaf and wood can be separated in TLS data (Vicari et al., 2019a).

In the past decade, some efforts have been made to separate leaf and wood compo-

nents in TLS point clouds (Béland et al., 2014; Hackenberg et al., 2015a; Ma et al., 2015;

Hétroy-Wheeler et al., 2016; Wang et al., 2018; Vicari et al., 2019a). However, separating

these components in TLS data still remains a main challenge, especially in ever-green

tropical forests. Most of the available methods rely on laborious manual work or user

inputs for specific data characteristics. These potential deficiencies hinder their applica-

bility and universality for large data sets with diverse data qualities and field conditions

(Vicari et al., 2019a).

Overall, existing methods were either based on geometric (Wang et al., 2018) or radio-

metric intensity features (Béland et al., 2014), or a combination of both (Zhu et al., 2018).

Methods based on intensity usually have limited application scenarios. These methods

are based on the assumption that leaf and wood components have different optical prop-

erties at the operating wavelength of the laser scanner (Tao et al., 2015). Nevertheless,

such properties are generally influenced by the distance, a partial laser hit and its inci-

dence angle (Kaasalainen et al., 2009). Intensity values have to be calibrated for each

specific instrument (Calders et al., 2017), which limits the applicability of using intensity

information for subsequent processing (Wang et al., 2018). Some research-led develop-

ments on multi-wavelength systems may help to differentiate leaf and wood in the future

(Disney, 2019). In contrast, geometry based methods require only the 3D coordinates of

points. Numerous geometry based methods use supervised machine learning, for which

geometric features are learned for each point (Ma et al., 2015; Yun et al., 2016; Krishna

Moorthy et al., 2019). These methods have shown promise and are potentially applicable

to any point clouds (Disney et al., 2018). The drawback is that they require laborious and

time consuming manual selection of training data. In addition, the distribution of training

data greatly impacts the overall performance of machine learning methods (Wang et al.,

2017). A combination of geometric and radiometric features may have advantage over

using only one type (Zhu et al., 2018). Lastly, another preferable strategy is to deploy un-

This	article	is	protected	by	copyright.	All	rights	reserved

A
cc

ep
te

d 
A

rt
ic

le



4

supervised geometric methods that are free of training data (e.g., Hétroy-Wheeler et al.,

2016). The critical point is to ensure robustness over different tree species, sensor con-

figurations and data qualities (Vicari et al., 2019a). These unsupervised methods often

look at specific geometric properties of components. Examples include presuming leaves

being flat (Li et al., 2017), trunk and branch boundaries appear as circles or circle-like

shapes (Tao et al., 2015), with linear structures across scales (Wang et al., 2018).

Previous methods were validated by assessing the point-wise separation (i.e., classifi-

cation) accuracy. Their impacts of leaf and wood separation on subsequent TLS methods

are still unknown (Vicari et al., 2019a). For quantitative ecology, tree volume or AGB is

the key property of interest (Disney et al., 2018). Recent studies have shown that TLS,

combined with QSM reconstruction methods, can be used to accurately estimate above-

ground volume and AGB for large tropical trees (Momo Takoudjou et al., 2018; Gonza-

lez de Tanago et al., 2018). The accuracy of volume and AGB estimates depends on the

quality of the reconstructed QSM, which in turn, relies on a well filtered point cloud of

tree woody components. In general, tropical scenes are more challenging to reconstruct

because of a poorer point cloud quality in the tree crown (Momo Takoudjou et al., 2018).

Also, laborious and tedious manual removal of leaf points has to be carried out, which

can require up to 15 hours per tree (Momo Takoudjou et al., 2018). An automated pro-

cessing chain would greatly facilitate the usage of TLS for quantifying 3D structures of

large tropical trees.

The objective of this study is to overcome these challenges. We first introduce a new

generic unsupervised method for leaf-wood separation (hereafter LeWoS). The proposed

method, which is based on recursive point cloud segmentation and a novel classification

regularization routine, is fully automatic and highly versatile, as only one parameter is

called. Then, its performance is evaluated on structurally varied and complex tropical

trees in a two-fold fashion (Figure 1). Firstly, similar to previous studies, we assess the

separation accuracies against manually delineated references. Second, we examine how

sensitive to leaf-wood classification accuracy the subsequent QSM reconstruction is, by

cross-comparing QSM reconstructions obtained from manually and automatically filtered

point clouds. This cross-comparison gives a critical insight on how an automated process

chain would impact downstream TLS ecology applications.
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FIGURE 1: The two-fold evaluation strategy of this study.

2 MATERIALS AND METHODS

2.1 Study data

61 large tropical trees from the Eastern of Cameroon were included in this study. This

set of trees was previously used for estimating large tropical tree biomass from TLS point

clouds and calibrating allometric models (Momo Takoudjou et al., 2018; Momo et al.,

2017). In total, the data set covered 15 different species. Tree height ranged from 8.7 to

53.6 m, with a mean value of 33.7 ± 12.4 m. Diameter at breast height (DBH) ranged from

10.8 to 186.6 cm, with a mean value of 58.4 ± 41.3 cm. See Table 2 in Momo Takoudjou

et al. (2018) for a full description of the trees used in this study.

