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ABSTRACT: Carbon-based nanomaterials are a promising platform for
diverse technologies, but their rational design requires a more detailed
chemical control over their structure and properties than is currently available.
A long-standing challenge for the field has been in the interpretation and use
of experimental X-ray spectra, especially for the amorphous and disordered
forms of carbon. Here, we outline a unified approach to simultaneously and
quantitatively analyze experimental X-ray absorption spectroscopy (XAS) and
X-ray photoelectron spectroscopy (XPS) spectra of carbonaceous materials.
We employ unsupervised machine learning to identify the most representative
chemical environments and deconvolute experimental data according to these
spectral contributions. To fit experimental spectra we rely on ab initio references and use all the information available: to fit
experimental XAS spectra, the whole XAS fingerprint (reference) spectra of certain sites are taken into account, rather than just
peak positions, as is currently the standard procedure. We argue that, even for predominantly pure-carbon materials, carbon K-
edge and oxygen K-edge spectra should not be interpreted separately, since the presence of even small amounts of functional
groups at the surface manifests itself on the X-ray spectroscopic signatures of both elements in an interlinked manner. Finally,
we introduce the idea of carrying out simultaneous fits of XAS and XPS spectra, to reduce the number of degrees of freedom
and arbitrariness of the fits. This work opens up a new direction, tightly integrating experiment and simulation, for
understanding and ultimately controlling the functionalization of carbon nanomaterials at the atomic level.

I. INTRODUCTION

Careful material characterization is needed to understand the
connection between the structure and the properties of
materials. This understanding is vital in development of several
promising applications, such as mechanical and biomedical
coatings,1,2 and, for instance, in electrochemical detection of
biomolecules.3 X-ray spectroscopy offers powerful means for
detailed characterization but, especially with disordered
materials, interpretation of the experimental data is heavily
convoluted. We have previously introduced the concept of
computer-simulated fingerprint spectra and showed how they
can be used in deconvolution and qualitative understanding of
the experimental X-ray absorption spectroscopy (XAS) and X-
ray photoelectron spectroscopy (XPS) spectra of carbonaceous
materials.4

It has been shown in earlier work that computational
references can indeed be promising tools in interpretation of
X-ray spectroscopy. In the case of XPS, several studies have
presented and utilized computational references in the
interpretation of experimental work.5−14 Computational
references have also taken a foothold in the field of XAS
characterization.15−21 For instance, the structure of water in
different forms has been successfully studied with the aid of

density functional theory (DFT) calculations combined with
experimental work.16,20−22 Computational references are also
applied with well-defined crystal structures.18,19 Some of these
studies approach also quantitative analysis of XAS by weighting
linear combinations of the computed spectra16,20,21 or by
utilizing machine learning (ML) based methods.18,19 Efforts to
combine different analytical methods in parallel have also been
made.20−22

In this work we apply a new approach with a similar
philosophy in the characterization of carbonaceous materials.
Carbon-based materials work as an ideal test case for our
method since we can make a comparison between ordered
susbstances, i.e., graphene or diamond, and completely
disordered amorphous carbon (a-C). We solve the problem,
i.e., systematic characterization of the structure of amorphous
carbon and its functionalization, by utilizing ML based
clustering4,23 and a large data set of structures.24,25 Here, the
simulation outcomes are compared with experimental results
to provide a more in-depth knowledge about the contribution
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of the different functional groups to the X-ray spectra of these
materials. Our goal is to provide a quantitative estimate of the
presence of functional groups on a-C surfaces based on fitting
an experimental spectrum to a weighted combination of
computational fingerprint spectra. In other words, when the
fitting is carried out, we utilize the whole shape of the spectrum
instead of certain peak positions as is traditionally done.26 In
addition, we explore the possibility of parallel fitting of XAS
and XPS and discuss the advantages and disadvantages of the
approach.

II. SIMULATION DETAILS
II.A. Functionalized Carbonaceous Surfaces. As

explained in more detail in Part I of this study,4 we use
three different types of a-C models: (1) bulk samples
constructed by geometry optimization;3,27 (2) reconstructed
surface samples that are cleaved from the bulk sample; and, in
order to achieve a large enough sampling, (3) a library of a-C
surfaces created by the melt-quench technique with a novel
machine-learning (ML)-based interatomic potential.25. Ideal
graphene, defective graphene, and reconstructed diamond
surfaces are also used. In addition, all surfaces were
functionalized with hydrogen (C−H), oxygen (CO/C−
O−C), hydroxyl (C−OH), and carboxylic acid (C−COOH)
groups. Subsequently, we obtained the characteristic finger-
print XAS and XPS signals of pure carbon, carbon bonded to
one of these groups, and corresponding oxygen K-edge spectra.
In previous work,23 the atomic motifs in pure a-C samples
were clustered using a structural distance metric, employing
the so-called “smooth overlap of atomic positions” (SOAP)
kernel.4,23,28,29

In the present work, SOAP-based clustering is employed
again, but this time we use multispecies descriptors
(distinguishing between different atomic species, here, C, H,
and O) to separate between different functionalities.
Furthermore, we augment the structural metric, on which
the clustering is based, with electronic structure information in
order to reduce complexity, to identify overlapping features,
and to aid in reconstruction and fitting of the experimental
spectra. This will be discussed thoroughly in the next section.
II.B. Reclassifying Atomic Motifs for Quantitative

Spectral Analysis. The data clustering technique used in our
previous work was based solely on classification derived from
structural features by utilizing a SOAP-based scheme.23

However, we note that this may not be an optimal
classification scheme in terms of grouping together sites with
shared spectroscopic signatures. This is unsurprising since the
information regarding XAS or XPS is not explicitly taken into
account when classifying the atomic sites. Here we explore the
possibility to improve this classification scheme for the specific
task of fitting experimental spectra by incorporating some of
this information, namely, site-resolved “delta-Kohn−Sham”
(ΔKS) values, which can be effectively used to computation-
ally estimate core−electron binding energies.7,10,30 For fitting
purposes, we need to use an improved clustering scheme that
satisfies three conditions: (1) it should recognize the structure/
chemistry of the site so that also hydrogen and oxygen are
taken into account (i.e., we need to use a multispecies SOAP);
(2) individual fingerprint spectra within the same cluster
should have similar shapes; and (3) ΔKS values of the sites in
the same cluster should be similar. In addition, we need to
consider oxygen K-edge spectra and carbon K-edge spectra
separately.

