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Preface

The Nordic Association for Computational Mechanics (NoACM) was founded in October 1988
in Gothenburg, Sweden among the first organizations established in this field. Ever since the
objective of NoACM has been to stimulate and promote research and practice in computational
mechanics, to foster the interchange of ideas among the various fields contributing to
computational mechanics, and to provide forums and meetings for dissemination of knowledge
about computational mechanics. In particular, presentations by graduate students have always
been welcomed. Thus, making a friendly and creative atmosphere for the participants is
considered important.
This year's seminar is already the 32nd in the series. It is arranged for the first time in the
municipality of Oulu located in the region of North Ostrobothnia in Finland. This is probably one
of the northernmost locations in the world where a seminar on computational mechanics has ever
been arranged. The seminar has attracted around 50 contributions distributed in two parallel
sessions over two days.
The organizers would like to thank all authors for submitting their contributions, as well as their
supporting organizations, to make NSCM32 in Oulu possible!

Linnanmaa, Oulu, 18 October, 2019

Antti H. Niemi
Hannu Koivurova
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Marrying Computational Mechanics and Materials
Science

Lars-Erik Lindgren

(1)Luleå University of Technology 97187 Luleå, Sweden, lars-erik.lindgren@ltu,se

Summary. The advancement of computational resources and techniques enable the use of
more accurate models both with respect to spatial and temporal resolution but also concerning
the modeled physics. This is a benefit when simulating thermo-mechanical processes, as they
often requires coupled microstructure and property models. Integration of these models
combines the fields of mechanical and materials science.

Key words: manufacturing, microstructure, thermal properties, mechanical properties

Introduction

The response of metals and alloys for a given thermal and mechanical loading depends on its
microstructure. The notation microstructure is used here to denote all scales from the lattice up
to a collection of grains. The microstructure in turn, is a product of the previous thermo-
mechanical history. It is therefore of interest to combine structure-property models according to
the classic paradigm in material science, see figure 1. The microstructure models must be such
that they do not require a resolution of the microstructure in order to be able to simulate
manufacturing on the component scale. The talk will present some models for Ti-alloys,
superalloys as well as steels that have been used in manufacturing simulations.

Figure 1. Process-Structure-Properties-Performance paradigm.
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Ti-6Al-4V

A quite complete model for a-b phase changes in Ti-6Al-4V was developed by Charles-Murgau
et al. [1]. It is built on various published sub-models and particularly on Kelly [2]. The model
was combined with a dislocation density based plasticity model by Babu et al. [3]. It has been
applied to additive manufacturing, see figure 2.

Figure 3. Metal deposition of Ti-6Al-4V. Temperature field shown in upper part whereas a-
phase and b-phase fractions are shown below it. The dislocation density, used in the flow stress

model, is shown in lower, right part.

Alloy 718

Alloy 718 is a precipitate hardened alloy where the g’’ phase gives the largest contribution to
creep resistance. Simulation ageing and simultaneous stress relief requires a model that can
predict the precipitate distribution as well as its effect on the plastic properties of the material. A
model for this case has been developed and applied to repair welding and subsequent ageing [4-
6], see figure 3.

Figure 3. Repair welding of alloy 718.
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Low alloy steels

A model for microstructure evolution of hypoeutectoid steels has been combined with property
models [7-10]. The microstructure model is limited to computation of ferrite, austenite as well
as pearlite, bainite and martensite. It can compute the thermal driven phase changes given
chemical composition of the steel. The model can be improved if further information is
available from time-temperature-transformation (TTT) or continuous-cooling-transformation
(CCT) diagrams. This means that there is not additional split into, e.g. upper and lower bainite
etc. The model can estimate thermal expansion, elastic and thermal properties also as a function
of chemical composition and temperature. Two examples from the microstructure model are
shown in figure 4 below. An example from the model for elastic properties is shown in figure 5.
The relaxed modulus measurement has an anelastic effect, see [38].
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Concluding remark

The combination of computational mechanics and materials science benefit both fields. The
former get access to expertise and models from material science. The latter field profits by
having a ‘demanding customer’.  The use of models in computational mechanics requires that
they can be subjected to arbitrarily histories as well as must fulfill some invariance
requirements.
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Summary. The wavelet methods provide new, interesting approach for solving differential,
integro-differential and integral equations in comparison with traditional/classical methods. In 
the current paper is given an overview on higher order Haar wavelet method, introduced 
recently by workgroup, discussed first results obtained and future study in this area. The free 
vibration analysis of the functionally graded beam and nanobeam are considered as case studies.  

Key words: Higher order Haar Wavelet method, functionally graded beam, nanobeam. 

Introduction 

The Haar wavelet method (HWM) has been introduced for solving differential equations by 
Chen and Hsiao in 1997, in particular for solving lumped and distributed parameter systems 
Ref. [1]. According to approach based by Chen & Hsiao, the higher order derivative included in 
differential equation is expanded into series of Haar wavelet fucntions. Later this approach was 
extended later for solving ordinary and partial differential Ref. [2,3], integro-differenial Ref. 
[4,5] and integral equations Ref. [6-7] covering wide range of applications like mathematical 
physics, evolution equations, nuclear reactor dynamics, unsteady-state free-surface ship models, 
mechanics of solids, two-point boundary value problems, etc. In Ref. [8-11] HWM is applied 
for analysis of composite structures. In Ref. [8] and Ref. [9] the free vibration analysis of the 
multilayer composite plate and delamination of the composite beam is studied, respectively. In 
Ref. [10-11] functionally graded structures are examined. An overview on HWM and its 
applications is given in monograph Ref. [12]. Most of papers, covering HWM and published 
during two decades are based Chen and Hsiao approach and strong formulation.  
      In these papers the implementation of the HWM is found simple. The HWM is characterized 
commonly with terms “simple” and “effective“. The estimates given for Chen and Hsiao 
approach based HWM rely on obtained results and are founded.  
      However, no comparison with advanced/powerful strong formulation based numerical 
methods with similar complexity (FDM, DQM, etc.) were performed. Recent study, based on 
comparison of the Chen and Hsiao approach based HWM with FDM and DQM, lead to a quite 
different results Ref. [13]. In general, the Chen and Hsiao approach based HWM was found in 
same range with FDM by accuracy, but it was outperformed by DQM.  
The conclusion made was that the Chen and Hsiao approach based HWM need principal 
improvement in order to compete with advanced methods used in engineering design. 
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Higher Order Haar Wavelet Method 

Recently, the higher order Haar wavelet method (HOHWM) for solving differential 
equations was introduced Ref. [14]. The proposed method is based on the following two 
subtasks: 

 Higher order wavelet expansion(s) in general form. 
 Concepts for determining integration constants included in higher order wavelet 

expansions. 
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In (1) n  stands for the order of highest derivative included in differential equation. Thus, in 
the case of  1s  the derivative of order 2n  is expanded into Haar wavelets. It should be 
pointed out that, among higher order wavelet expansion (11), the accuracy of the solution 
depends substantially on conditions used for determining integration constants. The two 
approaches proposed for determining of integration constants are discussed in details in Ref. 
[14] and are omitted herein for conciseness sake.

Numerical results 

In the following two sample problems are considered: the free vibration analysis of the simply 
supported FGM beam and nanobeam. 

Free Vibration analysis of FGM beam 

The pinned-pinned FGM beam with length , is considered. The cross-section of the 
beam is square, where the height and the width of the cross-section are equal to . 
Radial graduation functions applied for the bending stiffness  and the distributed mass per 
unit length  are given for the exponential law function as Ref. [15]: 

, . (2) 

Table 1. Fundamental frequency values Ω1 of simpli supported FGM beam ( 3 ) 
HWM approach by Chen&Hsiao Proposed HOHWM (Majak et al.) 

N 
Fundamental 
frequency Ω1 

Absolute 
error 

Converg. 
rate 

Fundamental 
frequency Ω1 

Absolute 
error 

Converg. 
rate Error ratio 

4 5.49612520 1.35E+00 7.81629606 9.73E-01 1.4 

8 6.56237797 2.81E-01 2.2627 6.87693058 3.39E-02 4.8442 8.3 

16 6.76542022 7.76E-02 1.8542 6.84538131 2.33E-03 3.8607 33.3 

32 6.82322484 1.98E-02 1.9693 6.84319842 1.49E-04 3.9644 133.0 

64 6.83806767 4.98E-03 1.9927 6.84305841 9.40E-06 3.9908 529.9 

128 6.84180211 1.25E-03 1.9982 6.84304960 5.88E-07 3.9977 2120.6 

256 6.84273719 3.12E-04 1.9995 6.84304905 3.68E-08 3.9995 8473.5 

512 6.84297105 7.80E-05 1.9999 6.84304901 2.29E-09 4.0074 34044.6 

Exact  6.84304901  6.84304901 
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The values of the fundamental frequency, absolute errors and the rates of convergence 
corresponding to widely used Chen&Hsiao and current approaches are compared in Table 1, 
where the material grading index   is equal to three. It can be seen from Table 1, that the rate 
of convergence of the proposed higher order method is equal to four and the absolute error is 
several orders of magnitude less than that of Chen and Hsiao approach based HWM. The error 
ratio of the widely used and current approach is given in column 8 of the Table 1. 

Free Vibration analysis of nanobeam 

The Eringen nonlocal elasticity theory is utilized for free vibration analysis of the Euler-
Bernoully nanobeam. The governing equations are given in Ref. [16]. The nonlocal parameter μ 
is taken equal to three. The values of the fundamental frequency, absolute errors and the rates of 
convergence corresponding to widely used Chen&Hsiao and current approaches are compared 
in Table 2.  

Table 2. Fundamental frequency values Ω1 of simpli supported nanobeam (μ = 3) 
HWM approach by Chen&Hsiao Proposed HOHWM (Majak et al.) 

N 
Fundamental 
frequency Ω1 

Absolute 
error 

Converg. 
rate 

Fundamental 
frequency Ω1 

Absolute 
error 

Converg. 
rate Error ratio 

4 2.9631691775 1.88E-02 2.9454323919 1.07E-03 17.6 

8 2.9490867632 4.72E-03 1.9930 2.9444268262 6.46E-05 4.0504 73.1 

16 2.9455443778 1.18E-03 1.9988 2.9443662390 4.00E-06 4.0129 295.5 

32 2.9446578302 2.96E-04 1.9997 2.9443624877 2.49E-07 4.0032 1184.8 

64 2.9444361397 7.39E-05 1.9999 2.9443622538 1.56E-08 4.0008 4742.0 

128 2.9443807138 1.85E-05 2.0000 2.9443622392 9.74E-10 4.0004 18973.2 

256 2.9443668571 4.62E-06 2.0000 2.9443622383 6.28E-11 3.9559 73607.9 

512 2.9443633929 1.15E-06 2.0000 2.9443622382 2.84E-12 4.4650 406411.2 

Exact  2.9443622382 2.9443622382 

It can be observed from Table 2 that he numerical order of convergence is improved from two to 
four and the absolute error is substantially, depending on number of collocation points used. No 
remarkable increase of the numerical and implementation complexities has been observed in the 
case of posed simply supported nanobeam. However, in the case of vibrations analysis of the 
nanobeam, the complexity depend boundary conditions used. 