2.1.1 TLS data

A time-of-flight scanner system Leica C10 Scanstation (Leica Geosystems, St. Gallen,

Switzerland) was used for TLS data acquisitions. This scanner has a 360° horizontal and

270° vertical field-of-view, with an effective measurement rate up to 50,000 points per
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second. A minimum of three scans were performed around each tree, with a sampling

resolution of 0.0005 rad. Multi-scan data were later co-registered by the Leica Cyclone

software (v. 9.1). The data size of the resulting individual tree point clouds ranged from

20,000 to 10,000,000 points.

2.1.2 Reference measurements

For each tree, leaf and wood points were manually separated using the Cyclone software

(Figure 2). The required processing time was between 1 and 15 hr per tree (Momo Tak-

oudjou et al., 2018). We also assigned to each wood point its respective branch order

information derived from the QSM reconstructions (Lau et al., 2018). Specifically, each

point was assigned to the branch order of its nearest cylinder in QSM.

In addition to leaf-wood references, destructive measurements of tree volumes and

AGBs were carried out a few days after point cloud acquisitions. Although the aim of this

study is not to validate the tree volume and AGB estimations from TLS, the destructive

volume measurements have been also used to demonstrate the effectiveness of QSMs

volume estimation based on an entirely automated processing chain, when compared with

manual works.

FIGURE 2: Examples of large tropical trees with manually separated leaf (green) and
wood (brown) components.

2.2 LeWoS

Leaf-wood separation is inherently a binary classification problem, for which the goal

is to assign either a wood or a leaf class label to each point. Our automated leaf-wood

separation was motivated by the previous study of Wang et al. (2018), which evidenced

that tree woody components can be identified as linear clusters after a robust point cloud
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segmentation (i.e., semantic segmentation). The critical step is to establish an effective

segmentation strategy that can adequately dispense points into clusters, so that each clus-

ter contains either leaf or wood only points.

However, semantic segmentation of forest point clouds is a challenging task, as data

quality is often diversified by scene complexity, laser scanner configurations, scanning

campaign setups, point cloud co-registrations, and pre-processing filters. The proposed

method in this study, LeWoS, tackles this challenge by three steps. Firstly, we adopt a

graph based point cloud segmentation technique (e.g., Strom et al., 2010), and exercise

it recursively in order to achieve a robust segmentation. Moreover, we alter direct wood

extraction, which requires manual fine-tuning of some thresholds (Wang et al., 2018), to a

class probability estimation. This transformation not only greatly increases the universal-

ity of the proposed LeWoS method, but also provides classification confidence informa-

tion. Finally, we apply graph-structured class regularization (Landrieu et al., 2017) that

operates on class probability to achieve a spatially smooth classification result.

The LeWoS algorithm was implemented in Matlab 2019a (The MathWorks, Inc., Nat-

ick, MA, USA).

2.2.1 Recursive segmentation

The proposed graph based point cloud segmentation method converts the conventional re-

gion growing method (Adams and Bischof, 1994) to a search of graph connected compo-

nents problem. An undirected graph is represented as G = (V,E), where V = v1, ..., vn

is a set of nodes. Each node vi ∈ V corresponds to a point in the point cloud, and the

edges eij in E connect certain pairs of neighboring points.

We incorporate point cloud density and point-wise feature information in graph con-

struction. Both properties were used by previous studies for leaf-wood separation as well

(Vicari et al., 2019a). The exploited point-wise feature is verticality (i.e., the absolute

value of the z-component of normal vector), which was previously verified as effective

(Wang et al., 2018). We denote verticality as Nz , and Nz ∈ [0, 1].

The normal vector of a point is estimated from the covariance matrix of its neighboring

points. A covariance matrix measures the variation of each dimension from the mean with

respect to each other. The normal vector at a point pi can be estimated as the eigenvector

to the smallest eigenvalue of the covariance matrix given by:

Covpi
=

∑n

i=1 (pi − p) (pi − p)
T

n
, (1)
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where p is the barycenter of its n neighboring neighbors.

Initially, a point pi is connected to its 10 nearest neighbors (Guinard and Landrieu,

2017), constructing a densely connected graph (Figure 3). Then, edges are further pruned

according to the following conditions:

eij =







































True if























Condition 1 |Nzi −Nzj | < Nz_thres,

Condition 2 dij < dij + σdij
,

Condition 3 dij < max(dij) + σmax(dij),

False otherwise,

(2)

where Nz_thres in Condition 1 is a threshold that controls feature similarity. A typical

value is within the range of 0.1 to 0.2 (Wang et al., 2018). This is the only parameter that

needs to be specified in the LeWoS algorithm. Its sensitivity analysis is given in section

3.2. dij in Condition 2 refers to the Euclidean distance from a point to a neighboring point.

dij stands for the mean distance to all its neighbors and σdij
is the standard deviation.