SOAP descriptors characterize local atomic environments in
a rotationally invariant way.28,29 SOAP is therefore optimally
suited to measure the similarity between two atomic sites. The
atomic density of site i within a cutoff sphere is encoded into a
SOAP vector qi. The cutoff radius determines how far the
SOAP algorithm can “see” around the site. A smearing
parameter, σatom, defines how sharply the atomic densities of
the neighboring atoms are resolved. Once the SOAP vectors
for each site have been computed, the measure of similarity is
given by the SOAP kernel, which is the dot product of two
SOAP vectors, typically raised to a small positive number:

= · ζk i j q q( , ) ( )i j
SOAP

(1)

Typical values for ζ are small integers, e.g., ζ = 4.24,31

Increasing ζ makes the kernel sharper (it emphasizes the
differences between sites). The kernel is bound between 0
(totally dissimilar sites) and 1 (equivalent sites). From the
kernel, a measure of distance can be defined as follows:

= −D i j k i j( , ) 1 ( , )SOAP SOAP
(2)

where D(i, j) varies inversely to the kernel, from 1 (totally
dissimilar sites) to 0 (equivalent sites). This distance can be
fed into machine-learning data clustering algorithms. More
details of this approach are given in ref 23. Structural similarity
measures can be complemented by augmenting the SOAP
kernel by adding a Gaussian kernel based on ΔKS values. This
ensures that similar spectra are clustered together. A similar
approach was employed in our previous work to predict
adsorption energies.23 Here, this augmented kernel achieves a
compromise between the characteristics of the spectra and the
chemistry (structure) of the sites: when similar (or over-
lapping) spectra are clustered together we lose information
about the chemistry of the site. For instance, by ignoring
atomic structure, carbon sites that are bonded to hydrogen
would be clustered together with pure carbon sites, since the
respective X-ray spectra cannot be told apart. On the other
hand, without any connection to chemistry, fitting exper-
imental spectra would be unavailing from the point of view of
resolving the material nanostructure. Hence the need to retain
structural information to be able to separate between
functionalities arises. The combined kernel that we use, ktot(i,
j), is a linear combination of SOAP and ΔKS kernels:

= + − Δk i j x xk i j x k i j( , ; ) ( , ) (1 ) ( , )tot SOAP KS
(3)

where the ΔKS kernel is defined as

σ
= −

Δ − ΔΔ

Δ

i

k

jjjjjj
y

{

zzzzzzk i j( , ) exp
( KS KS )

2
i jKS

2

KS
2

(4)

ΔKSi and ΔKSj are the ΔKS values of sites i and j, respectively.
From this kernel, distances are defined as follows:

= −D i j k i j( , ) 1 ( , )tot tot
(5)

All of the kernel hyperparameters, as well as x for the linear
combination of kernels, eq 3, were optimized to achieve the
best possible clustering with respect to the chemistry of the site
and its spectral features. This was controlled by ensuring that
similar spectra are clustered together and that the contents of
the clusters agree with chemical intuition. This distance matrix
is fed into the k-medoids32,33 clustering algorithm, which then
provides the data classification.
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III. EXPERIMENTAL DETAILS
In this work two different experimental a-C/ta-C samples are studied.
Detailed descriptions of the film fabrication processes are given
elsewhere.34,35 Briefly, in the case of sample 1,34 films were deposited
on boron-doped (100) Si wafers (Ultrasil) using closed-field
unbalanced magnetron sputtering in DC mode. The deposition rate
and time were controlled to produce 100 nm thick a-C films. In the
case of sample 2,35 the films were deposited on boron-doped (100) Si
wafers (Siegert). Direct current magnetron sputtering was used to
deposit a 20 nm Ti adhesion layer on the Si wafer, followed by a 7 nm
ta-C top layer.
NEXAFS data from both samples were acquired at a 55° incidence

angle (magic angle) of X-ray incidence using the bending magnet
beamline 8-2 at the Stanford Synchrotron Radiation Lightsource
(SSRL). Beamline 8-2 is equipped with a spherical grating
monochromator, operated using 40 × 40 μm2 slits corresponding to
a resolution of around 0.2 eV. The spot size at the interaction point
was around 1 × 1 mm2, and a flux of 1010 photons/s was used, at
which beam damage is not noticeable even for extended exposure.
The X-ray energies for the carbon 1s and oxygen 1s edges were
scanned from 260 to 350 eV and 520 to 580 eV, respectively. The
data were collected both in total electron yield (TEY) and Auger
electron yield (AEY) modes using the drain current (amplified by a
Keithley picoampmeter) and a cylindrical mirror analyzer (CMA)
operated with a pass energy of 200 eV and set to record the main
Auger line for the various edges, respectively. The incoming flux was
recorded using a nickel grid with a Au sputtered film.