Conclusions 

In the case of problems considered the higher order Haar wavelet method (HOHWM) 
outperform HWM. The accuracy has been improved principally. However, the problems solved 
are rather simple and the results obtained can be considered as introduction to further study in 
this area. The work on extension of the HOHWM to partial differential equations and also 
fractional differential equations is in progress. The first results obtained are promising, but 
expected.   
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Summary. In this work we introduce Hybrid Analysis and Modeling (HAM) as an enabler for Big
Data Cybernetics. HAM approach combines the interpretability, robust foundation and understanding
of physics-based models with the accuracy, efficiency, and automatic pattern-identification capabilities of
advanced machine learning (ML) and artificial intelligence (AI) algorithms for real-time steering of any
physical asset towards a set point using big data. At a time when blackbox ML and AI algorithms are
struggling to find large scale acceptability in safety critical engineering applications, it is argued that
HAM will be an attractive alternative.

Key words: Big Data Cybernetics, Hybrid Analysis and Modeling
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Figure 1. HAM in the context of Big Data Cybernetics

In the context of upcoming technologies like Digital Twin [1] the role of cybernetics is to
steer the system / asset towards an optimal set point. In order to do so, the output of the
system is continuously monitored and compared against a reference. The difference, called the
error signal is applied as feedback to the controller which generates a system input to bring the
output set-point closer to the reference. With the availability of more and more sensors and
communication technologies, increasingly larger volumes of data (in fact big data) is getting
available in real-time. The challenge is then to develop a better understanding of the big data
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before it can be used for control purposes. The newly established field of Big Data Cybernetics
(an adaptation of the concept first conceived in [2] at the Norwegian University of Science
and Technology) offers to address this challenge in a real-time control context. At the first
step, the big data is interpreted using well understood mechanistic models based on known
physics. The rest is termed as interpretable residual which in a second step is modeled using
interpretable data-driven approach. After the second step, an uninterpretable residual remains
which is modeled using more complex and blackbox models like Deep Neural Networks (DNN).
The remaining residual is generally noise which can be discarded. The three steps result in
a better understanding of the data and hence improved models provided new approaches can
be developed to combine existing physics based modeling, interpretable and non-interpretable
data-driven modeling with big data. The steps are continuously looped with the availability
of new data (i.e., see Figure 1(a)) resulting in ever adapting and improving models. In the
following section we present different approaches to conducting HAM.

Different approaches to HAM

Complete replacement of the equations with DNN

This approach can be used when there is a need to replace computationally demanding numerical
solvers with trained DNN that can make predictions in ll time. The approach will be very
specific to the problem in hand and will not generalize well. In [3] we demonstrated various
DNN frameworks predicting the evolution of dynamical systems by learning from using discrete
state of the system.

Modeling the unknown using DNN and imposing sanity check using equations based on known physics

This approach involves modeling the known physics using equations but employing trained DNN
for modeling the unknown physics. In the context of turbulent flow modeling using coarse grid,
the overall mass and momentum conservation principles can be well represented using the Navier
Stokes Equations however, the subgrid scales require modeling. In [4, 5] we demonstrated that
the subgrid scale phenomena can be learned using a DNN and any unexpected behavior of the
network can be detected using the mass and momentum conservation principles. We call this
physics-informed detection of misbehaviour as in-built sanity check mechanism in the context
of HAM. This particular approach can be represented by the intersection of the DNN and
physics-based modeling in Figure 1(b).

Memory embedded reduced order modeling of turbulent flows

Intrusive reduced order modeling (ROM) involves conducting high fidelity numerical simulations
to construct snapshots on which Proper Orthogonal Decomposition (POD) is performed to
extract dominant reduced bases. The original equations are then projected on these reduced
bases to give a system of ordinary differential equations which can be solved in real-time to get
an evolution of the model coefficients which can be used to reconstruct the full field. There are
two major issues with this particular approach in relation to the modeling of turbulent flows:
firstly one requires the form of the underlying equations (that generated the data) which is not
always possible and secondly the mode truncation introduces numerical error and instability in
the ROM model. To alleviate these problems, in [7], we demonstrated a fully non-intrusive ROM
approach where we employ long-short-term memory (LSTM) network to learn and predict the
evolution of the modal coefficients.

Physics / knowledge / regulations informed machine learning

This particular approach involves programming physics, domain knowledge or regulations di-
rectly into the DNN. In DNN, the cost function that is minimized is generally the mean squared
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error which includes little direct information about the underlying physics. One way to in-
form the DNN of the underlying physics (or knowledge and regulation) is to regularize the cost
function with the residual of the governing equations based on physics. Alternatively, the cost
function (or rewards function in the context of Deep Reinforcement Learning) can be penalized
or rewarded in the hope of learning new knowledge. Work in this direction pertains to path
following and collision avoidance of autonomous ships.

Dissecting DNN

Numerous HAM approaches mentioned above exploit the universal approximation properties of
DNN and therefore, for a risk free adoption of the approaches in safety critical application it is
imperative to make the neural networks more interpretable. A first step to interpreting these
networks is to develop alternative representations that allow for further analysis. It has been
shown that neural networks with piecewise affine activation functions are themselves piecewise
affine, with their domains consisting of a vast number of linear regions. So far, the research on
this topic has focused on counting the number of linear regions, rather than obtaining explicit
piecewise affine representations. Our recent work [8] presents a novel algorithm that can com-
pute the piecewise affine form of any fully connected neural network with rectified linear unit
activation.

Conclusions

In this paper we presented a new paradigm in modeling called the HAM that combines the best
of both the worlds: physics based modeling and data driven modeling. We followed this up
by proposing five distinct approaches to doing HAM. It is foreseen that a combination of these
different approaches will lead us to the center of the Venn diagram presented in Figure 1(b).
Operating at that point one will be able to exploit the full potential of the novel concept of Big
Data Cybernetics.
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Summary. This article presents the overview of the Material Point Method, a numerical method
for simulation of large deformation problems described by continuum mechanics. The paper gives
general idea and assumption of the method, describes the improvements in the algorithm over
time, as well as identifies some remaining challenges. In conclusion, it suggests that Material
Point Method is maturing quickly and reaching the point where numerical simulations of
engineering problems can be done accurately and robustly.
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The idea

The Material Point Method has been first proposed by Sulsky et al. (1994). The method
was a modification of a FLIP method, adjusted to use for solids instead of fluids.  This
original formulation of MPM bases on the continuum mechanics and was fully dynamic.
The discretized equations are the same as those used for derivation of the Finite Element
Method. The difference is in the discretization – in the Material Point Method the data is
associated with the material points, which freely move over computational grid. However,
similarly as in the Finite Element Method, the calculations use quantities integrated at the
computational nodes of the grid. That means the material point data must be transmitted
to the grid nodes and back in each time step. However, the benefit of the formulation
include avoidance of grid distortion and the ability to simulate dynamic problems with
very large displacements and strains. Therefore, as all the material models are the same
as in the Finite Element Method, the Material Point Method quickly becomes a preferred
method  for  those  problems,  and  much  effort  has  been  spent  on  reducing  its  original
shortcomings.

The Improvements

The original formulation of the Material Point Method has significant shortcomings. In
particular, the method is only convergent when the material points cross the cell
boundaries simultaneously, as otherwise the computation scheme leads to results
distorted by a finite error being result of the point moving from one cell to another. Also,
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as  the  material  points  do  not  have  any  physical  domain  associated  with  them,  at  large
strains the neighbouring points may stop contributing to the same nodes. That leads to a
material separation, which resembles material cracking, but is controlled by the grid and
material point discretisation, not by physical properties of the material. Such occurrence
of the material separation also breaks down the assumptions of continuum and therefore
makes any formal proof of the method convergence impossible.
The development of the Generalized Interpolation Material Point Method (GIMP) by
Bardenhagen and Kober (2004) was a major step forward and still today GIMP is quite
widely used. In GIMP, material points gained computational domains. That improvement
greatly reduces the errors related to the grid cell crossing, and improves the continuity,
especially in the version of the method which track and updates the material point
domains size. However, the material separation may still occur in problems with large
shear strains since the material point domains remain rectangular and ignore shear
deformations. Nonetheless, GIMP allows for rather successful simulations that capture
qualitatively the material behaviour. Yet, as separation is still possible, in certain
problems convergence of the method to the accurate solution is not guaranteed and a
mathematical proof of GIMP correctness is not achievable.
In 2013 Sadeghirad et al. further developed the Material Point Method, introducing
Convected Particle Domain Interpolation (CPDI) Material Point Method. The new
interpolation allows for the material point domain to become a quadrilateral and thus
allow for shearing. Additionally, in the CPDI, the material points are connected with the
shape functions, so they do not separate even in problems with very large strains and
deformations. However, more recent research show that despite those favourable
characteristics, the CPDI still does not guarantee second order convergence in large
deformation problems.

Challenges for the Future

To become a valuable method to solve engineering problems, the Material Point Method
needs to be a method which gives accurate solutions in reasonable time, even for large
problems. Many of the current theoretical developments concentrate on guaranteeing the
convergence and accuracy of the method, as well as reduce the time of calculations. For
example, the Convected Particle Least Square Material Point Method (CPLS) by Tran et
al. (2019, under review) seems to exhibit second order convergence rate in large
deformation regime. Nonetheless, a Material Point Method with higher order
convergence than two is not yet convincingly established for large deformation regime.
Ideally, an arbitrarily high order Material Point Method formulation is sought after, with
users being able to define the order of convergence, similarly as a user of Finite Element
Method may choose the order of element used in the simulation.
Theoretically, the order of the method depends on how smoothly the method is able to
approximate the fields and compute the relevant integrals. In the Material Point Method
we generally have more material points than nodes. Therefore, we can rather easily
achieve a high order of field smoothness when we map the data from the material points
to the nodes. However, we only use linear functions to map the updated data from the
nodes to the material points. That is likely the reason why currently we have the order of
the method limited to two. Additionally, as we often have more material points than the
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grid nodes, the mapping from the nodes to points is creating a null-space. The presence
of the null-space affects the results and leads to errors. However, recently, among others,
Tran & Sołowski (2019) have shown how to filter out the null-space errors, leading to a
significant improvement in the method accuracy.
The reduction of the numerical errors is especially important in simulations which are
sensitive to changes in strain field. That is the case in porous materials with pores fully
saturated with water, such as fully saturated soils. As water is almost incompressible,
small numerical fluctuations of the strain values in the water phase affect the solution
very significantly. Thus, simulations requiring hydro-mechanical coupling and thermo-
hydro-mechanical coupling are currently still require special treatment, usually connected
to some selective damping and dissipation of energy.
Furthermore, the materials at very large displacements and strains also tend to reach the
limits of their strength and crack. As the Material Point Method aim is to be the method
for simulation of problems characterised by large deformations, another challenge, only
partially solved up to date (e.g. Bardenhagen et al. 2011, Sadeghirad et al. 2013), is to
introduce discontinuities in the material in a controllable fashion and allow for crack
creation, growth and closure.