Hence, Condition 2 controls local point cloud density connectivity. max(dij) in Condition

3 stands for the farthest neighbor distance (i.e., effective range) of each point. Therefore,

Condition 3 controls global point cloud density connectivity by removing very long edges.

FIGURE 3: Example of graph construction. A node (black dot) is firstly connected to its
10 neighbors (left). The pruned graph is shown on the right. The connected components
represent individual clusters.

The final pruned graph is a purposeful presentation in which only spatially adjacent

points with similar features are connected (Figure 3). Then, segmentation of graph nodes

(i.e., points) can be achieved by finding the connected components (Klasing et al., 2008).

We apply this segmentation method recursively on each cluster resulted from previous

segmentation. Point features and neighbors are updated after each iteration, so that leaf

and wood points eventually become more distinguishable. The iteration stops when no
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clusters can be further segmented. In practice, we limit the maximum iteration to 10, as

the change becomes very minimal after then.

TheNz feature used in this study is simple and effective. However, as shown in Figure

4b, it may result in coplanar clusters (Wang et al., 2018), in which several branches have

similar verticality values. To improve the linearity feature saliency of branches, we further

split branch clusters into individual branches using the method proposed in Raumonen

et al. (2013) and Raumonen and Tarvainen (2018). This method uses small cover sets to

grow surface and locate bifurcations. Consequently, the resulted clusters contain either

leaf points or single branch points. We denote such a cluster as a segment (Figure 4c).

FIGURE 4: Example of segmentation steps. a) Original point cloud. b) Resulted seg-
ments from recursive graph segmentation. Each segment is randomly colored. c) Final
segmentation result after branch splitting.

2.2.2 Class probability estimation

The woody components can be identified by examining the Linearity and Size of each

segment generated from previous recursive segmentation step (Wang et al., 2018). Re-

spectively, Size of a segment refers to the number of points in it, and Linearity is defined

as (λ1 − λ2)/λ1. λ1, λ2, and λ3 are three eigenvalues from the covariance matrix (Equa-

tion 1), sorted in descending order. For segment level calculation, the covariance matrix

is formed by all points in a segment, other than neighboring points.

Directly applying the above mentioned method implies two thresholds on the Linear-

ity and Size. However, both thresholds need either user judgment or some test fine-tuning,

which limits the algorithm’s universality. Here, instead of directly extracting wood points

by assigning hard thresholds (i.e., hard labeling), we infer a class probability by testing a

range of possible threshold values, then count the frequency of a point being assigned as

leaf or wood class (e.g., Raumonen and Tarvainen, 2018).

Specifically, the goal is to achieve a soft labeling set S as:
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S =

{

pr ∈ [0, 1]C |
∑

k∈C

prk = 1

}

, (3)

so that the probability of each point pr ∈ S being assigned to leaf and wood class C ∈

[leaf, wood] is determined. For a comprehensive examination, the threshold for Linearity

was tested for values ranging from 0.70 to 0.94 with an increment of 0.02, and for values

from 10 to 50 with an increment of 2 for the Size threshold. These ranges were chosen

empirically to cover a set of plausible values. In total, 273 combinations were run. Each

scenario determines the class a point belongs to, and so the frequency of a point being leaf

or wood class. The relative frequency against all scenarios then provides the soft labeling

set S (Figure 5a).

FIGURE 5: Example of class regularization. a) Point-wise wood class probability. Note
that prleaf = 1 − prwood. b) Leaf-wood classification without regularization. c) Leaf-
wood classification with regularization. Note that some misclassified stem and leaf points
were corrected by regularization.

2.2.3 Class regularization

The soft labeling set S indicates how confident we can assign a given class to a point. A

direct classification would be labeling a point with the class that has largest probability.

However, some branches may not be detected from previous steps for reasons such as

heavy data occlusion and severe branch angulation. Consequently, their probabilities of

being wood class are insignificant. The corresponding classification result then can be

heterogeneous (Figure 5b), whereas a spatially smooth outcome is preferred.

A technique for solving such a problem is regularization (i.e., label smoothing) (Lan-

drieu et al., 2017). The aim of class label regularization is to find an improved labeling set

S
′

with increased spatial smoothness while remaining as close as possible to the original
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labeling set S. Expressly,

S
′

= argmin
0∈ΩV

{Φ(S, S
′

) + γΨ(S
′

)}, (4)

where Φ is the fidelity term that invokes the influence of the initial labeling set S. Ψ is the

regularizer that encourages solutions that are spatially smooth. γ > 0 is the regularization

strength, and Ω stands for the search space.

We solve this minimization problem using the same strategy applied in Li et al. (2019),

which was originally proposed in Landrieu et al. (2017). The fidelity term Φ is a linear

one

φ linear (S, S
′

)
.
= −〈S, S

′

〉 = −
∑

k∈C

SkS
′

k. (5)

The regularizer Ψ is structured by the adjacency graph G = (V,E). The graph structured

regularizer favors the fact that most adjacent nodes in the graph share the same label. Note

that this graph slightly differs from the final graph in section 2.2.1. Here, it is not pruned

by the feature similarity Condition 1 in Equation 2. The regularizer is factorized over the

edges of G (Geman and Reynolds, 1992) as:

Ψ(pr)
.
=

∑

(i,j)∈E

ψ (pri − prj) , (6)

where ψ (pri − prj) is the Potts model that returns 0 if two nodes share the same initial

label, and 1 otherwise.