IV. RESULTS AND DISCUSSION

IV.A. Reclassified Atomic Motifs. Because oxygen and
carbon sites differ significantly both in structure and in their
spectroscopic signatures, clustering of carbon and oxygen sites
is done following different recipes. An overview of the process
is depicted in Figure 1. The work flow of the approach follows
this logic: (1) the reference data are collected from DFT
calculations (the structure, ΔKS, and individual XAS spectra);
(2) these data are clustered according to either a multispecies
SOAP kernel (for the oxygen K-edge) or according to a
multispecies SOAP kernel combined with a ΔKS kernel (for
the carbon K-edge); (3) the average, characteristic spectrum
(XPS and XAS) of each cluster is obtained as the “fingerprint”

of the cluster; and (4) finally, the experimental spectrum is
fitted with a weighted linear combination of these spectra.
To understand oxygen K-edge spectra, six clusters are

sufficient to classify the sites and the corresponding fingerprint
spectra (Table 1). Optimal oxygen clustering was achieved

with a multispecies SOAP kernel with a cutoff of 3 Å, σatom =
0.3 Å and ζ = 4, that is, without the need to incorporate the
ΔKS augmentation. Oxygen clustering with respect to K-edge
spectra closely follows the chemistry of the sites. Our clusters
are labeled according to the functional groups to which they
pertain: O(C−O−C) epoxides/ethers, O(C−COOH) hydroxyl group
in carboxylic acid, O(spCO) ketone bonded to a sp site,
O(C−OH) hydroxyl group, O(C−COOH) ketone in carboxylic acid,
and O(sp

2
CO) ketone bonded to a sp2 site. We follow the

convention that the O marked in bold face is the one where
the core hole is placed. To graphically represent the data, we
use multidimensional scaling (MDS), a dimensionality
reduction method to visualize the similarity between individual
data points in a certain data set.29,36 The MDS representation
of oxygen clustering, Figure 2a, shows how functional groups
are clustered together and how similar/dissimilar the sites are
compared to each other.
In the case of carbon the situation is more complicated,

because our carbon samples not only consist of functionalized
sites but also contain pure carbon sites at the surface and in the
bulk. In order to address the structural complexity of a-C we

Figure 1. Workflow of the current approach: (1) we collect data (the structure, ΔKS, and individual XAS spectra) from DFT calculations; (2) the
data are clustered according to a multispecies SOAP kernel and a ΔKS kernel; (3) we then obtain the average spectrum (XPS and XAS) of each
cluster as the fingerprint of the cluster; (4) and finally, the experimental spectrum is fitted with these spectra.

Table 1. Representative Atomic Environments, As Obtained
from Clustering Analysis, in the Simulated a-C Samples with
Oxygen Functionalization, i.e., O K-Edge Clusteringa

cluster group core

O(C−O−C) ether/epoxide C−O−C
O(C−COOH) carboxylic acid C−COOH
O(spCO) ketone (sp site) CO
O(C−OH) hydroxyl group C−OH
O(C−COOH) carboxylic acid C−COOH
O(sp

2
CO) ketone (sp2 site) CO

aSee Figure 2a for visualization.
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have utilized a large sampling of different carbon sites, bulk and
surface. A 512-atom bulk sample was added to the database of
surface samples to reproduce experimental conditions as
realistically as possible, since even in surface-sensitive methods
at least ∼10 Å depth from the sample’s surface is scanned.26

Even at these depths, a-C surface samples already resemble the
bulk.37,38 This means that, in experimental C K-edge data from
a carbon sample, signals coming from the bulk are always
present. By contrast, O K-edge data consist only of signals
coming from functional groups, which are primarily at the
surface, although the presence of some dissolved oxygen has
also been suggested.3 Thus, to obtain meaningful results, the
carbon sampling needs to be significantly larger than for
oxygen, which leads to a larger variety of spectra and ΔKS
values. In addition, ΔKS values are more widely spread and the
values for sites with different chemistries can sometimes
overlap. Also some characteristics of the fingerprint XAS
spectra are similar across atomic motifs, as has been discussed
in the previous section. Because of this, the SOAP kernel alone
was not sufficient to satisfy all three conditions that we
required from a kernel to suit our purposes. Therefore, carbon
sites were clustered with the augmented SOAP/ΔKS kernel
with the following parameters: SOAP cutoff of 2.5 Å, σatom =
0.2 Å, x = 0.55, ζ = 4.5, and σΔKS = 1 eV.
To understand experimental carbon K-edge spectra we

found eight clusters, from which we obtain eight fingerprint
spectra characteristic of the corresponding atomic motifs, to be
sufficient (Table 2). Again, we follow the convention that the
C atom that contains the core hole is marked in boldface.
Carbon is clustered as follows: C(C−COOH) for the second
carbon in carboxylic acid; C(sp

2
C_A) for pure sp2 carbon, the

carbon bonded to hydrogen, and carbon that binds to the
carboxylic acid group; C(spC) for pure sp carbon; C(sp

3
C_A) for

pure sp3 carbon, the carbon bonded to hydrogen, and carbon
that binds to the carboxylic acid group; C(CO/C−OH) for
ketone and the hydroxyl group; C(sp

2
C_B) for pure sp2, the

carbon bonded to hydrogen, and carbon that binds to the
carboxylic acid group; C(sp

3
C_B) for pure sp

3 carbon, the carbon
bonded to hydrogen, and the carbon that binds to the
carboxylic acid group; and C(C−O−C/C−OH) for epoxide, ether,
and the hydroxyl group. This carbon clustering scheme is
depicted in Figure 2b, according to MDS representation. The
MDS scheme reveals that even though it would at first seem
more practical to cluster all sp2 sites or sp3 sites together
forming two clusters, the sites in C(sp

2
C_A) and C(sp

2
C_B), as well

as sites in C(sp
3
C_A) and C(sp

3
C_B), do differ with respect to their

geometry and ΔKS values and thus four clusters in total are
needed to describe the variety of sp2 and sp3 sites. Unlike
oxygen, where clustering leads to island-like graphical
representation on the MDS plot (Figure 2a), for carbon
there is a continuous distribution of sites, corresponding to the
smooth transition between structural motifs observed in a-
C.23,25 The majority of the sites in a certain cluster are as listed

Figure 2. (a) Clustering of oxygen sites. (b) Clustering of carbon sites. The medoids of the clusters are marked with gray symbols. Functional
groups and pure carbon sites are depicted next to their corresponding areas in the MDS scheme.