Conclusions

The Material Point Method is one of the most dynamically improving methods for
simulations of materials described by continuum mechanics. There are still numerous
challenges remaining, but those are acknowledged by the community and significant
improvements are reported yearly. Also, already currently, the Material Point Method can
give accurately simulate many large displacement problems and converge reliably.
The Material Point Method also have reached several important milestones. Those
include demonstration of a consistent convergence rate, increases in accuracy allowing
for robust calculations and applications in engineering problems, including large scale
simulations, and developments in coupled analysis and coupling with the Finite Element
Method and the Computational Fluid Dynamics methods.
To conclude, for large deformation problems difficult to tackle with the Finite Element
Method, where the use of continuum mechanics constitutive models is important, the
Material Point Method gradually becomes the method of choice for engineering
simulations. Such simulations, unfortunately, still require significant expertise, but in
time the software will develop further, allowing for more routine calculations with the
Material  Point  Method,  with  the  method becoming likely  a  natural  extension  to  Finite
Element Method simulations when large deformations are encountered.
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Summary. This work presents a CutFEM shape and topology optimization methodology based 
on well-known techniques from density based topology optimization. That is, the design field 
representation, the use of projection filters, the sensitivity analysis as well as the design update 
scheme is identical to those used in standard density based methods. The only noticeable 
differences are the finite element analysis, which here employs a CutFEM approach to achieve 
crisp and well-defined material interfaces, as well as the localization of sensitivity information 
due to the lack of intermediate densities (ersatz material) in the design domain. The numerical 
examples includes both 2D and 3D solid mechanics as well as multiphysics problems from vibro-
acoustics. 

Key words: Topology optimization, Shape optimization, CutFEM, Solid mechanics, 
Vibroacoustics 

Introduction 

In structural optimization, density methods are often the weapon of choice due to their simplicity 
when compared to level set methods i.e. generalized shape optimization [1]. That is, density 
methods are easy to implement, regularization techniques are well established and robust, and due 
to the ersatz material model, the sensitivity information is global to the design domain [2]. This 
is in contrast to generalized shape optimization in which the sensitivity is confined to the material 
interface and regularization schemes, namely length scale control, still poses an unsolved problem 
in general. However, the family of shape optimization methods that operate with crisp interface 
representations, e.g. XFEM and CutFEM, have an extremely attractive quality in that they are 
capable of resolving and imposing complex interface conditions, which is not the case for density 
methods in general. Hence, it is reasonable to combine the best from both optimization disciplines 
in order to develop new and more flexible design tools in engineering. 

Methods 

The main contribution of the presented work is the combination of a density design representation 
with a crisp interface immersed boundary finite element method. That is, the design field is 
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introduced as a scalar nodal field which is filtered, projected and mapped to a convenient range 
using the classical robust formulation, i.e.  

𝑥𝑥𝑝𝑝ℎ𝑦𝑦𝑦𝑦 = 𝑀𝑀(𝐻𝐻(𝐹𝐹(𝑥𝑥)))     (1) 

Here 𝑥𝑥 is the design variables, 𝐹𝐹(𝑥𝑥) refers to a convolution filter, 𝐻𝐻(𝑥𝑥) is a smooth Heaviside 
filter and 𝑀𝑀(𝑥𝑥) is a linear mapping of the 0-1 design field onto a mesh size dependent interval. 
The latter is included to make the usual 0-1 scaling of the design field robust to mesh refinement. 
The lhs 𝑥𝑥𝑝𝑝ℎ𝑦𝑦𝑦𝑦 is constructed using several projection parameters, exactly as done for density 
methods in [2], and for the minimum compliance problem we use the so-called poor mans 
approach such that only a single finite element analysis is needed. 

The employed immersed boundary method is best described as a simplified CutFEM method 
with the main difference of omitting ghost penalties [3], since all our numerical experiments 
showed that these were not needed. Therefore the method consists of cutting the physical design 
field 𝑥𝑥𝑝𝑝ℎ𝑦𝑦𝑦𝑦 at a specified level using marching squares (2D) or marching cubes (3D). The cut 
elements are then triangulated or tetrahedralized and the sub element Gauss points are mapped 
back into the parent quadrilateral or hexahedral element in which the integration is performed. 
Similar to density methods, the void regions are given an artificial material parameter to ensure 
that the system can be solved on the full domain without any renumbering of the dofs. 

Thus, the resulting finite element systems are very alike those encountered in standard density 
methods, i.e. heterogeneous with high contrast, and we are therefore able to use the same type of 
preconditioners as presented in [4]. The optimization problem is solved using gradient based 
methods and the sensitivities are obtained using discrete adjoint analysis. The only difference 
between density based sensitivity calculations and those used here, is the computation of the 
system matrix differentiated with respect to the physical design variable. To simplify the 
implementation the term is obtained by a simple finite difference, i.e.  

𝜕𝜕𝐾𝐾𝑒𝑒
𝜕𝜕𝜕𝜕

≈ 𝐾𝐾𝑒𝑒
𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝− 𝐾𝐾𝑒𝑒

ℎ
     (2) 

The proposed design method is implemented in Matlab for 2D problems and using the TopOpt 
in PETSc [3] framework for 3D problems.  

Numerical example 

The developed design method is demonstrated on examples from solid mechanics, through a 
number of minimum compliance and mechanism design problems in both 2D and 3D. One such 
result for a stiffness optimized 3D cantilever beam is seen in Figure (1), which shows the initial 
guess (top left) and the final optimized design (bottom right). The design domain is discretized 
into 525.000 elements and a solid block of material using 75% volume is chosen as the starting 
guess. The evolution of the design  in Figure(1) shows how the volume constraint is first made 
feasible and afterwards that holes appear, although no hole insertion strategy is used, i.e. holes 
are growing in from the sides. It should be noted that although the appearance of new holes is 
common in 3D, it is hardly ever seen in 2D, and thus we apply the topological derivative for 2D 
problems. However, the main problem here is that it generally is hard to provide feasible and 
meaningful starting guesses for generalized shape optimization problems. Therefore a noticeable 
amount of computational effort is devoted to making the problem feasible, and special care must 
be taken with the initial scaling such the constraints and objective are reasonably balanced. For 
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the design problem shown in Figure (1), the extra computation effort amounted to 42 design 
cycles. The easiest way to alleviate this problem is to only use the proposed design method as a 
post processing tool for standard density methods. This is easily done since both methods uses 
the exact same design representation and is therefore a good choice for problems that can easily 
be solved by density methods. But, this does not apply to problems for which density methods 
have problems. This is often the case for problems that involves complicated interface conditions 
and/or problems with multiple physics. 

Figure 1. Minimum compliance result and selected design history (iteration 0, 42, 96 and 400, 
respectively) for a 3D cantilever design problem using 12% volume. 

Therefore, to utilize the true strength of the presented CutFEM optimization approach, examples 
in which interface conditions are paramount will be presented. Focus will be on vibroacoustics, 
in which the acoustic pressure exerts a pressure load on the structure and the structure provides 
an acceleration to the fluid. We note that these coupling conditions are particularly easy to 
incorporate into the CutFEM solver since both couplings arise through Neumann conditions. The 
method is then applied to design problems using both frequency domain and time dependent 
problems formulations, and the results are compared to designs obtained using a density method 
based on the mixed formulation [5]. The study shows that the CutFEM optimized design generally 
are of a higher quality than the density designs.  
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Summary. In this article, we will develop and present suitable error estimators for adaptive
mixed isogeometric methods for solving the Advection-Diffusion-Reaction equation. We will 
compare the use of residual-based error estimators with superconvergent patch recovery 
methods [2]. The adaptive refinement will be based on LR B-splines [3], using the general 
theory of isogeometric finite element modelling [1]. The different estimators will be thoroughly 
tested on problems with (manufactured) analytical solutions.  

Key words: Asogeometric Analysis, Adaptive finite element method, residual estimation, 
superconvergent patch recovery 

Isogeometric Finite Element Modelling 

The Advection-Diffusion-Reaction equation is the canonical form of elliptic partial equations, 
and it has a wide range of applications. Solving it with the Finite Element Method has been 
known for decades, but most of the of the approaches were done either with the classical Finite 
Element Method or the Spectral Element Method. We will examine a new method called 
Isogeometric Analysis, where the equation is discretized by splines. This approach has several 
advantages like exact meshing of the domain, isoparametric elements for any degree and 
continuity, low error due to high continuity, and better interoperability between Finite Element 
Analysis (FEA) and Computer-Assisted Design (CAD) [1].  
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Adaptive Error Estimation 

The Adaptive Finite Element Method will be the main focus of our research. The procedure is 
solving a PDE on a domain, looping through every element, and estimating their local errors. 
Those elements with highest error are subdivided into smaller elements, and then we repeat the 
same process again until the global estimated error becomes low enough [4]. 
This approach has been tested on the Advection-Diffusion-Reaction equation for a long time, 
and it seems to work well. But combining adaptive error estimation together with Isogeometric 
Analysis is relatively new and still in development [2]. We will test this approach on the 
equation by using a certain type of splines called LR B-splines, which enables us to perform 
local refinement [3]. The process is based on residual estimation and superconvergent patch 
recovery. 
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Material microstructure informed multiscale modeling is found to be useful for estimating how 
different microstructural features affect the behaviour and lifetime of a material. Detailed and 
accurate microstructural information is needed for the model to be useful.  Micromechanical 
characterisation methods like the Scanning Electron Microscope (SEM) equipped with an 
Electron Backscatter Diffraction (EBSD) and Energy Dispersive Spectroscopy (EDS) detectors 
and Focused Ion Beam Milling (FIB), X-ray tomography (XCT) and Transmission Electron 
Microscopy (TEM) have enabled much more reliable and detailed modelling of material 
microstructures. The SEM and TEM typically create 2D images of material surfaces at small 
size scales. FIB enables machining into the sample and taking 2D images from several depths of 
the sample thus enabling the compilation of 3D image of the microstructure structure. With the 
EBSD it is possible to obtain accurate crystallographic information of different materials. With 
X-ray tomography it is possible to take 3D images of material microstructures at relevant size 
scales without destroying the sample but this is often limited to soft (i.e. less dense) materials 
and relatively thin sections. [1, 2] 

With different image analysis tools one can process and segment the image separating each 
individual phase of the microstructure, for examples in steels the actual steel with 
crystallographic orientation and inclusions (and even inclusion’s separate phases) or other 
defects/secondary phases see Figure 1. These regions with differing properties can be treated as 
separate objects or regions with differing material properties and varying adhesion to be used in 
a Finite Element (FE) model, see Figure 2. 
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Figure 1. Upper row Fracture surface and FIB slice of inclusion. Lower row EBSD map of the 
steel microstructure. 

Some of the challenges in image based modelling are related to image quality and segmentation. 
The segmentation algorithms are mostly tackling the 2D slices of the image instead of ‘seeing in 
3D’. Besides this the image resolution and quality are not always perfect, and the greyscale 
difference (in XCT) between material phases can be small thus the interface between phases can 
be imprecise. This problem does not typically apply to SEM-images although other sample 
preparation related problems might cause concern. The size of the modelled volume, often 
called a Representative Volume Element (RVE) is also crucial. Too small area of a non-periodic 
material microstructure can be misleading.  
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Figure 2. Orientation plot of FE model martensitic steel microstructure containing free surface 
with notch and computation of 20 cycles in strain control with R=-1, different amplitudes: 

Maximum shear stress (of all slip systems) 

Intrinsic property of image based FE modelling is that it is not easily modifiable for examples 
by changing the volume fractions of the material phases, textures or grain sizes. The material 
values can be changed easily, though. The synthetic tessellation based models are more suitable 
for predicting changes in volume fraction, particle size etc. A basic 3D tessellation routine uses 
a cloud of points in a volume of space, and divides the volume into sub-volumes by creating 
boundaries that are at equal distance from each of the closest points. By modifying the routine, 
it is possible to add more complicated features to the model to obtain for examples a 
microstructure resembling and statistically near-equivalent to that of a steel. A combination of 
these two methods is the semi-synthetic models, in which representative objects from an image 
based model are added one after another into a synthetic model in order to obtain statistically 
near-equivalent model.  