Finally, the objective function Equation 4 is solved by the α-expansion algorithm

(Boykov and Kolmogorov, 2004), which solves the multi-label energy-minimization prob-

lem iteratively. During each expansion operation, the problem is converted to a binary

graph-cut problem that can be solved by the min-cut algorithm (Ding et al., 2001). The

final classification resting on the improved labeling set S
′

is a spatially smoothed version

where some misclassified points are corrected (Figure 5c).

2.3 Tree QSM

We respectively reconstruct the woody components of trees generated from manual de-

lineation (hereafter QSM_TLS_Manual) and automatic detection by LeWoS (hereafter

QSM_TLS_Auto), using the QSM method developed in Raumonen et al. (2013) (Figure

1). This method was successfully used in previous studies for generating 3D tree models

and estimating AGBs (Calders et al., 2015; Raumonen et al., 2015; Gonzalez de Tanago
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et al., 2018). The method firstly slices wood points of a single tree into separate segments

to deduce the tree topological branching architecture. Then, these segments are fitted by

a series of cylinders. The resulting cylinder model (i.e., QSM) is a collection of cylinders

embedded with branching topological clue, from which the volume and length of different

branch orders can be calculated.

We used the latest development (v. 2.3) of the QSM algorithm retrieved from

Åkerblom (2017). The method is sensitive to a particular input parameter PatchDiam

(i.e., surface patches diameter) that needs to be optimized on specific data (Gonzalez de

Tanago et al., 2018; Lau et al., 2018). Moreover, 10 QSM models for each tree are

produced due to the randomness involved in the processing steps of this method (Calders

et al., 2015). We then report the mean and standard deviation from these 10 models. A

detailed explanation of the QSM method and its parameters can be found in Raumonen

et al. (2013), Raumonen et al. (2015), Calders et al. (2015), Newnham et al. (2015), and

Lau et al. (2018).

2.4 Assessment

We evaluate the effectiveness of LeWoS on 3D tree models (or scenes) from two parts.

First, point-wise classification accuracy was reported. This metric measures the capa-

bility of the LeWoS method for differentiating leaf and wood components in a tree point

cloud. The overall accuracy is evaluated as:

Accuracy =
TP + TN

TP + TN+ FP + FN
, (7)

where TP represents true positive (i.e., wood), and TN the true negative (i.e., leaf). FP

and FN stand for false positive (type I error) and false negative (type II error), respec-

tively. In addition, we reported results from the model sensitivity and specificity. Sensi-

tivity measures the true positive rate which is the ratio of correctly classified wood points.

Specificity gives the true negative rate, thus it measures the correct rate for leaf points,

given by:

Sensitivity =
TP

TP + FN
, (8)

Specificity =
TN

TN+ FP
. (9)

Second, we cross-compared the tree volume and branch length estimations between

QSM_TLS_Manual and QSM_TLS_Auto. Branches with diameter less than 5 cm were
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excluded from the analysis to be consistent with the study of Momo Takoudjou et al.

(2018). For individual comparisons, the bias (i.e., unsigned residual), and its relative

value were reported. The mean absolute deviation (MAD) and mean absolute percentage

deviation (MAPD) were calculated for group comparisons as:

Bias = |QSM_TLS_Manual−QSM_TLS_Auto| , (10)

Bias(%) = 100%×

∣

∣

∣

∣

QSM_TLS_Manual−QSM_TLS_Auto

QSM_TLS_Manual

∣

∣

∣

∣

, (11)

MAD =
1

n

n
∑

t=1

|QSM_TLS_Manualt −QSM_TLS_Autot| , (12)

MAPD =
100%

n

n
∑

t=1

∣

∣

∣

∣

QSM_TLS_Manualt −QSM_TLS_Autot
QSM_TLS_Manualt

∣

∣

∣

∣

. (13)

3 RESULTS

The results of this study are divided into four parts: 1) Sensitivity analysis of the Patch-

Diam parameter in QSM; 2) Sensitivity analysis of the Nz_thres parameter in LeWoS;

3) Evaluation of point-wise classification of all trees; 4) Assessment of the impacts of au-

tomated leaf-wood separation on QSM volume and length estimations at both the whole

single tree and branch levels.

3.1 Sensitivity analysis of QSM parameter

We used 10 randomly selected trees to infer an optimal value of PatchDiam. QSMs were

constructed over manually delineated wood points of these selected trees. The derived

QSM above ground volumes were compared to the destructive reference measurements.

A minimum error was reached for PatchDiam of 3 cm (Table 1). This is in agreement

with the reported results in previous studies (Calders et al., 2015; Newnham et al., 2015;

Gonzalez de Tanago et al., 2018). Therefore, 3 cm PatchDiam was selected for QSM con-

structions over both manually delineated and automatically detected woody components

of all trees.