Table 2. As Table 1 but Now for Carbon Atoms in Different
Environments, i.e., C K-Edge Clusteringa

cluster group core

C(C−COOH) carboxylic acid C−COOH
C(sp

2
C_A) plain sp2, hydrogen, carboxylic

acid
C (sp2), C−H,
C−COOH

C(spC) plain sp (very reactive) C (sp)
C(sp

3
C_A) plain sp3, hydrogen, carboxylic

acid
C (sp3), C−H,
C−COOH

C(CO/C−OH) ketone, hydroxyl CO, C−OH
C(sp

2
C_B) plain sp2, hydrogen, carboxylic

acid
C (sp2), C−H,
C−COOH

C(sp
3
C_B) plain sp3, hydrogen, carboxylic

acid
C (sp3), C−H,
C−COOH

C(C−O−C/C−OH) ether/epoxide, hydroxyl group C−O−C, C−OH
aSee Figure 2b for visualization. Note how plain or differently
functionalized carbon sites are clustered together because of
overlapping ΔKS values.
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above, but there are some exceptions, for instance, some sp
sites can be clustered together with sp2 sites because of
overlapping ΔKS values. We must point out that this is only
one among many possible ways of how to cluster the carbon
sites. Among several clustering schemes that we tested, this was
found to be the best solution in terms of satisfying the three
conditions mentioned before.
In the following we discuss how these classification schemes

for C and O sites allow us to construct motif-resolved
fingerprint spectra and use these spectra to fit experimental
spectra.
IV.B. Fingerprint Spectra of the Atomic Motifs. Each of

the motifs identified in the previous section has its own
fingerprint spectrum associated with it. As discussed before,
representative ΔKS values could not be obtained if the
clustering relied only on the geometrical features of the C sites.
On the other hand, if clustering relied only on a ΔKS kernel,
because of overlapping values, we would lose all the
connection to the chemistry of the site. To further complicate
things, the contents of clusters C(sp

3
C_A) and C(sp

3
C_B) seem to

be the same, but the sites are separated into two different
clusters because they have different ΔKS distributions. If we
had clustered the spectra only according to chemical intuition
(structure), this would have resulted in too many spectra for
fitting to be practical, because some of them would overlap.
These considerations highlight again the difficulty found, also
experimentally, in the attribution of spectroscopic features of
XAS spectra.
Based on the ΔKS values presented in Part I,4 it is evident

that the ΔKS values of the C−H and C−COOH cores overlap
with the values of pure carbon cores. Also the characteristic
features of the XAS spectra overlap with what can be seen from
pure carbon spectra. Thus, clustering C−H and C−COOH
together with pure carbon from bulk and surface samples is
justified. It is unlikely that these two could be experimentally
detected separately, since signals coming from pure carbon,
which is present in much larger amounts, overshadow both
XAS and XPS signatures coming from them. Recognizing
overlapping characteristics seems indeed to be a problem when
experimental XAS and XPS spectra are interpreted. Here,
relying on our atomistic results, we are able to provide
information about not only what can be seen in the spectra but
also what cannot be detected, since we can trace back
spectroscopic features directly to their atomic origin. The
presence of other functionalities is much more easily resolved.
For instance, C−COOH, which forms cluster C(C−COOH), has
very clear and distinctive fingerprint characteristics. Hence,
from those characteristics, C−COOH as a group present on
the surface can be easily detected. Clusters C(C−COOH),
C(CO/C−OH), and C(C−O−C/C−OH) are the most interesting
ones when functional groups are being studied and identified.
Most importantly, we conclude that, in order to help in
unfolding the complexity of overlapping signals in carbon K-
edge spectra, one should study them together with oxygen K-
edge spectra from the same sample.
IV.C. Reconstruction of Experimental Spectra. To

reconstruct experimental spectra, we fit them to a weighted
linear combination of our computed fingerprint spectra. For
the fit, we use an in-house code that minimizes the following
residual with respect to the fitting parameters:

∫{ } = | − { } |R E a E S E S E E a( , ) d ( ) ( ; , )i
E

E

i0
exp sim

0
min

max

(6)

where the simulated spectrum Ssim is given by

∑{ } = + −S E E a a a S E E( ; , ) ( )i
i

i i
sim

0 0
sim

0
(7)

The i index runs over all the fingerprint spectra used in the fit,
a0 is a vertical shift to correct for a possible nonzero baseline in
the experimental spectrum, and E0 is a horizontal shift to
account for the systematic DFT underestimation of XPS and
XAS energies.7 The relative contribution of motif i to the fit,
and therefore its abundance in the sample, can be computed
from ai/∑iai. The integration domain [Emin, Emax] determines
the region where the fit is made. By determining the fitting
range one can set the focus on certain desired features of the
spectrum. Obviously, the choice of the range can have a large
effect on the result and, thus, when the fitting is carried out
several ranges should be tested to make sure that the chosen
region is reasonable, i.e., that characteristic features associated
with differently bonded carbon are reproduced well and not
too much emphasis is put to the part of the spectrum
corresponding to energy values beyond the ionization
potential, i.e., when the electron is removed from the system
in the experiment. The overlapping characteristic features of
the fingerprint spectra that we have discussed above can lead to
the existence of multiple optima in the fit. Overlapping
characteristics cause inaccuracy in the predicted relative
proportions of certain fingerprints, but we must keep in
mind that when the fit is carried out in the traditional way
(fitting with Gaussians peaks centered at certain energies
instead of considering the shape of the whole spectrum), these
overlaps are not taken into account at all. The only way to
minimize this inherent arbitrariness in the fit is by reducing the
number of degrees of freedom by carefully reducing the
number of fingerprint spectra to the minimum, fitting XPS and
XAS in parallel (as will be discussed below), or both.
Our implementation can minimize one residual, XAS or XPS