Typically the resulting FE models are very large, they may contain tens of millions of elements 
or more. If the material model is also complicated, for examples a viscoelastic or viscoplastic 
model thus utilizing high-performance computing clusters are essential. After solving the model 
the results are analysed by studying distributions and cumulative distributions of stresses and 
strains. These distributions and the contour plots together have revealed that the highest stresses 
in such a model often occur in very small areas and a lot higher than the bulk stress and strain. 
There are several ways the results of these models are utilized. One is to give insight to the 
deformation fracture/damage mechanisms. These models enables the prediction of material 
behaviour (e.g. stiffness and strength) and mechanisms of failure (fracture, creep) of 
heterogeneous materials with less experiments than what would be necessary without 
modelling. In addition, the most suitable material microstructures can even be estimated for 
certain application based on the understanding and phenomena in the microscale. The results of 
these models are also used in prediction of friction and wear of materials under severe loadings 
and environmental conditions, for example wear resistant steels exhibiting Twinning Induced 
Plasticity (TWIP) during operation in a jaw crusher crushing rocks. [2] 

One interesting application area is predicting fatigue in metals. For this special Crystal Plasticity 
Finite Element (CPFE) models are used. In such a model the microstructure and crystal 
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orientations are taken from EBSD images. The CPFE models assume that plastic deformation in 
crystalline material occurs along predetermined orientations along the slip systems typical for 
these crystals. A typical result in such a study is the distribution of the cumulative slip, which 
can be corporated with damage models to predict material behavior as realistically as possible 
and to investigate the effect of different features to the overall deformation behavior. [3, 4] 

An important development is linking the microstructures and strength of the material under 
combined loadings, linking material behavior at laboratory and actual operational conditions. 
This calls for a parallel experimental and modelling study - of the typical structural steels for 
example - in which the bulk loadings in tensile, compressive and shear tests and the probability 
levels of stresses and strains in the microstructure are linked together. The gain is be huge: The 
results enables tailoring of materials to the applications and loadings, as the design engineer 
would have tools for taking into account the microstructure in designing the structural 
component of a machine or a building. 
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Summary. In this paper the regularising properties of the Kachanov-Rabotnov type continuum damage
constitutive model are studied using a simple one-dimensional dynamic problem. It is found that the
width of the localisation zone is independent of the mesh size if the loading rate is below a certain
threshold value.
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Introduction

A well known model to describe continuous degradation of a material is the Kachanov-Rabotnov
model, which was first introduced in 1958 [3, 7]. Since then, continuum damage mechanics has
developed into an important and active field of continuum mechanics, see e.g. [2, 4, 5, 6, 8].

As it is shown in [1], two different formulations either based on stiffness or flexibility ap-
proaches can be considered to be identical when certain relations are fullfilled between the model
parameters. The stiffness formulation of an elastic-damaging material model can be described
by the equations

σ = (1−D)C e : ε, (1)

Ḋ =
1

td(1−D)p

(

Y

Yr

)r

, (2)

where C e is the elasticity tensor, σ, ε stress and strain tensors and : denotes the double dot-
product. For the flexibility formulation the corresponding constitutive equations are

ε = (1 + α)C−1
e : σ, (3)

α̇ =
(1 + α)m

tcd

(

Z

Zr

)n

. (4)

Expressions for the thermodynamic forces Y and Z can be written as

Y =
1

2
ε : C e : ε =

1

2(1 −D)2
σ : C−1

e : σ, (5)

Z =
1

2
σ : C−1

e : σ =
1

2(1 + α)2
ε : C :e ε. (6)
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A reasonable choice for the reference values Yr and Zr is

Yr = Zr =
σ2
r

2E
=

1

2
Eε2r , (7)

where σr = Eεr is a reference stress, and εr is a corresponding reference strain.
Physically the damage variable D can be interpreted as a ratio of the differential damaged

area element to the original area element. However, interpretation of the damage parameter α
is not so straightforward.

It is shown in [1] that the two models yield identical stress-strain responses if

n = r, m = p+ 2n+ 2 and tcd = td. (8)

However, it should be noticed that the damage variables are not identical: D 6= α.

Strain and damage localisation

As in viscoplasticity, the damage evolution equations (2) and (4) contain a material parameter
which has the unit of time, i.e. td or tcd. It is therefore assumed that the apparent viscosity could
regularise the governing equilibrium equations or the equations of motion in dynamic analysis.

For strain-softening in inviscid solids localisation takes place in a plane of zero thickness.
Viscosity added to either plasticity or damage models may bring in the desired non-zero material
length-scale. To investigate the regularising behaviour of the Kachanov-Rabotnov continuum
damage model, a one-dimensional finite element analysis is carried out. A semi-infinite bar
subjected to a linearly increasing displacement boundary condition u(0, t) = ηǫrLt/td has been
analysed with different uniform mesh sizes. The computational domain is chosen to be large
enough that reflections from the other boundary do not occur. The length L is chosen as
L = cetd, where ce is the elastic wave speed ce =

√

E/ρ. A standard central difference scheme
is used to integrate the equations of motion with a constant time-step equal to the critical time
step of the elastic bar.

From the numerical computations presented in [1], it can be concluded that the width of the
localisation zone lloc is constant if

(ε̇td)
2r = constant, (9)

however, the situation is more subtle and here a more detailed investigation of the regularising
properties of the Kachanov-Rabotnov model is carried out.

A localisation study is performed with varying prescribed rate η and the damage localisation
width is defined as the measure of the domain where

D∗ ≤ x ≤ 1, (10)

where D∗ is the damage value at fracture stress for quasi-static constant strain-rate loading

D∗ = 1−

(

2r − 1

2r + p+ 2

)1/(p+1)

, (11)

and it is independent of the aplied strain-rate.
The width of the localisation zone is shown as a function of the loading rate η in figure

1 for three different mesh sizes h = L/100, L/1000 and L/10000 for the cases r = 2, p = 1,
and r = 4, p = 1. As it can be seen, the width of the damage localisation zone is mesh-size
independent if the loading rate satisfies η < 0.75.

In figure 2 the damage profiles for the case p = 1, r = 2, η = 0.5 at times td, 2td, 3td and at
the fracture t = 3.76td are shown for a mesh with h = L/1000.
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Figure 1. Damage localisation width as a function of the prescribed loading rate, r = 2 (lhs), r = 4 (rhs).
In both cases p = 1.
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Figure 2. Damage profiles for the case r = 2, p = 1 and η = 0.5 at times td, 2td, 3td and at the fracture
t = 3.76td. Mesh size is h = L/1000.
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Concluding remarks

A preliminary finite element study on the lcalisation behaviour of the Kachanov-Rabotnov type
continuum damage model is performed. It is found that the width of the damage localisation
zone is independent of the mesh size if the loading rate is below a certain treshold depending on
the material parameters of the model.
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Summary. A two-scale phase field model for fracture is developed from a fully resolved phase field
model using the variationally consistent homogenization technique.
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Introduction

The phase field model (PFM) emerged as an alternative to discrete techniques for fracture
mechanics, and has much gained popularity over the recent years. Apart from not requiring a
priori crack path, the PFM (by construction) handles topologically complex fractures (branching,
merging and curvillinear cracks) both in two and three dimensions. Discrete techniques, like
the eXtended Finite Element Method (X-FEM) on the other hand requires an explicit tracking
of the discontinuity surface such that the corresponding nodal displacements can be enriched.
Incorporating such intricacies for problems with complex fractures could be an arduous task.
Putting forward a simple remark, the phase field variable is akin to the damage variable in
continuum damage mechanics in physical interpretation as well as in mathematical bounds -
zero denoting the virgin (undamaged) state and one corresponding to fully damage state.

In [1], a thermodynamically consistent framework for the PFM for fracture in elastic solids
and its corresponding multi-field finite element approach was proposed. Since, the PFM is an
active field of research, for more literature on the topic, the reader is referred to [1–3] and
references therein.

The Variationally Consistent Homogenization (VCH) technique [4] provides an elegant pro-
cedure to derive pertinent scales for a hierarchical multiscale problem, from the fully resolved fine
scale problem. The critical ingredient in the method lies in the conjunction of the Variational
MultiScale method [5] and the separation of scales adopted in classical (first) order homogeniza-
tion techniques. The Hill-Mandel macrohomogeneity conditions are fulfilled through equivalent
variationally consistent macrohomogeneity conditions. The advantages of such a technique lies in
its applicability in homogenization for a general class of problems and subsequent scale-bridging
strategies.

In this paper, the advantages of the PFM and the VCH are exploited together in order to
develop a two-scale phase field fracture model.

Phase field model for fracture

The PFM for fracture involves solving for a continuous phase (damage)-field ω(x, t) in addition
to the displacement field u(x, t) in the computational domain Ω. For a detailed treatment of
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the underlying energy functional and the derivation of the strong form, the reader is referred
to [1]. The strongly coupled Euler-Lagrange set of equations (strong form) in the absence of
body forces, assumes the generic from:

σ · ∇ = 0, in Ω, , (1)

Gc

l
[ω − l2∆ω]− [(1− ω)ε[u] : E : ε[u]] + η〈ω̇〉− = 0 in Ω, (2)

where σ is the Cauchy stress tensor, Gc is Griffith’s fracture toughness, E is the fourth-order
elastic stiffness tensor and l is a length scale parameter as found in the PFM literature. The term
η〈ω̇〉− is a penalty term ensuring crack irreversibility. Here, 〈·〉− indicates a negative Macaulay
bracket. The coupled field equations (1) and (2) are supplemented with Dirichlet boundary
conditions, {

u = up on Γ
(u)
D

ω = ωp on Γ
(ω)
D for existing cracks,

(3)

and Neumann boundary conditions,{
(1− ω)2σ · n = tp on Γ

(u)
N

Gcln ·∇ω = qp on Γ
(ω)
N

(4)

for a unique solution.

Variationally consistent homogenization of phase field fracture

The variationally consistent homogenization (VCH) approach is adopted to derive a two-scale
(FE2) PFM model for fracture. This involves the introduction of (i) running averages1 in the
weak format and (ii) scale separation via first order homogenization. The detailed mathematical
procedure which is avoided here for conciseness, could be followed from [4].