3.2 Sensitivity analysis of LeWoS parameter

We conducted a two-fold sensitivity analysis of theNz_thres parameter in LeWoS. Accu-

racy on both point-wise classification and QSM volume estimation were examined (Table
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TABLE 1
QSM PatchDiam sensitivity analysis on volume estimation.

PatchDiam MAD (m3) MAPD (%)
0.01 1.22 13.98
0.02 0.90 11.65
0.03 0.67 9.96
0.04 0.76 11.22
0.05 0.75 11.75
0.06 0.88 12.71

PatchDiam, surface patches diameter; QSM, quanti-
tative structure models; MAD, mean absolute error;
MAPD, mean absolute percentage error.

2). For point-wise classification, aNz_thres of 0.125 and 0.15 gave the comparable high-

est overall accuracy, while 0.1 showed marginally worse results. However, QSM volume

estimation indicated a clear optimal performance with Nz_thres being 0.15. Therefore,

0.15 Nz_thres was selected for all trees in this study.

TABLE 2
Nz_thres sensitivity analysis.

Nz_thres Point-wise classification accuracy QSM volume MAD (m3)
0.075 0.877 2.56
0.1 0.906 1.85

0.125 0.915 1.12
0.15 0.913 0.80

0.175 0.899 1.14
0.2 0.887 0.97

0.215 0.878 1.29

3.3 Point-wise classification

FIGURE 6: Raincloud plot (Allen et al., 2019) showing the distribution of classification
accuracies of all trees. Black circles indicate mean values.

For 61 large tropical trees, the LeWoS method showed an overall classification accu-
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FIGURE 7: Example of point-wise classification result on a large tree. a) Overall clas-
sification result. b) Extracted wood points. c) Magnified view corresponds to the black
rectangle area in a).

racy of 0.91 ± 0.03, with a sensitivity of 0.92 ± 0.04 and a specificity of 0.89 ± 0.06.

The rather balanced sensitivity and specificity indicated that our method had equal effec-

tiveness on detecting either leaf or wood points. Most trees had an accuracy between 0.90

and 0.95 (Figure 6), while the most frequent accuracy was approximately 0.94. A visual

example of the outcome of this classification is reported in Figure 7.

Branch level classification assessment is impractical because of lacking leaf references

at the individual branch level. Instead, we evaluated the integrity (i.e., percentage of num-

ber of detected points over reference points) of wood points detection at different branch

orders (Table 3). Overall, the integrity decreased with increasing branch orders. For tree

stems, on average 92.8% points were successfully detected. Approximately 75% points

of the first order branches were kept. However, the integrity decreased rather quickly for

children branches. For example, only slightly more than half points were detected for the

4th order branches, whereas undetected points were incorrectly classified as leaves.

TABLE 3
Results on different branch orders.

Branch
order

Point-wise
classification

Volume Length

Branch
order

Ratio
(%)

Integrity
(%)

Ratio
(%)

MAD
(m3)

MAPD
(%)

Ratio
(%)

MAD
(m)

MAPD
(%)

0 71.65 92.82 85.88 0.65 8.31 40.56 2.70 7.51
1 12.23 75.17 9.82 0.26 55.94 28.72 8.77 36.63
2 9.39 67.00 3.57 0.17 210.79 20.59 15.07 151.77
3 4.72 60.69 1.40 0.10 124.23 12.20 15.00 107.20
4 1.96 52.54 0.41 0.06 152.39 4.77 12.81 140.78
5 0.67 47.89 0.12 0.02 224.93 1.56 6.88 236.24

Order 0 refers to tree stems. Ratio, proprtion to the
whole tree. i.e., the sum over the orders ≃ 100.
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3.4 QSM modelling

To assess the accuracy on QSM modelling, we cross-compared the volume and length

estimates between QSM_TLS_Manual and QSM_TLS_Auto. The assessment was done

at the entire tree level and at the level of individual branch orders. For an independent

evaluation of the effectiveness of coupling automatic wood extraction with QSM, we also

inspected the accuracies of volume estimations by QSM_TLS_Auto, against the reference

volumes from destructive measurements.

3.4.1 Tree level

Compared to destructive volume measurements, the QSM_TLS_Auto showed a MAD of

4.35 m3 with a MAPD of 20.2 ± 19.1% (Figure 8a). The R2 of the linear regression

line (Figure 8a black line) was 0.91. The slope was 0.55, which indicates that the QSMs

significantly underestimated the tree volumes, especially for very large trees due to strong

occlusion levels. As a benchmark, the QSM_TLS_Manual performed similarly, showing

a MAD of 3.86 m3 with a MAPD of 16.7 ± 17.2% (Figure 8b). The slope was 0.57 with

a R2 of 0.91. Both tests showed optimal results for those trees with volumes less than 20

m3 (DBH < ∼90 cm), but had large biases for larger trees.