independently, or a linear combination of XAS and XPS
residuals, where the ai are optimized so that both fits are
satisfactory simultaneously for the same values of ai. To obtain
optimal fitting parameters, we randomly sample within
predetermined intervals using a Monte Carlo approach. The
best fit among all tested combinations (that is, the
combination of fitting parameters that leads to the lowest
residual) is chosen. The fitting procedure is first demonstrated
by fitting experimental graphite oxide and diamond samples.
To fit the spectrum of graphite oxide, a highly functionalized
form of graphite, we use our graphene and functionalized
graphene computational fingerprint spectra as references.4

Then we employ the fitting scheme to interpret experimental
XAS and XPS spectra, both carbon and oxygen K-edges, of an
a-C sample. Our in-house fitting code and data sets required to
run it will be made publicly available in the near future, after
we have improved the user interface; in the meantime,
reasonable requests for code and/or data will be accom-
modated by the authors whenever possible.
In the case of amorphous carbon, we can fit the experimental

XAS and XPS spectra, either carbon or oxygen K-edge, with a
weighted combination of the average fingerprint spectra
representing each cluster discussed before. Experimentally,
the fitting of the spectra is done one spectrum at a time, that is,
XAS and XPS separately. This can give rise to XAS and XPS
fits pointing to a differing chemistry for the same sample. To
avoid this contradictory result, here we aim at using all the
information available, and thus we fit XAS and XPS spectra in
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parallel, whenever possible. More importantly, we also
compare the results for the carbon and oxygen K-edge spectra
to each other. Unsurprisingly, if the XAS and XPS spectra are
fitted separately, a better fit can be obtained since more
degrees of freedom (fitting parameters) are available. However,
the results obtained in this fashion may lead to contradictory
interpretations of the material’s chemistry, as already discussed.
In any case, knowing that XAS is more sensitive than XPS and
that in XAS fitting we can use the cross sections for a
continuum of possible transitions, more emphasis is put on
fitting of the XAS spectra. Thus, even though XAS and XPS
spectra can be fitted in parallel, we choose the result of the
XAS fit to weight more than the result of the XPS fit.
Even though our fitting code gives percentages for the

contribution of each spectrum that has been included in the
fitting, these numbers should not be directly used as exact
quantitative measures. They can, however, give approximate
estimates of the proportions between different motifs present
in the experimental samples. It is important to note that our
current simulations consist only of the four most important
functional groups anticipated to exist on carbonaceous
surfaces. The chemistry between oxygen and carbon is far
more complicated than that and, in addition, a-C samples are
known to also contain small amounts of other elements, such
as nitrogen (∼1 atom %),42 which is not included in our

simulations. Here, our aim is to recognize and quantify the
groups that have the largest effect on the chemical character-
istics of the surface.
Computationally, we can resolve the precise transition

energy between a core state and a conduction band state at 0
K. Considerations when attempting numerical fitting of
experimental data include (1) the resolution of the instrument
used in the experimental measurements, (2) the variety of
atomic environments of the element in question (which in this
work has been included by sampling over a variety of
structures), and (3) the temperature of the sample, which
causes thermal motion of the atoms and, in turn, broadening of
the spectra. These points are taken into account by introducing
a Gaussian smearing of 0.5 eV of the calculated spectra. This
value roughly corresponds to the broadening of a typical
experimental XPS spectrum for a pure gas-phase sample
(which we have estimated from the full width at half-
maximum).43 Pure molecular gas-phase samples are free
from contaminants that would be present in bulk and surface
experiments and, thus, can offer unbiased insight into the
resolution of the instrument in question.

IV.D. Fitting Diamond and Graphene Spectra:
Benchmarking the Fitting Procedure. In this section, as
an introduction to the fitting scheme, we show how the
experimental spectra are reconstructed and fitted by using the

Figure 3. (a) Fingerprint C K-edge spectra that are used in fitting the XAS spectrum of graphite oxide. (b) Calculated graphene C K-edge spectrum
compared with the experimental graphite oxide spectrum (from ref 39). The calculated ideal sp2 spectrum (from ref 40) is also plotted to show the
difference between pristine and oxidized samples. The fitting range, [Emin, Emax], is indicated with vertical dashed lines. (c) Fingerprint C K-edge
spectra that are used for diamond fitting. (d) Calculated diamond C K-edge spectrum compared with experimental diamond spectrum (from ref
41). The calculated ideal sp3 spectrum (from ref 40) is plotted to show the difference between the pristine and the oxidized samples. Again, the
fitting range, [Emin, Emax], is indicated with dashed lines. Since the experimental graphite oxide and diamond spectra are taken from different studies,
the energy resolution of the measurement equipment differs slightly (0.1 and 0.05 eV, respectively). This difference does not have a large impact on
the fitting procedure, since the overall experimental signal broadening (which also includes thermal and disorder effects) and the corresponding
smearing parameter used in the fit are significantly larger.
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fingerprint spectra as building blocks (Figure 3). In this study,
instead of only looking at peak positions that are traditionally
used in fitting, we examine the whole spectrum. Furthermore,
some groups show distinctive characteristics only in the C K-
edge spectrum or in the O K-edge spectrum, not necessarily in
both, and, thus, these two should always be investigated
together. To benchmark this procedure and to compare
different types of carbon surfaces, we have calculated and fitted
spectra for experimental diamond and graphite oxide samples
(from refs 41 and 39, respectively). As discussed, the calculated
spectrum is a weighted sum of fingerprint spectra for a set of
atomic motifs.
In the case of pristine diamond surfaces and graphene, all

atomic sites are equivalent to one another. Real samples
contain a number of defects, impurities, and functionalizations.
For instance, the structure and the degree of oxidation of
graphene, or graphene oxide, varies substantially depending on
the origin of the sample.44−46 Nevertheless, graphite and
diamond samples still display the strong sp2 or sp3 character-
istics, respectively, from the pristine samples. Thus, the pure
carbon reference spectra are obtained from the ideal sp2