The macroscale problem assumes the form

∫
Ω
σ : ε[δu]dΩ =

∫
Γ
(u)
N

tpδudΓ (5)

−
∫

Ω
γ · h[δω]dΩ +

∫
Ω

ΦδωdΩ (6)

+

∫
Ω
Q · h[δω]dΩ−

∫
Ω
DδωdΩ−

∫
Ω
D(2) · h[δω]dΩ = −

∫
Γ
(ω)
N

γp · δωdΩ

where the following definitions are introduced

σ := 〈σ〉� = 〈(1− ω)2E : ε[u]〉�, γ := 〈γ〉� = −〈Gcl∇ω〉�,
Φ := 〈Φ〉� = 〈Gc

l ω − (1− d)ε[u] : E : ε[u]〉�, Q := 〈Φ(x− x)〉�,
D := 〈D〉� = 〈η〈ω̇〉−〉�, D(2) := 〈D(x− x)〉�,

(7)

with relevant Dirichlet and Neumann conditions at macro-level, cf. (3), (4). The microscale
problem obtained through the standard VCH procedure is

a
(u)
� (u, ω; δu)− d(u)

� (λ(u), δu) = 0, (8)

1〈·〉� and 〈〈·〉〉� indicate volume and surface averaging respectively.
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a
(ω)
� (ω; δω) +m�(ω; δω) + b�(ω,u; δω)− c�(ω̇; δω) + d

(ω)
� (λ(ω), δω) + 〈〈λ(ω)

δω〉〉 = 0, (9)

−d(u)
� (δλ(u);u) + d

(u)
� (δλ(u); ε · x) = 0, (10)

−d(ω)
� (δλ(ω);ω) + d

(ω)
� (δλ(ω);h[ω] · x) = 0, (11)

δλ
(ω)〈〈ω〉〉 − δλ(ω)〈〈ω〉〉 = 0. (12)

which holds for suitable test functions, δu, δω, δλ(u) and δλ(ω), and where the following notations
are incorporated

a
(u)
� (u, ω;v) := 〈(1− ω)2ε[u] : E : ε[v]〉�, a

(ω)
� (ω; p) := 〈Gcl∇ω ·∇p〉�,

b�(ω,u; p) := −〈(1− ω)ε[u] : E : ε[u]p〉�, m�(ω; p) := 〈ωGc
l p〉�,

m�(ω; p) := 〈ωGc
l p〉�, c�(ω̇; p) := 〈η〈ω̇〉−p〉�,

d
(u)
� (s; t) := 〈〈s · t〉〉�, d

(ω)
� (s; t) := 〈〈st〉〉�.

(13)

Equations (10)-(12) are the prolongation rules/constraints imposed at the micro-level on the
representative volume element (RVE). The unknowns u and ω are split into macro-level and
micro-level contributions through an additive split (first order homogenization),

u := uM[u] + us where, uM[u] = ε[u] · (x− x), (14)

ω := ωM[ω] + ωs where, ωM[u] = ω + h[ω] · (x− x). (15)

Although, the phase field (damage) variable as represented in (15) consists of macro and micro
contributions, it is reasonable to make further simplifications. One such approach would be to
set either the macro contribution or the micro contribution to zero (ωM[ω] or ωs = 0). These
choices allow the construction of a family of two-scale PFMs, based on the explicit or implicit
treatment/upscaling of the phase field variable. Thereby, data abstraction pertinent to the phase
field variable can be exercised in the material law.

Numerical Study

A 2D unit square (in mm) with a fully damaged slit (0.1 mm length) is considered for an RVE
study, cf. Figure 1a & Table 1. A strain-controlled analysis is carried out (Dirichlet [dbc] and
Strongly periodic boundary conditions [spbc]) in the direction perpendicular to the slit axis. As
seen from the average stress-strain response, cf. Figure 1b2, the spbc leads to a softer response,
whereas an artificial stiffening is observed in the case of dbc. Furthermore, the assumption
ωM [ω] = 0 was made in this study. Therefore the damage lives only in the micro-level whereas
its effect can be implicitly incorporated in the macro-level Gauss point stress-strain relation, cf.
Fig.1b.

Conclusion

In this work, a two-scale phase field model for fracture was developed using the variationally
consistent homogenization procedure. This method demonstrated data abstraction capabilities
pertaining to the damage parameter. Based on the relevance of the macro- or micro-scale damage
in the RVE, a family of multi-scaled damage models is established.

2ω : nbc indicates a no flux condition on the phase field.
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(a) RVE problem (b) Avg. stress-strain plot

Figure 1. RVE problem and results from strain-controlled analysis.

Table 1. Parameters for the RVE study

Property Value

RVE 1 mm × 1 mm, Plane strain
λ, µ 131.154 GPa, 80.769 GPa
Gc, l 2700 N/m, 1.5e-2 mm
Max. element size l/2
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Summary. This article proposes a relaxed strategy for the calibration of the Abaqus Concrete Damaged
Plasticity (CDP) model in order to avoid the use of computationally expensive optimization techniques.
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Introduction

The Concrete Damaged Plasticity (CDP) built-in material model available in the Abaqus com-
mercial finite element software, [1], is widely used for beyond design criteria analyses of rein-
forced concrete structures within the Abaqus users community. In particular, the CDP model
has proven to be versatile enough to be used in beyond design basis earthquake analyses, [2, 3, 4],
as well as in benchmark impact test analyses, [5, 6, 7], and full scale airplane crash simulations,
[8].

Originally developed on top of the “Barcelona” yield surface, [9], and later on the isotropic
hardening laws proposed by Lee and Fenves, [10, 11], that separate the internal plastic variables
into a tensile and a compressive part, the CDP model in Abaqus enables also field variable
dependent customized approaches. For example, a user enhanced Abaqus CDP model with
confinement stress dependent compressive hardening evolution and strain rate dependent tensile
softening evolution was proposed in [12]. Such custom material models are, indeed, necessary
in special applications, in case of the previous example, in hard missile impact simulations.

Material model calibration as an optimization problem

Formally, the material model calibration is an optimization problem: “For a given material
defined by its physical properties, Xexp, find material model input data, Xsim, such that the
distance between the experimental test output data, Yexp = T (Xexp), and the simulated test
output data, Ysim = S(Xsim), is minimum.” Figure 1 shows the mapping diagram relative to
material model calibration. One can, therefore, consider the formal (constrained) minimization
problem of with the following objective function: F (Xsim) = dist

(
T (Xexp) , S(Xsim)

)
.

The fundamental difficulty which arises in the context of concrete modeling, is that the
physical properties of a given material, such as cement chemical composition and aggregate size
distribution, are totally unrelated to the material model input data. In case of the Abaqus
CDP model the material input data is a collection of elasto-damage-plasticity parameters that
define the elastic properties, the initial shape of the yield surface and its evolution with the
increase of the internal hardening variables. On the other hand, the mechanical properties of
concrete defined in the Eurocode and the FIB model code, [13, 14], are values that depend on
the experimental setup such as sample size, boundary conditions and loading speed. Typically,
the concrete material experiment set includes uniaxial monotonic or cyclic compression tests to
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Figure 1. The basic structure of material model calibration.

determine elastic and compressive behavior and three point bending tests on notched specimen
as well as split tensile tests to determine tensile behavior. In addition, the experiment set may
include triaxial and/or biaxial tests to determine the failure surface shape and confinement
dependency, as well as tensile and compressive split Hopkinson pressure bar tests to determine
loading rate sensitivity.

Table 1. Mechanical material parameters for concrete defined in Eurocode

Denomination Symbol Unit

Compressive peak strength fcm (MPa)
Total strain at compressive peak strength εc1 (%)
Tensile peak strength fctm (MPa)
Fracture energy Gf (N/m)
Secant modulus of elasticity Ecm (MPa)
Poisson ratio νcm (-)
Confinement increase factor for compressive stress CIF (-)
Dynamic increase factor for tensile stress DIFf (-)
Dynamic increase factor for tensile fracture energy DIFg (-)
equibiaxial to uniaxial initial yield ratio σb0/σc0 (-)
tensile to compressive meridians slope ratio Kc (-)

Therefore, it would be a mistake to consider the Eurocode mechanical concrete properties as
intrinsic material parameters that can be mapped one-to-one to the material model parameters.
Nevertheless, by comparing the contents of Table 2 and Table 1, one can conclude that at least

some of the Eurocode mechanical concrete properties can be used as an initial guess, X
(0)
sim for

the minimization problem defined by the objective function F . On the other hand, it is clear
that carrying out all the experiments cited above is a tough requirement. Therefore, one has to
figure out a relaxed strategy to calibrate the material model with fewer experimental results.

Relaxed strategy for material model calibration

The proposed relaxed strategy for the CDP material model calibration relies on the assumption
that not all of the material model parameters mentioned in Table 2 are equally important.
To define the most important material parameters, the sensitivity of the model to the material
parameters was studied first. Based on observations of the model behavior, an iteration order for
material test simulations is proposed as shown Table 3. For each simulation, model parameters
to be determined by iteration as well as fixed parameters are prescribed. The value for a given
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Table 2. CDP model input parameters

Denomination Symbol Expression

Elastic stiffness modulus E ≈ Ecm

Elastic Poisson ratio ν ≈ νcm
Yield surface shape parameter α =

(
σb0/σc0 − 1

)
/
(
2σb0/σc0 − 1

)
Yield surface shape parameter γ =

(
3(1−Kc)

)
/
(
2Kc − 1

)
Uniaxial compressive hardening function σc(ε

p
c ) = σc0

(
(1 + ac) e

−bc εpc − ac e−(1+k)bc ε
p
c
)

Uniaxial tensile hardening function σt(ε
p
t ) = σt0 e

−bt εpt

Uniaxial initial compressive yield stress σc0 ≈ 0.4 CIF fcm
Uniaxial initial tensile yield stress σt0 ≈ DIFf fctm
Characteristic length lch ≈ average element dimension

Characteristic fracture energy gF = DIFgGF/lch
Ratio µ = maxσc(ε

p
c )/σc0

Compressive hardening parameter ac s.t. kk (1 + ac)
1+k − (1 + k)1+k µk ac = 0

Compressive hardening parameter bc = −
(
k argmaxσc(ε

p
c )
)−1

ln 1+ac
(1+k)ac

Compressive hardening parameter k ∈ {1, 2, 3, . . .}
Tensile hardening parameter bt = σt0/

(
gF + 1

2 (σt0)2/E
)

Dilation angle φ
Eccentricity of Drucker-Prager hyperboloid e

fixed parameter is obtained from an appropriate simulation result on the previous iteration
round. If there is no appropriate simulation result available, then an Eurocode value is applied
as suggested by Table 2.

Table 3. Material test simulation iteration order

Order Simulation Parameter to be iterated Fixed parameters

1. Uniaxial compression E, ν, σc(ε
p
c ) σt(ε

p
t ), γ, α, φ, e

2. Triaxial compression γ, α,CIF σt(ε
p
t ), φ, e, E, ν, σc(ε

p
c )

3. Notched 3 point bending σt(ε
p
t ) σc(ε

p
c ), γ, α, φ, e, E, ν

4. Direct shear φ, e σc(ε
p
c ), σt(ε

p
t ), γ, α,E, ν

5. Split tensile max σt σc(ε
p
c ), γ, α, φ, e, E, ν

Further studies

In order to understand the wider context of this specific study, it is necessary to consider
the experimental reinforced concrete slab impact testing, [15, 16] and concrete material model
development, calibration and validation work, [12, 7] that has been going on in the Technical
Research Centre of Finland (VTT). The primary objective of this research work is to provide
a scientifically validated computational analysis tool that enables large scale airplane crash on
concrete buildings to be performed. The calibration of the concrete material model parameters
is therefore done as suggested in this study using concrete material test results from the VTT
experimental impact testing program. The validation of the simulation model is then carried
out against selected benchmark impact experiments from the same experimental program.
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Summary. In fluid dynamics, reduced-order modeling of the unsteady flows is significant in terms of
future state estimation, feature extraction, and control. The primary goal is to decompose Unsteady fluid
flows, which are nonlinear high-dimensional dynamical systems, to a set of features most important for
future state prediction and control, typically using a dimensionality reduction technique. In this work, a
deep learning based data-driven technique, developed by authors, is used for reduced-order modeling of
the unsteady flow over a pitch oscillating airfoil and a cylinder. A deep autoencoder network is used for
nonlinear dimension reduction and feature extraction as an alternative for Singular Value Decomposition
(SVD), and furthermore, the extracted features are used as an input for Long Short-Term Memory
network (LSTM) to predict the velocity field at future time instances. Training and Testing data are
acquired from numerical simulation. For the airfoil, the data on the dynamic mesh is first interpolated on
a constant mesh using K-Nearest Neighbors (KNN) machine learning algorithm. In the second test case,
cylinder, Reynolds number is reduced with the time to asses the performance of the proposed method
in modeling of a multi-frequency problem. The autoencoder-LSTM method is compared with Dynamic
Mode Decomposition (DMD) as the data-driven base method. Results show that the autoencoder-LSTM
method is considerably capable of predicting the fluid flow evolution, where higher values for the coefficient
of determination R2 are obtained using autoencoder-LSTM comparing to DMD.