For cross-comparisons, QSM_TLS_Manual and QSM_TLS_Auto conferred high

agreements for both the total volume (Figure 8c) and the branch length estimations

(Figure 8d). The agreement on volume estimation showed a R2 of 0.99 and a slope of

0.95 for the linear regression line (Figure 8c orange line), with a MAD of 0.79 m3, leading

to a MAPD of 8.9 ± 11.1%. The R2 of the linear regression for branch length estimations

(Figure 8d orange line) was 0.89 with a line slope of 0.99. The MAD was 39.64 m with a

MAPD of 20.9 ± 14.3%. The fitted linear regression lines (Figure 8c and d) both showed

modest underestimates. The analysis of the residuals did not reveal any systematic biases

(Figure 9). However, the disparities and uncertainties were more preponderant for larger

trees (volume > 20 m3). Overall, the QSM_TLS_Auto underestimated the volume and

branch length by 5.0% and 19.2%, respectively.

3.4.2 Branch level

We further cross-compared the volume and branch length estimates by QSM_TLS_Manual

and QSM_TLS_Auto on different branch orders. The MAD was smallest for tree stems,

with a volume MAPD of 8.3% and a length MAPD of 7.5%, respectively (Table 3). The
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FIGURE 8: Comparisons of total volume and branch length estimations.
a) QSM_TLS_Auto volumes against destructive volume measurements. b)
QSM_TLS_Manual volumes against destructive measurements. c) QSM_TLS_Manual
volumes against QSM_TLS_Auto volumes. d) QSM_TLS_Manual branch lengths
against QSM_TLS_Auto branch lengths.

biases increased drastically with increases in branch order. For example, the MAPDs ex-

ceeded 100% already since the second branch order, indicating an inconsistent topology

between QSM_TLS_Manual and QSM_TLS_Auto.

This inconsistency was not observed when analyzing the disparities on different

branch diameter groups extracted from the individual reconstructed cylinders in QSMs.

In Table 4, cylinders in the reconstructed QSMs of all 61 trees were grouped into

seven diameter classes. The volume and branch length biases were rather consistent,

but largest cylinder segments showed the smallest relative biases. This indicates that

QSM_TLS_Manual and QSM_TLS_Auto were compatible with each other on the
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FIGURE 9: Analysis of a) volume and b) branch length estimation residuals.

reconstructed tree geometry, but had inconsistent tree topology.

TABLE 4
Volume and length bias on different diameter groups.

Diameter group
(cm)

Number of
cylinder

Volume bias (%) Length bias (%)

5 - 15 1167 15.57 3.25
15 - 25 647 37.50 27.77
25 - 35 141 29.43 23.82
35 - 45 96 22.66 20.99
45 - 55 29 37.16 6.74
55 - 65 5 13.94 14.34

> 65 6 11.50 2.70
Include tree stems.

3.5 Algorithm implementation and efficiency

The LeWoS algorithm developed here was implemented as an open source Matlab pack-

age with an end-user interface. We also provided a standalone version that does not re-

quire a Matlab to be installed on the user’s machine. The tool is easy to use. Tests showed

that it can process ∼1 million points within 90 seconds on a laptop, and has a linear re-

lationship with the total number of points (Figure 10). The laptop we used to run the

algorithm has the following specifications: Windows 10, Intel® CoreTM i7-8850H and 32

GB RAM.
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FIGURE 10: The relationship between the runtime of LeWoS with point cloud size.

4 DISCUSSION

We proposed a new, highly versatile and robust tool for leaf-wood separation from TLS

point clouds. We evaluated the effectiveness of the LeWoS method on two aspects: (a)

assessing the point-wise separation accuracy using an extensive data set with manual leaf-

wood labelling and, (b) evaluating the impacts of automated leaf-wood separation on

tree QSM modelling. The examination of (b) put a new perspective on completing an

automated processing chain for 3D tree modelling using TLS, especially for large data

sets.

4.1 Accurate point-wise classification

We tested the LeWoS algorithm on 61 large leaf-on tropical trees. These trees were tall,

and had very large crown sizes and complexities. These factors led to an extreme chal-

lenging condition for acquiring high quality TLS data, especially due to heavy occlusions.

Jointly, this further introduced large uncertainties in the 3D tree reconstructions (Gonza-

lez de Tanago et al., 2018).

The method proposed here achieved similar separation results compared to previous

studies on less challenging data sets. For example, Ma et al. (2015) used a supervised

gaussian mixture model (GMM) to separate photosynthetic and non-photosynthetic com-

ponents from TLS data. Their overall accuracy for single tree data was 82.6%, and further

improved to 99.6% after applying a series of post filters. Yun et al. (2016) used a support

vector machine (SVM) model for four single trees, and the achieved overall accuracy was

from 89.1% to 93.5%. Zhu et al. (2018) deployed a random forest classifier using both

radiometric and geometric features. Their testes on 10 plots showed an overall accuracy

of 0.84. Zhou et al. (2019) similarly used the random forest classifier to separate leaf and

wood points of nine trees, with an accuracy of 0.93. Wang et al. (2018) developed an
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unsupervised segmentation method and obtained 0.88 average accuracy on several plot-

level data sets. Vicari et al. (2019a) achieved average 0.89 accuracy for 10 temperate and

tropical trees. Both Wang et al. (2018) and Vicari et al. (2019a) share the same advantage

with our method of being fully automatic.