(graphene) spectrum and a combination of sp2 site spectra
around the single vacancy defect of graphene. Introducing a
single vacancy into the structure creates a favorable site for
functional groups to bind. For diamond, we sample sp3 and sp2

sites present in reconstructed diamond surfaces. The finger-
print spectra that are used in the fit are depicted in Figure 3a,c.
Note that here, in both cases, we include also the spectra of

carbon bonded to hydrogen, which in the case of amorphous
carbon has overlapping characteristics with pure carbon sites.4

It has been previously shown that hydrogen bonded to carbon
in graphene shifts ΔKS values compared to pristine carbon, but
the values can overlap with defective carbon sites.6 Moreover,
the calculated ΔKS values used in this work to determine the
onset of the XAS spectra are in very good agreement with the
values presented by Susi et al. in ref 6.
The simulated XAS spectra are compared to the

experimental ones in Figure 3b,d. It is evident that the
experimental spectra are very well reproduced. The fit is not
perfect, since (1) our samples are simplified representations of
a far more complex reality, where real samples actually contain
a number of different kinds of defects, surface steps/terraces,
etc., and (2) our DFT-based methodology to compute the
reference spectra has inherent inaccuracies associated with it.
The ΔKS values, which are used to interpret XPS spectra and
provide the energy-scale alignment of calculated XAS spectra,
are systematically underestimated (approximately by 1 eV in
the case of carbon). Nevertheless, relative energies are well
reproduced.6,7 In addition, ΔKS energies (and, to a lesser
degree, intensities in XAS calculations) depend on the
exchange-correlation density functional used in the DFT
calculations.7,8,47−49 In this study we use the PBE level of
theory, which is a reasonable choice with large data sets of
periodic systems and has been shown to perform well for
carbon-based materials.6−8,49 In other words, the overall shapes
of the spectra are correctly reproduced, and we can confidently

Figure 4. (a) Calculated a-C O K-edge XAS fingerprint spectra for every oxygen cluster. (b) Calculated a-C O K-edge XAS spectra compared with
two different experimental spectra. The fitting range, [Emin, Emax], is indicated with dashed lines. (c) Calculated a-C C K-edge XAS fingerprint
spectra for every carbon cluster (the clusters are named in panel (e)). (d) Calculated a-C C K-edge XAS spectra compared to two different
experimental spectra (for the legend, see panel (f)). Again, the fitting range, [Emin, Emax], is indicated with dashed lines. The fitting ranges differ
between samples in order to minimize the fitting error. (e) Calculated normalized a-C C K-edge XPS fingerprint spectra for every carbon cluster.
(f) Calculated a-C C K-edge XPS spectra compared to two different experimental spectra.
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identify where certain characteristic peaks originate from. It
must be emphasized that the shapes of the experimental
spectra would not be correctly reproduced if we were using
pure carbon reference spectra only (also given in Figure 3b,d).
The characteristics observed in experimental spectra can only
be reproduced by introducing and utilizing the fingerprint
spectra of carbons that are bonded to specific functional
groups.
We will not attempt to give quantitative estimates about the

contents of the samples, but we can give a semiquantitative
evaluation based on the fingerprint spectra. In this graphite
oxide sample39 the amount of pure sp2 sites exceeds the
amount of defected sites. According to our simulations, there is
hydrogen, oxygen as ketones, hydroxyl and carboxylic acid
groups, and, finally, oxygen as epoxides present in the sample,
in that order. Unsurprisingly, the sp3 content of the diamond
sample41 is high compared to sp2 bonded carbon, which is also
present. The rest of the carbon sites in the sample are likely to
be bonded to a functional group. The functional groups
involved are oxygen, hydrogen, hydroxyl, and carboxylic acid
groups, in that order. Oxygen-induced carbon features, in the
case of diamond, seem to overlap with well-known diamond
exciton characteristics (which cannot be predicted within our
methodological framework50), and thus in our simulations the
oxygen content is exaggerated. On the other hand, because of
this overlap, the presence of oxygen can stay hidden when
diamond spectra are interpreted traditionally.
IV.E. Fitting a-C Spectra: A Detailed Analysis. Having

established that our methodology can extract semiquantitative
chemical information from the benchmark simulations of
diamond surfaces and graphene, we turn our attention to the
far more complicated situation of interpreting experimental a-
C spectra. Furthermore, in order to better establish the
performance of the method, we fit experimental data from two
different a-C samples separately. The fingerprint spectra of the
motifs discussed in Section IV.B are depicted in Figure 4a,c
(XAS) and Figures 4e and 5 (XPS). The fitted XAS oxygen
and carbon K-edge XAS spectra for a-C are presented in Figure
4b,d. The fitted carbon K-edge XPS spectra for a-C are
presented in Figure 4f.