Key words: deep learning, Unsteady Flows, Autoencoder, LSTM, ROM

Introduction

Unsteady fluid flows are nonlinear high dimensional dynamical systems that can experience
complex nonlinearities with a wide range of special and temporal features. It is of interest in
the analysis of unsteady fluid flows to extract dominant features and introduce a reduced model
of the complex system based on physically important features. During the last three decades,
several theoretical and methodological advancements made it possible to develop general ideas
in reduced-order modeling of the unsteady flows [1, 2, 3]. Deep learning is a subset of machine
learning methods based on artificial neural networks, which is capable of extracting hidden
information with multiple levels of representation from nonlinear and complex dynamical systems
[4].

Numerical Analysis

Two-dimensional Navier-Stokes equations are solved using Finite Volume Method (FVM). First,
the flow around a pitch oscillating NACA0012 airfoil is simulated at Reynolds number Re =
U∞C/ν of 1.35 × 105, where C is the airfoil chord. Airfoil oscillates sinusoidally (α = αmean +
αamp × sin(Ωt)) about its 1

4 chord with the reduced frequency k = ΩC/2U∞ of 0.1. Figure 1
presented the lift coefficient versus angle of attack obtained from present simulation against
experimental and numerical data [5, 6].
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Figure 1. Lift coefficient versus angle of attack for the pitch oscillating airfoil; comparison of the present
simulation and experimental [5] and numerical [6] data

At the second test case, free-stream velocity U∞ is decreased relative to the time from its
value corresponding to Re = 3900 as U∞ = U∞,Re=3900/t, where t is the time. Variation of lift
coefficient besides training and testing data sets are shown in Figure 2. The gradual decrease of
the free-stream velocity weakens the vortex shedding and leads to the change in its frequency.
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Figure 2. Variation of Lift coefficient with time for the second test case

Methodology

For the first test case, the snapshots are constructed from the velocity domain were −1c < x < 7c
and −4c < y < 4c. This leads to a snapshot containing 99473 nodes. In this regard, the input
and output layers of the autoencoder have 99473 nodes. Mapping and demapping layers consist
of 500 nodes, and the bottleneck layer contains 50 nodes. Figure 3a shows a general architecture
of an autoencoder network; it consists of an encoder part that converts a given velocity domain
to a code layer, and then decode it back to reproduce the input.

Encoder

Decoder

Ve
lo

ci
ty

 F
ie

ld

Re
pr

od
uc

ed
 V

el
oc

ity
 F

ie
ld

99473, Linear 99473, Linear

500, Tanh

50, Linear

500, Tanh
Bottleneck 

Layer

a) b)

Figure 3. The architecture of autoencoder network

Sequences of features, which are the reduced values, are used as inputs of the LSTM network.
It brings the ability to have a perspective about the future of a dynamical system just from
past measurements, and it can be used to design a proper actuator to control the system’s
unsteadiness.
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Results and Discussion

For each test case, autoencoder and LSTM networks are trained through 200 epochs. R2 and
MSE obtained from the autoencoder network and the autoencoder-LSTM method in prediction
of the training and testing data are reported in Table 1 together with the results acquired from
the DMD.

Table 1. Coefficient of determination R2 and MSE for the autoencoder Network, autoencoder-LSTM
method, and DMD

Test 1 (Train) Test 1 (Test)

R2 MSE R2 MSE
Autoencoder Network 0.9873 5.04× 10−3 0.9872 5.14× 10−3

Autoencoder-LSTM 0.9986 5.42× 10−4 0.9983 7.13× 10−4

DMD 0.9198 3.70× 10−2 0.8981 4.64× 10−2

Test 2 (Train) Test 2 (Test)

R2 MSE R2 MSE
Autoencoder Network 0.9994 8.21× 10−8 0.8967 2.61× 10−6

Autoencoder-LSTM 0.9996 5.74× 10−8 0.8577 4.05× 10−6

DMD 0.9937 4.58× 10−7 0.0826 2.00× 10−5

Figure 4. First 6 features of the unsteady flow over the pitch oscillating airfoil extracted by the autoen-
coder network

Figure 5. First 6 features of the flow for the second test case extracted by the autoencoder network

Figures 4 and 5 illustrate the first 6 features extracted by the autoencoder network from the
velocity field for the two test cases, respectively. For both cases, autoencoder network is able to
extract features feasible for the reconstruction of the data where the R2 values for the testing
data of the first and second test cases are equal to 0.9872 and 0.8967, respectively (Table 1).
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Figure 6. LSTM prediction and autoencoder output against real data at 3 different points in the wake
of the oscillating airfoil
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Figure 7. DMD prediction with SVD rank truncation of 50 against real data for 3 different points in the
wake of the oscillating airfoil

To depict the performance of the LSTM network in the prediction of the velocity evolution
through the time from the reduced data of the autoencoder network, variations of velocity
at three different points in the wake of the oscillating airfoil. Figures 6 and 7 represent the
performance of the autoencoder-LSTM method and the DMD with rank truncation of 50 in
prediction of the velocity variations at aforementioned points for the first test case.

Conclusion

In this paper, a new data-driven reduced-order method based on deep learning is used for future
estate estimation of the complex unsteady fluid flows. Results are compared with the results
of the well-known DMD method. The performance of each method is assessed with the use of
the coefficient of determination R2 and MSE. For both cases, the autoencoder-LSTM network
obtains more accurate results in the prediction of the velocity field in future time instances.
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Summary. In this contribution, we present an explicit estimator for the error induced by using nu-
merical model reduction for finite element analysis of porous media in the context of computational
homogenization. The linear quasi static problem is considered, whereby it is possible to derive guaran-
teed bounds of the error in the solution. Two approaches for numerical model reduction are implemented
and compared: a reduced basis derived from snapshots of training simulations using Proper Orthogonal
Decomposition, and a reduced basis solved based on spectral decomposition for an auxiliary decoupled
problem.

Key words: numerical model reduction, computational homogenization, a posteriori error estimation

Introduction

In order to model the effective mechanical behavior of fluid saturated porous rock, computa-
tional homogenization can be adopted whereby the the coupled porous media problem is studied
on the microscale. The resulting macroscopic behavior can under certain assumptions be de-
rived as apparently visco-elastic. Hence, the dissipative mechanism on the macroscale can be
related to the seepage of pore fluid on underlying microscale. If the length scales are sufficiently
separated, the effective viscoelastic properties can be derived from quasi-static consolidation on
Representative Volume Elements (RVEs) on the resolved microscale.

Jänicke et al. [1] derived the effective viscoelastic model numerically by using numerical
model reduction for the poro-elasticity problem on the RVE. Replacing the finite element prob-
lem on the RVE by its reduced counterpart showed to be very efficient. However, the relation
between the reduced basis and the applied loading is crucial, and it is hard to a priori ascertain
a sought level of accuracy.

In this contribution, we extend the work in [1] by presenting an a posteriori error estimate for
the error introduced by adopting a reduced basis as compared to the full-fledged finite element
problem.

The RVE problem

Inside the RVE Ω� we consider the linear consolidation problem in terms of solving for a dis-
placement field u and the pore pressure p from

−σ ·∇ = 0 in Ω�, (1)

dtΦ +w ·∇ = 0 in Ω�, (2)

where σ is the (total) Cauchy stress tensor, Φ is the stored fluid per reference volume of mixture
and w is the seepage of migrating fluid.
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We introduce computational homogenization by imposing linear boundary conditions on the
displacement field and homogeneous pressure boundary conditions,

u = ε̄ · [x− x̄] on ∂Ω�, (3)

p = 0 on ∂Ω�, (4)

where x̄ is the centroid of the RVE and ε̄ is the imposed macroscopic strain that acts as data for
the space-time problem. Finally, the implicit history-dependent macroscopic stress is evaluated
as

σ̄ = σ̄{ε̄} :=
1

|Ω�|

∫
Ω�

σdV. (5)

Numerical Model Reduction

Following [1], we first make use of the linearity and time-invariance of the balance of momentum
equation (1). This allows for (formal) elimination of the displacement field from the problem.
Secondly, we introduce a reduced approximation for the pressure field on the form

p(x, t) ≈ pR(x, t) =

NR∑
a=1

pa(x)ξa(t), (6)

where {pa}NR
a=1 is a reduced basis of pressure modes, to be discussed in more detail below, and

{ξa}NR
a=1 are the pertinent time-depending coefficients. The elimination of the displacement field

discussed above allows for a priori computation of displacement modes, such that

u(x, t) ≈ uR(x, t) =
∑
i,j

û(ij)(x)ε̄ij(t) +

NR∑
a=1

ua(x)ξa(t), (7)

where û(ij) are the sensitivities w.r.t. macroscopic strain component ε̄ij , and each ua is the
sensitivity w.r.t. its pertinent pressure mode pa.

Finally, based on the a priori computed fields, a numerically derived macroscopic model is
obtained, that can be used in macroscale analyses.

A posteriori Error Estimation

We follow along the lines of Ekre et al. [2], and derive guaranteed upper and lower bounds for
the approximations introduced in (6) and (7). More specifically, the space-time weak format of
the problem is utilized to construct a suitable “energy” norm of the solution. As an extension,
the procedure of goal-oriented error estimation are elaborated to derive guaranteed bounds on
arbitrary linear output functionals. In particular, we are interested in assessing the accuracy in
the macroscopic stress σ̄ defined in (5).

The derived estimator is guaranteed independently of the origin of the pressure basis. How-
ever, using spectral decomposition (cf. below) allows for tightening of the error bounds.

Different strategies to extract the reduced basis

We shall now elaborate on the different possibilities of constructing a suitable basis for the pore
pressure approximation. First, we follow the original implementation in [1], which was based on
Proper Orthogonal Decomposition (POD) of snapshots from training simulation. The procedure
is known to be very efficient in terms of generating small errors already for a low number of
modes. This is indeed observed, and acknowledged by the computed estimator. However, we
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see that the effectivity index, i.e. the ratio between estimated and true error, deteriorates when
adding pressure modes.

As a second alternative, we consider basis functions from spectral decomposition of the
decoupled pressure equation, omitting the coupling to the displacement field. Since these basis
are not directly related to the problem at hand, we see that convergence of the error w.r.t.
number of included number of pressure modes is much worse than for the POD basis. However,
selecting the modes with the lowest eigenvalues allow for sharper estimates of the error.

The two different strategies are investigated for a few numerical example RVEs in three
spatial dimensions for heterogeneous poro-elastic properties, illustrating the findings above.
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Summary. We analyze and verify different approaches towards hygrothermal design of a building en-
velope.