The LeWoS method inventively converted the direct wood segmentation to a class

probability estimation. This further enabled us to deploy a class regularization technique.

Results showed that this regularization significantly improved separation accuracies (Fig-

ure 6). Different from previous studies (Vicari et al., 2019a; Ma et al., 2015) who used

several post-processing filters to improve the accuracy, our class regularization technique

is an embedded global optimization routine that does not need the design of local filters

for specific data sets.

Visual inspection revealed that the separation difficulty occurred mainly inside tree

crowns, whereas tree stems were generally well detected (e.g., Figure 7 and Table 3).

Tree crowns often have poor data qualities with significant level of occlusions. Some

branches were fragmented in point clouds (Figure 7c), which prevented them from being

identified, as our method detects linear structures. As suggested by Vicari et al. (2019a),

data quality poses one of the main prerequisites for successful leaf-wood separation. This

challenge is even more severe for tropical forests (Gonzalez de Tanago et al., 2018). Data

quality depends on multiple factors such as laser scanners characteristics, scanning setups,

co-registration accuracy, and occlusion levels. To overcome these challenges, Vicari et al.

(2019a) suggested using high TLS resolution levels and optimal field scanning protocols,

and co-registration methodologies such as used by Wilkes et al. (2017). Another strategy

is to apply on-the-fly adjustment (Paynter et al., 2018) for TLS data quality control.

One tree in this study had much worse classification accuracy (i.e., 0.77) than oth-

ers (Figure 6) and was further diagnosed (Figure 11). The tree species was Pycnanthus

angolensis, and was one of the smallest trees of this study displaying a DBH of 14 cm.

The poor classification accuracy comes from the fact that many leaf points were identi-

fied as wood. The LeWoS method detected linear structures by assuming that tree woody

components appear to be linear across various scales, while leaves are generally flat or

scattered (Wang et al., 2018). However, under some circumstances, single leaves or a

cluster of leaves may appear to be linear as well. Consequently, these leaves were iden-

tified as wood. A potential solution is to lower the Nz_thres threshold to avoid false

segments. For example, by lowering the threshold to 0.05, the Pycnanthus angolensis
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tree was successfully processed (Figure 11).

The intention on detecting tree linear structures may impede the applicability of the

proposed method for coniferous trees, where individual needle appears to be linear as

well. However, in practice, individual needles are improbably resolved in any tree or plot

level LiDAR point clouds, due to its small size and the dense clumped foliage of conifer

trees (Du et al., 2019). Usually, the recognition of needles and branches in the point cloud

is even visually very difficult (Pfeifer et al., 2004). Therefore, less attention was paid on

needle level studies using TLS. Nevertheless, the method in this study is able to detect

the stems and some large branches of conifer trees, if they are resolved in the TLS point

clouds (see Supporting Information).

FIGURE 11: Left to right: manual reference, classification result with Nz_thres being
0.15 (i.e., the value used in this study), 0.10, and 0.05.

4.2 Impacts of leaf-wood separation on tree 3D modelling

Previous studies on leaf-wood separation evaluated their methodologies for point-wise

classification accuracy only (e.g., Ma et al., 2015; Wang et al., 2018; Vicari et al., 2019a).

The impacts of leaf-wood separation on 3D tree modelling remained largely unexplored,

except Vicari (2019).

QSM is by far the most popular method for reconstructing the 3D woody structure

of trees. Two recent studies applied QSM for estimating the volume and AGB of large

tropical trees (Momo Takoudjou et al., 2018; Gonzalez de Tanago et al., 2018). Although

different QSM algorithms were used, both studies showed large biases for larger trees

(defined as DBH > 90 cm in Momo Takoudjou et al. (2018) and DBH > 70 cm in Gon-

zalez de Tanago et al. (2018)). Manual correction was necessary in Momo Takoudjou
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et al. (2018) to improve the quality of QSMs. Our tests showed similar results, even when

using manually delineated wood points (Figure 8b). A potential reason is attributed to the

buttress in large trees (Markku et al., 2015; Gonzalez de Tanago et al., 2018), whereas

only cylinder fitting was used in this study. Disney et al. (2018) compared the volumes

of buttressed trunks estimated using a closed triangulation surface model with those es-

timated from cylinder fitting, and found that the volume differences could be as high as

45%. We note that it is possible to model buttress with such mesh models in the QSM

tool by Raumonen et al. (2013).