We will first discuss the fitting of the oxygen K-edge spectra.
Since both oxygen atoms in the C−COOH group, i.e., clusters
O(C−COOH) and O(C−COOH), should give signals in the same
proportion, the calculated spectra of the two are combined for
the fitting of the oxygen spectra. Clusters O(spCO) and
O(C−COOH) are the major contributors forming a peak at ∼532

eV in the XAS spectrum. Both clusters O(C−COOH) and O(C−OH)
give a distinctive peak nearly in the same region of the XAS
spectrum (∼535−536 eV), which in the experimental
spectrum can be seen only as a change of slope or a wide
shoulder. However, these two groups give a large contribution
to the XPS spectrum in the stronger binding energy regions,
and thus combined fitting of XAS and XPS overemphasizes
this feature.
In order to explain this observation, a literature search was

carried out. Even though peak positions used in deconvolution
of the experimental spectra of carbonaceous substances that
are bonded to oxygen fluctuate depending on the reference, O
K-edge spectra are often fitted with three peaks. These peaks
are usually attributed to (1) ∼531 eV double-bonded oxygen,
(2) ∼533 eV hydroxyl or ether groups, and (3) ∼534 eV
single-bonded oxygen in carboxylic acid or ester groups (or
chemisorbed water which is not included in our simula-
tions).51−55 The ordering of these peaks is in good agreement
with our calculations. The calculated O K-edge XPS spectrum
is made out of three components as well: (1) C−COOH, (2)
hydroxyl group with overlapping ethers and epoxides, and (3)
C−COOH, in that order. Peak 1, arising from the double-
bonded carbon, comes from our C−COOH, i.e., from the
double-bonded oxygen in carboxylic acid group. It is known
based on the literature that in molecular or polymer references
it is practically impossible to tell apart a ketone from another
double-bonded oxygen experimentally.53 In fact, our calcu-
lations show that signals coming from ketones that are bonded
to an a-C surface are widely distributed in energy because of
the varying local atomic environments. These signals then
result in a very wide peak near the onset of the spectra.
Carboxylic acid groups, that stand higher from the surface, are
less affected by the surface itself, and, thus, the calculated
signals are in better agreement with molecular or polymer
references from experiment. In other words, XPS does not
capture well signals coming from ketones that are bonded to
the a-C surface and the presence of hydroxyl and carboxylic
acid groups is significantly overemphasized. In Figure 5 the
fingerprint spectra of oxygen motifs are depicted together with
the experimental spectra from both samples. However, in XAS
fitting we can use the full spectrum, which allows us to detect
also ketones that are practically hidden around the onset of the
XPS spectra.
Hence, in the case of O K-edge we settle for fitting XAS

spectra and XPS spectra separately, and we focus on XAS
fitting in order to find better agreement with carbon K-edge
spectra fitting, which will be discussed later. Most of the
ketones present in the fit belong to the cluster O(spCO), which
is expected since the oxygen atom in a ketone bonded to an sp2

site (O(sp
2
CO)) is over coordinated. Even though the existence

of these groups is observed in our simulations, these sites are
quite reactive. There are also some epoxides or ethers
(O(C−O−C)) present on the surface, which are not observed
in carbon K-edge fitting due to the fact that the signals coming
from these sites, both XAS and XPS, overlap with signals
coming from other groups. The results from the fitting suggest
that ethers and epoxides contribute in sample 1 ∼4−5% and in
sample 2 ∼11−12% to the overall spectrum. Ketones (sample
1 ∼36% and sample 2 ∼39%), the hydroxyl group (sample 1
∼26% and sample 2 ∼14%) and carboxylic acid (sample 1
∼34% and sample 2 ∼36%) are the main contributors to the
oxygen K-edge XAS spectra of the a-C sample studied.
However, one should be careful about how to interpret these

Figure 5. Normalized fingerprint XPS spectra of the oxygen clusters
compared with the experimental spectrum. The image clearly shows
where certain clusters contribute on the binding energy scale.
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percentages, in the context of the current overall accuracy of
the method. Therefore, using these percentages as guidelines,
we are confident to claim that these groups are present on the
surfaces of both samples and that they each account for,
roughly, one-third of the total oxygen-containing groups, but
that said, the two samples have different compositions.
Inspection of the carbon K-edge spectra confirms the

presence of these groups. To test our method further we will fit
carbon K-edge spectra according to two different schemes.
First, during the fitting of the carbon spectra, XAS and XPS
spectra are fitted in parallel. Unlike with oxygen, all the carbon
cluster XPS fingerprints show a non-negligible overlay with the
experimental peak (Figure 4e). We have two more C core
reference fingerprint spectra to fit than with oxygen. However,
when we carry out parallel XAS and XPS fitting, the complexity
of the problem is reduced. It can be seen from Figure 4d,f that,
even though the XAS signals of the two samples differ
significantly, the XPS signals are actually very similar. If the
XAS and XPS spectra were fitted separately, obviously, better
fits can be produced, but we choose to fit them together first in
order to obtain consistent results from both measurements.
This means compromising the accuracy of the XAS fit, but we
settle for that because although again XAS captures signals
more accurately than XPS, in the case of carbon, these signals
may very well be coming from something that our model does
not cover (such as carbon bonded to nitrogen). In this study
we focus mainly on oxygen containing functional groups. We
consider parallel fitting of XAS (weight 70%) and XPS (weight
30%) to be a safe choice in this case. However, it should again
be kept in mind that the accuracy of the method is limited.
This is specially true when one considers the much larger
contribution from pure carbon motifs to the carbon K-edge
spectrum. Based on parallel fitting it seems that approximately
6% of carbon in sample 1 and 4% of carbon in sample 2 is
bonded to oxygen and that carboxylic acid, ketones, and the
hydroxyl group are present roughly in the same proportions,
making 1−2% each. In carbon K-edge spectra, signals coming
from epoxides and ethers overlap with those coming from
other motifs. According to the interpretation of oxygen K-edge
spectra, epoxides and, especially, more stable ethers are also
likely to be present. However, the characteristic signals arising
from them are easily hidden by other oxygen-containing
groups or even by pure carbon. Overlapping characteristics are
precisely what limits quantitative analysis of XAS and especially
XPS spectra.
As discussed in the previous section and in more detail in