Key words: heat and moisture transfer, structural health, arctic engineering

Introduction

Requirements towards energy efficiency oblige designs to create envelopes of high thickness, es-
pecially in Nordic countries and northern parts of Russia. These structures have larger water
vapour resistance and may lead to structural fault performance. The presented study identifies
different approaches towards hygrothermal design of building envelope. The current market of-
fers number of numerical tools allowing multidisciplinary simulations in engineering. Structural
design must meet many requirements determined by international and national norms. The
aim of reducing energy consumption brings multiple challenges in terms of structural durabil-
ity, sustainability and health indoor environment. Health indoor environment and structural
durability significantly depend on overall hygrothermal performance of the building. The hy-
grothermal conditions have major impact on material properties in short as well as long terms.
The building physics approach towards building design consists in controlling an extensive mois-
ture and amount of interstitial condensate water. Steady-state manual calculation of condensed
and/or evaporated water is usually performed by Glaser method. Besides the traditional ap-
proach an advanced analyses can be used. The structure subjected to the presented study is
represented by a log-house envelope. The envelope structure consists of a double-log layer filled
with mineral wool insulation.

Boundary conditions

The outdoor boundary conditions within the presented study are represented by a typical test
year from the Finnish Meteorological institute (https://ilmatieteenlaitos.fi). The indoor relative
humidity is formed according to Finnish national code RIL 107-2012 [1] from outdoor conditions
considering the service use of the structure. The indoor temperature is defined constant at
210C. The numerical approach was created in 2-dimensional environment, however representing
1-dimensional hygrothermal problem (Figure 1).
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Figure 1. Studied structure, numerical model and location of monitored points in dynamic simulation.

Manual approach

The Glaser method was used for calculating the water phase transition to provide interstitial
hygrothermal conditions and to identify rate of condensation and evaporation. The calcula-
tion was performed for each month using average temperatures and relative humidity. Material
properties needed are thermal conductivity λ and water vapour diffusion resistance µ (Table 1).
The process consists of 6 steps; 1) defining characteristic temperatures on surfaces and inter-
faces, 2) evaluation of water vapour pressure at saturation, 3) determining internal and external
water vapour pressures, 4) plot the water vapour pressure at saturation against equivalent thick-
nesses, 5) plot water vapour pressure at the internal and external surfaces and connecting them
with a straight line and 6) if condensation or evaporation appears, the rate of condensation or
evaporation is calculated.

Table 1. Material properties

steady state dynamic
material µ[−] λ[W/mK] ρ[kg/m3] Cp [J/kgK] DW80[m

2/s] W80 [kg/m3]

softwood 200 0.12 400 1400 0 60.00
mineral wool 1.3 0.04 60 850 0 1.79

Steady-state numerical approach

The structure was also subjected to numerical steady state simulation by using multidisciplinary
Finite Element Method numerical tool Comsol. This approach is analogous to the manual cal-
culation, except the simulation allows more detail water vapour diffusion profile at any location
of analysed structure. The relative humidity profiles for every month is illustrated in the Figure
2. It can be seen, the humidity significantly exceeds 80% inside the external log layer from
October to March. Although, no significant condensed water is found, high humidity may lead
to a biological growth and cause damage and/or further deterioration of building material.
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Figure 2. Steady relative humidity each month.

Table 2. Mould index Mindex obtained at observed points

analysed points
1 2 3 4 5 6

Mindex 0.73 0.01 0.78 2.12 4.43 0.00

Dynamic simulation approach

Time-dependent simulation was performed using Wufi 2D. It represents numerical tool for hy-
grothermal simulation in building components in one and two dimensional environment [2].

The material properties needed for the dynamic simulation are thermal conductivity λ, water
vapour diffusion resistance µ, density ρ, heat capacity Cp, liquid transport coefficient DW and
moisture storage function W (Table 1.). The simulation was performed for a period of 1 year
with 1 h time-step. Therefore, 8760 time-steps were performed. The hygrothermal conditions
were monitored at 6 points and the boundaries were defined as illustrated in the Figure 1.

Interpretation of results

The presented approaches require different results’ interpretations. The manual calculation
focuses on identifying interstitial condensation and evaporation based on water vapour pressure
profile. The benefit of applying numerical approach consists in ability to define location of critical
conditions anywhere over the structural profile. However, the indoor comfort highly depends on
temperature, humidity and air flow. Specific combinations of temperature and humidity promote
mould growth which may lead to allergic reactions and other health issues for inhabitants, as
well as influence the behavioural properties of structural elements [3]. A mathematical model
allowing identification of biological growth is represented by Mindex value in the Finnish Mould
Growth Model [4]. The input data for mould growth risk are temperature, relative humidity,
material sensitivity and exposure time. Therefore, the dynamic simulation is required to identify
the hygrothermal conditions in time. The model defines favourable conditions for mould growth
that are represented by temperature between 00C and 500C and relative humidity is limited by
80 % or 85 % depending on material sensitivity. The maximum Mindex values obtained at each
monitored point are summarized in the Table 2. The Figure 3 represents graphical illustration
of hygrothermal conditions and Mindex development during the analysed year.
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Figure 3. Graphical illustration of hygrothermal conditions (red dots indicate period of 1 hour when
structure is exposed to favourable conditions for mould growth initiation and blue dots denote conditions
unfavourable for mould growth) and Mindex development at point 4.

Conclusion

The presented study analyses three different approaches towards hygrothermal performance of
log-house envelope. The manual approach shows small amount of condensed water within one
month. The remaining periods achieve water vapour diffusion without any interstitial conden-
sation. Therefore, it is assumed, that the structure allows the condensed water to dry out. The
numerical steady-state analyses determines higher relative humidity inside the outdoor log layer.
Hence, the hygrothermal conditions were monitored via the time-dependent analyses and the
results were subjected to the Finnish Mould Growth Model. The humidity inside the outdoor
log increases during the analysed period and exceeds 80 % for most of the analysed year.
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Summary. This article describes the MFrontInterface.jl package which aims at allowing mechanical
behaviours generated by the MFront code generator to be used in JuliaFEM. MFrontInterface.jl is
build on top of the MFrontGenericInterfaceSupport library.

Introduction

This article describes the MFrontInterface.jl package which aims at allowing mechanical be-
haviours generated by the MFront code generator to be used in JuliaFEM. MFrontInterface.jl
is build on top of the MFrontGenericInterfaceSupport library. See Figure 1 for calrification.

JuliaFEM

MFrontInterface.jl

MFrontGenericInterfaceSupport
Shared library generated by

MFront' generic interface
Implementation of the behaviour'

constitutive equations

MFront

Figure 1: Sofware layers involved

A short introduction to MFront and MGIS

Overview of the MFront code generator
The behaviour of solid materials is modelled using so-called constitutive equations which de-
scribe how the internal state of the material evolves. Those state variables can describe many
microstructural aspects of the material (i.e. grain size, dislocation density, hardening state) or
be considered as purely phenomenological.

More precisely, after discretization in time of the problem, the solver provides an estimate
of the local change of loading of the material (for example the strain increment for small strain
behaviours) to the constitutive equations which allow:

• The computation of the values of the internal state variables at the end of a time step
knowing their values at the beginning of the time step.
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• The local thermodynamic forces (for example the stress for small strain behaviours) which
affects the material equilibrium at the structural scale.

This step is called behaviour integration. In the following, the term behaviour becomes a
synonym for constitutive equations. MFront is an open-source and cross-platform code generator
dedicated to various material knowledge, such as material properties, behaviours and simple
physical models, see [1, 2] for details. MFront is developed in the framework of the PLEIADES
project which is co-developed by CEA, EDF and Framatome.

MFront provides a set of domain-specific languages on top of C++ which allows the code of the
constitutive equations to be fairly close to the mathematical expressions. Concerning mechanical
behaviours, which is the most exciting aspect of MFront regarding this paper, MFront allows the
user to implement, small and finite strain behaviours, as well as cohesive zone models. Isotropic
and orthotropic behaviours are supported.

Thanks to the notion of interfaces, code specific to various mechanical solvers can be gen-
erated. As of version 3.2, MFront provides interfaces for e.g. Cast3M, code aster, Europlexus,
Cyrano, CalculiX, Abaqus/Standard and Abaqus/Explcit, AMITEX FFTP, Ansys. The gener-
ated code is then compiled a shared library which can be plugged in the targeted solver.

An interface named generic has been introduced in version 3.2. Behaviours generated with
the generic interface are meant to be used through the MFrontGenericInterfaceSupport
library, which is described hereafter. MFront has been carefully designed to meet the high-
quality standards of the nuclear industry. In particular, an extensive set of unit tests has been
set up to guarantee its reliability.

Overview of the MGIS library
This MFrontGenericInterfaceSupport library (MGIS) aims at proving tools (functions, classes,
bindings, etc...) to handle behaviours written using MFront generic interface, see [3–5] for details.
Those tools are meant to be used by (FEM, FFT, etc.) solver developers. Permissive licences have
been chosen to allow integration in open-source and proprietary codes. In particular, the MGIS
library provides:

• functions to load behaviour from a shared library. Along with a pointer to the function
implementing the behaviour, various metadata are also retrieved, such as the number of
state variables, their nature (scalar, tensorial), their name. Those metadata can be used
to properly allocate the storage of the internal state variable, check that the user input
file is consistent (i.e. does not try to initialize a non-existing variable), provides additional
information on which variable can be post-processed.

• data structures to store the material states at the beginning of the time and at the end of
the time step for one integration points or a set of integration points. Views data structure
are available to use externally allocated memory.

• functions to perform behaviour integration over one time step. If a set of integration points
is handled, parallelization of the behaviour, integration can be handled by the MGIS library.

MGIS is written in C++ and provides bindings for C, Fortran 2003, python and Julia [6]
thanks the CxxWrap.jl library. The Julia bindings are written in pure C++ and are barely
usable per se.

The MFrontInterface.jl package

The MFrontInterface.jl package wraps MGIS’ Julia bindings to make its usage much more
convenient and consistent with the Julia language, in other words make MFront material models
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available in JuliaFEM [7–12]. BinaryBuilder.jl package is used for binary dependencies, which
makes the package installation easy and convenient, like shown below:

(v1.2) pkg> add MFrontInterface

julia> using MFrontInterface

After adding and using, the following example shows how to load a behaviour in a shared
library and how to retrieve some of the metadata:

julia> b = load("data/libBehaviour.so","Norton", mbv.Tridimensional)
behaviour Norton in shared library data/libBehaviour.so for modelling hypothesis
Tridimensional generated from Norton.mfront using TFEL version: 3.3.0-dev.

julia> get_parameters(b)
11-element StringsVector
epsilon
YoungModulus
PoissonRatio
....

julia> get_external_state_variables(b)
1-element VariablesVector
Temperature

Figure 2: Stress-strain curve of MFront material model calculated with MFrontInterface.jl

The MFrontInterface.jl package already allows calling the behaviour on one time step.
This has been used to build the stress-strain curve depicted in Figure 2 for a simple plastic
behaviour following a kinematic hardening rule introduced by Chaboche et al. [13].