Nevertheless, this study demonstrated that QSMs on top of automatically detected

wood points had similar total volume (Figure 8c) and branch length (Figure 8d) esti-

mates, when compared with QSMs based on manually delineated wood points. The vol-

ume MAPD was less than 9%, and length MAPD was larger at ∼21%. Volumes, however,

mostly rest in tree stems for large tropical trees. For example, stems represented 85.9%

(Table 3) volumes in this study, but only 40.6% lengths. Stems, together with the first

and second order branches, shared more than 99% volumes in this study. This indicates

that the effectiveness of total volume estimation depends mainly on how well the domi-

nant coarse branches are detected and modeled. LeWoS showed high detection rates for

coarse branches, thus is capable of producing reliable volume estimates, when coupled

with QSM methods. Furthermore, the relative biases between QSM on automatically de-

tected wood points and QSM on manual wood points, are with the same magnitude of

the uncertainty introduced by QSM itself. For example, the reported mean of unsigned

relative error (i.e. MAPD) for volume estimation in Momo Takoudjou et al. (2018) was

12% on the same data set. The relative error of branch length estimation from QSM was

reported as 20% (Lau et al., 2018). We therefore consider that our method can be posi-

tively combined with QSM methods for an automatic quantification of tree total volume,

AGB (with wood density), and branch lengths.

On the other hand, this study also suggested that the tree topology did not match be-

tween QSMs on automatically detected wood points and QSMs on manual wood points.

The inconsistency could be originated from incorrect leaf-wood separation inside tree

crowns, but also from the randomness involved in QSM reconstruction (Raumonen et al.,

2013). For example, the analysis on the volume and length bias on different diameter

groups (Table 4) did not reveal the same disparity magnitude as on branch orders (Ta-

ble 3), indicating that most branches were successfully reconstructed but were assigned
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to different orders. A recent study by Lau et al. (2018) examined detailed tropical tree

architecture based on QSM. Manual branch-by-branch pairing had to be performed, im-

plying that the topology regenerated automatically by QSM is unreliable, and involves a

certain degree of randomness. They also revealed that QSM reconstructed less than 56%

of thin branches (diameter between 10 and 30 cm). In fact, accurate reconstruction of

thin branches is a known problem of QSM itself (Kaasalainen et al., 2014; Hackenberg

et al., 2015b). Moreover, branching order is a very sensitive parameter, and can be easily

influenced if a point cloud is not properly filtered (Lau et al., 2018). We therefore argue

that the inconsistent topology between QSMs on automatically detected wood points and

QSMs on manual wood points does not imply that automated leaf-wood separation is not

able to correctly reconstruct the tree architecture. A separate study similar to Lau et al.

(2018) should be carried out to further clarify it.

4.3 LeWoS

The presented leaf-wood separation algorithm, LeWoS, is fully automatic and highly ver-

satile. Previous unsupervised methods require the optimization of a set of parameters

(Wang et al., 2018; Vicari et al., 2019a). The fact that the proposed LeWoS method only

requires one parameter makes it very generalizable. For leaf-wood separation, we also

showed that this only parameter is rather insensitive (Table 2 and Supporting Informa-

tion). However, further tests should also give insight into how this parameter is related to

different data sources and tree species.

The hardcore of our method is the robust recursive graph-based segmentation. The

local density connectivity control is totally data-driven, and can be applied to any point

clouds. The feature connectivity control can be further enriched by replacing the vertical-

ity with more sophisticated features, or gathering more features. For example, combining

radiometric features from new hyper-spectral LiDAR sensor systems (Chen et al., 2019)

may help to solve the problem reported in Figure 11.

Although we tested the LeWoS method on individual tropical trees in this study (cur-

rently QSM only works for single trees), this leaf-wood separation method is fully ap-

plicable to plot-wide data and different forest types. Backroom tests on other tropical,

temperate, and boreal forests have shown equal effectiveness of our method for extracting

tree woody components (see Supporting Information). In addition, the LeWoS method

has a great potential in facilitating the plot-wide single tree segmentation (see Supporting
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Information).

LeWoS was developed and distributed as an open-source Matlab tool with an end-user

interface (see Supporting Information). We also provide a standalone executable. The tool

is easy to install and work with. We hereon provide the community an alternative tool and

hope it can facilitate the usage of TLS for forest ecological applications.

5 CONCLUSIONS

In this study, we presented a fully automatic and highly versatile approach named LeWoS

to separate tree leaf-wood components from LiDAR point clouds. This method is data-

driven and dispenses with manual delineation of training data. It is also free from re-

stricted assumptions of tree architecture and data sources. Furthermore, we demonstrated

that our method can be coupled with QSM methods to frame an automatic processing

chain for tree structural quantification using TLS.

We tested this method on 61 large tropical trees. The achieved point-wise separation

accuracies were similar to other reported results in the literature, with a mean value of

0.91 ± 0.03. For the first time, we also demonstrated the impacts of automated leaf-wood

separation on 3D tree QSM modelling. Results showed that QSM tree volume and branch

length estimations using automatically detected wood points were similar to those based

on manual delineation of point clouds. Our work highlights the potential of combining

automated leaf-wood separation with QSM reconstructions for accurate and automatic

tree volume estimation.

The LeWoS method provides a significant advance in TLS ecology studies. The im-

plemented algorithm is multi-threaded, and can process large point clouds in a rapid and

consistent way. We hope this open-source tool can be used in the future by the TLS

ecology community to automate certain processing chains.
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