Part I of this study,4 carbon bonded to hydrogen cannot be

separated from pure carbon by means of analyzing X-ray
spectroscopy data. Motifs containing pure carbon, carbon
bonded to hydrogen, and C−COOH form the majority of the
sites, according to the results of the fits. When XAS and XPS
spectra are fitted in parallel the estimated sp2/sp3 ratio of both
experimental samples studied here is quite high. According to
the fitting results from parallel fitting, we estimate that
approximately 40% of the C sites are sp2 hybridized and 50%
are sp3 hybridized (including C and H neighbors). A small
amount, ∼ 2%, of reactive and surface-specific sp-bonded
carbon is also present. Amorphous carbon surfaces are known
to be sp2-rich and the bulk is more sp3-rich. These results are in
good agreement with recent ta-C growth simulations.37 Sample
1 has a slightly higher π* peak around 285 eV, but it must be
kept in mind that also C−H and C−COOH contribute in that
region. We therefore avoid drawing direct conclusions from the
height of the peak only. However, when fitting is carried out in
parallel this feature is not well reproduced since the XPS
spectra of the samples are so similar (Figure 4).
In order to study the sp2/sp3 ratio of the samples more

carefully, we also fit the XAS spectra independently from XPS.
The results of independent XAS fitting are shown in Figure 6.
The calculated XPS spectra, interpolated with the weights
obtained for the XAS fit, are depicted in Figure 6b.
Interestingly, especially around the tails of the spectra, the
XPS fit is qualitatively improved with respect to the parallel
XAS/XPS fit result. Even though there are less fitting degrees
of freedom in the parallel fit compared to the independent fit,
it should be borne in mind that, as a structural analysis
method, XAS is significantly more accurate than XPS, also
when the measurements are carried out at the same time with
the same high resolution equipment. This advantage of XAS
versus XPS is also reflected on the computational results: when
XAS spectra are fitted independently the differences between
the samples stand out. The sp2/sp3 ratio of sample 1 (2.3) is
higher than the sp2/sp3 ratio of sample 2 (0.8), according to the
results of the fit. Small amounts, ∼1%, of sp-bonded carbon
remain present in both samples. According to the independent
XAS-based fits, there is almost twice as much oxygen
containing groups in sample 1 (∼18%) as in sample 2
(∼10%). In sample 1 ketones are present in large numbers
(C−COOH ∼ 3%, CO ∼ 12%, and C−OH ∼ 4%), whereas
in sample 2 there are more hydroxyl groups present (C−
COOH ∼ 2%, CO ∼ 2%, and C−OH ∼ 6%). Nevertheless,
our results strongly suggest that, when trying to establish the
amount of carbon bonded to oxygen, one should look at the
carbon K-edge spectra. By contrast, when the interest is in

Figure 6. (a) Independently fitted a-C C K-edge XAS spectra. (b) Experimental a-C C K-edge XPS spectra fitted with fingerprint spectra weighted
by independent XAS fitting.
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finding out relative proportions between oxygen-containing
functional groups, oxygen K-edge spectra become more useful.
All in all, we conclude on the basis of our analysis and fitting of
the spectra, that oxygen is present on a-C surfaces
predominantly as a ketone, as a part of carboxylic acid group
or as part of a hydroxyl group.

V. CONCLUSIONS

In this study we have (1) introduced a new way to classify
functionalized carbonaceous surface atomic motifs by utilizing
a combination of structural descriptors (multispecies SOAP
kernel) and electronic descriptor (Gaussian ΔKS kernel); (2)
proposed a systematic fitting scheme for deconvolution of
experimental XAS and XPS spectra, used here to understand
the X-ray spectroscopic features of carbon-based materials, but
generally applicable to other material systems; (3) bench-
marked this fitting procedure by fitting experimental graphite
oxide and diamond spectra; (4) fitted experimental a-C XAS
and XPS spectra, either in parallel or separately, depending on
the situation; and finally (5) combined O K-edge data with C
K-edge data in order to provide semiquantitative estimates of
the composition of experimental samples based on fitting to
computational (ab initio) references. Thanks to the detailed
knowledge about the microscopic origin of these spectroscopic
signatures, i.e., the “fingerprint spectra”, the present method-
ology allows us to not only identify what can be directly
detected from the experimental spectra but also propose and
depict an atomic-level picture of these materials.
Given the current resolution of XPS, we conclude that for

highly complex and/or disordered materials XAS provides
considerably more insight into the atomic-level structure of the
sample under study, both experimentally and in simulation. As
a matter of fact, the amount of quantitative, and even
qualitative, information that can be extracted from XPS for
these materials is very limited, since the signals from local
atomic environments overlap. However, being a more widely
available experimental technique, XPS analysis is more easily
accessible than XAS and often XAS characterization is not
carried out. In such cases, care must be exercised when
attempting to extract quantitative structural information from
XPS data. Despite that, the present fitting scheme based on
computational references allows us to perform a more
informed XPS fit compared to those relying on molecular
references. Nonetheless, we emphasize that XAS should be
chosen over XPS whenever both techniques are available.
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(15) Öström, H.; Ogasawara, H.; Nas̈lund, L.-Å.; Pettersson, L. G.
M.; Nilsson, A. Physisorption-induced CH bond elongation in
methane. Phys. Rev. Lett. 2006, 96, 146104.
(16) Schiros, T.; Haq, S.; Ogasawara, H.; Takahashi, O.; Öström, H.;
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