69

www.juliafem.org
https://github.com/JuliaPackaging/BinaryBuilder.jl
https://github.com/JuliaFEM/MFrontInterface.jl
https://github.com/JuliaFEM/MFrontInterface.jl


Conclusions

This short extended abstract shows the potential of MFrontInterface.jl package. Development
has started but like all open source projects we would appreciate any kind of contributions
gracefully. Next step is to get all modified and created packages registered. This will guarantee
a nice user experience.
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Modeling of non-coulomb friction under fretting conditions
part 2
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Summary. In non-Coulomb friction, tangential force increases when fretting motion approaches its
extreme position. Core principle and experimental background of the model was presented in NSCM-29.
Here the work was developed further so that the non-Coulomb friction model was upgraded to consists
of dissipating and non-dissipating parts. Once the model was ready, it was used to analyse experimental
fretting conditions of bolted join fretting apparatus. Model successfully captures the non-Coulomb friction
phenomenon; however initial results show that constant Coulomb model produces already good enough
results considering resulting slip amplitude and highest tangential tractions.

Key words: Fretting, friction, modeling

Introduction

Fretting has been described as the action of reciprocating surface sliding. It causes fretting fa-
tigue and fretting wear. Friction is typically high in fretting conditions producing high tangential
traction and high cyclic surface stresses, which can cause fatigue damage. Surface degradation
caused by fretting wear may also accelerate fretting fatigue damage. [1, 2, 3]

Certain materials such as quenched and tempered steel exhibit so called non-Coulomb fric-
tion, where the tangential force increases when fretting motion approaches its extreme positions.
In fretting experiments the non-Coulomb friction produces ’hook’-shaped fretting loops. In ideal
Coulomb friction, tangential force remains at a constant during gross-sliding [4]. Furthermore,
the non-Coulomb increase in friction can be substantial, because about 50 % of total tangential
force may originate from non-Coulomb friction [5, 6]. Non-Coulomb friction can originate from
tangential fretting scar interactions leading to inclined sliding within the fretting interface [5, 6].
Schematic illustration of this is shown in Fig. 1.

Figure 1. Tangential fretting scar interaction and inclined sliding scheme
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Ideal Coulomb friction models are used commonly in analysis of frictional interfaces, both
in industrial and academic cases. However, this may lead to inaccuracy if non-Coulomb friction
prevails. This study is continuation of the work that was first presented in NSCM-29, where the
non-Coulomb friction model was implemented in Abaqus using its FRIC-subroutine [7]. Here
the non-Coulomb friction model and the subroutine is updated and used to analyse contact
conditions of fretting bolted join test setup presented by Juoksukangas et al [8]. The FE-model
of the bolted join cantilever beam fretting conditions was modeled by Mäntylä et al [9] utilizing
different kind of subroutine; however the same mesh and loads are re-used in this study.

FRIC-subroutine

The modeling of non-Coulomb friction was done using Abaqus and its FRIC-subroutine, based
on penalty friction formulation. FRIC-replaces Abaqus native tangential traction calculation.
FRIC enables to formulate friction as a function of contact parameters such as slip amplitude,
which may be unknown beforehand. Friction (also COF ) is assumed to compose of two parts,
dissipating part (COFd) and non-dissipating part (COFnd). Experiments have shown that the
non-Coulomb component of friction increases approximately exponentially as a function of slip
per slip amplitude [6, 7]. Because non-Coulomb friction originates from inclined sliding under
ideal friction at asperity scale [6], it is assumed here that the angle of inclined sliding (α) varies
exponentially as a function of slip (u) and slip amplitude (ua) according to Eq. 1.

α(u, ua) = α0 ∗ (u/ua)2 (1)

In inclined sliding the total resistance against sliding was presented in [6], from which resis-
tance against ”up hill” and ”down hill” sliding can be derived (Eqs. 2-3):

COFp = (COF0 ∗ cos(α) + sin(α))/(cos(α) − COF0 ∗ sin(α)) (2)

COFm = −(COF0 ∗ cos(α) − sin(α))/(cos(α) + COF0 ∗ sin(α)) (3)

From Eqs 2-3, dissipating and non-dissipating components of friction can be derived as
follows (Eqs. 4-5):

COFd = abs(COFp − (COFp + COFm)/2) (4)

COFnd = (COFp + COFm)/2 (5)

All of the frictional dissipation is caused by COFd, while COFnd is more like elastic spring.
In the subroutine COF0 was given as ideal friction value of 0.3. Angle α0 was taken from
measurements [6] representing quite high angle that is necessary to produce the observed non-
Coulomb effect. Used COF0 and α0 yield COFnd of about 0.4 in maximum. COFd was modeled
as normal penalty friction being linearly dependent on the value of elastic slip (1 µm), based on
standard Abaqus formulation, while COFnd was solely dependent on the u/ua-ratio. Schematic
illustration of these COF components is shown in Fig. 2.

Furthermore, the slip history is recorded in the subroutine so that slip amplitude can be
calculated. Basically, the subroutine tracks when slipping reverses. Once a new slip reversal is
found, tracking of subsequent slip reversals commences using the recently obtained slip reversal
as new origin. Slip is determined to reverse when the slippage starts to reduce. By doing
so, a fresh value for slip amplitude is obtained every half cycle. Because slip amplitude can
develop during each load cycle and in each nodes, it follows that multiple load cycles needs to
be simulated before solution stabilizes.
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Figure 2. Dissipating and non-dissipating friction components

FE-model and results

The idea of FE-model is shown in Fig. 3, where two beams are bolted together and clamped
from the left side. The right end of the beam assembly is reciprocated up and down resulting
in fretting in the close proximity of the bolt join. Total of 20 fretting cycles were simulated in
each FE-run. Slippage results are also shown in Fig. 3 for used non-Coulomb implementation
and constant COF of 0.3 and 0.7 conditions.

Figure 3. FE-model and slippage results from non-Coulomb (A,B) and ideal friction simulations (C,D)
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During the non-Coulomb friction simulation the slippage reduces gradually as shown in Figs.
3A&B. Solution is largely stabilized already after 10 load cycles. Results show that contact slip-
page in non-Coulomb conditions match closely to constant friction conditions in the beginning of
analysis Figs. 3A&C, when non-Coulomb model has not activated yet, and in the end of analysis
when non-Coulomb model has fully stabilized 3B&D. In stabilized non-Coulomb conditions, the
tangential traction will be identical to constant COF conditions at end of loading steps when
the stresses are at maximum because all points exhibit slippage and equivalent COF is nearly
the same in both cases. Although stress history may be somewhat different, it is expected that
resulting fatigue loads will be very similar between ideal Coulomb and non-Coulomb conditions.
Hence it appears to be so that ideal Coulomb model reproduces slippage and stresses of non-
Coulomb friction assuming that ideal COF corresponds to maximum of COFd +COFnd of the
non-Coulomb model. This is convenient considering engineering applications because it seems
that standard ideal Coulomb assumption is good enough; however, more simulations is required
to validate this fully. Results may also depend on used geometry and contact type, and used
parameter values.
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Summary. Vibration absorbers are common assumed non-flexible with a single vibratory mass directly
connected to the structure by a spring-dashpot element [1]. In practical applications the absorber may
possess inherent dynamics and with a non-trivial absorber-to-structure connection. A general system
reduction procedure is proposed, in which the absorber motion is described relative to the structure
displacement for the absorber damper mechanism fully locked. For this transformation of the absorber
equations, the corresponding structural eigenvalue problem used for modal expansion corresponds to the
system for which the absorber structure is connected to the host structure by rigid damper links. The
coupled modal equations are derived and supplemental coupling coefficients are identified, which may
be calibrated to take into account the interaction with residual structure and absorber modes. The
presentation will illustrate the calibration procedure and its accuracy by numerical examples.

Key words: Structural dynamics, modal analysis, tuned mass dampers, vibration absorbers

Structural equation

Consider a full flexible structure with a tuned vibration absorber attached. The discretized (FE)
equations of motion for the combined system can then be written as

Mq̈+Cq̇+Kq = f (1)

in which the displacement vector

q =

[

us

ua

]

(2)

is conveniently separated into the structural degrees-of-freedom (dofs) in us and the absorber
dofs in ua, whereby the system matrices are separated as

M =

[

Mss Msa

MT
sa Maa

]

, K =

[

Kss Ksa

KT
sa Kaa

]

, C =

[

Css Csa

CT
sa Caa

]

(3)

with symmetric ss and aa block diagonals and the coupling array sa. The external force is
assumed to only act only on the structure: f = [fTs , 0

T ]T . The mode shapes used for design and
calibration of the vibration absorber are often simply based on the ss-system as

(

− ω2
sjMss +Kss

)

usj = 0 (4)

for a particular structural vibration mode j with natural frequency ωsj and mode shape vector
usj. However, this straight forward approach might activate other non-resonant modes, when
the absorber damper is applied differently than the absorber stiffness. Furthermore, the problem
in (4) without absorber is not consistent, as it is not recovered in either of the undamped limits
with vanishing or infinite absorber damping.
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Relative absorber displacement

To recover an appropriate generalized eigenvalue problem without damping, the absorber damp-
ing must be either vanishing or infinite. For vanishing absorber damping, the absorber mass
will typically vibrate because of the absorber stiffness. For the infinite absorber damping, the
associated rigid damper links will connect the absorber to the structure at the damper locations,
for which the absorber might still have residual motion for a flexible absorber with local damper
mechanisms. Thus, it is important to redefine the structure as the actual structure plus the
residual absorber part that is free to vibrate when the damper connection is fully rigid.

As the absorber displacement is conveniently expressed by its displacement relative to the
structural motion for fully locked damper links, the absorber motion will consequently vanish
when the absorber damping approaches infinity. This condition implies that the relative absorber
displacement is given as

va = ua +C−1
aaC

T
saus = ua +BT

saus (5)

introducing the correction array
Bsa = CsaC

−1
aa (6)

which is independent of the damper magnitude and thus refers to a connectivity or participation
array that represents the absorber’s damper attachment on the structure.

When eliminating the absolute absorber displacement ua by (5), the equation of motion (1)
can be written in terms of the relative displacement va as

mssüs + cssu̇s + kssus +msav̈a + ksava = fs (7)

maav̈a + caav̇a + kaava +mT
saüs + kT

saus = 0 (8)

The corrected structural matrices and arrays in (7) and (8) follow from the variable transfor-
mation as

mss = Mss −
(

MsaB
T
sa +BsaM

T
sa

)

+BsaMaaB
T
sa

kss = Kss −
(

KsaB
T
sa +BsaK

T
sa

)

+BsaKaaB
T
sa

css = Css −
(

CsaB
T
sa +BsaC

T
sa

)

+BsaCaaB
T
sa = Css −CsaC

−1
aaC

T
sa

(9)

while the absorber matrices remain unchanged,

maa = Maa , caa = Caa , kaa = Kaa (10)

The two coupling arrays in (7)-(8) are corrected by the absorber matrices

msa = Msa −BsaMaa

ksa = Ksa −BsaKaa
(11)

while the damping coupling array csa = 0 vanishes because va in (5) is specifically introduced
as the relative absorber motion with respect to the absorber damping attachment.

The correction CsaC
−1
aaC

T
sa in the expression for css in (9) implies that for most calibration

purposes, the structural damping matrix css ≃ 0, only leaving absorber damping via the matrix
caa in (8). This simplifies the subsequent absorber tuning.

Modal representation and equations

As explained previously a consistent modal expansion assumes infinite absorber damping, which
corresponds to va → 0 in (7)-(8). This recovers the two eigenvalue problems

(

kss − ω2
smss

)

ūs = 0 ,
(

kaa − ω2
amaa

)

v̄a = 0 (12)
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for the structure and absorber, respectively. Thus, the motion of the structure and absorber are
expressed by the modal representations in terms of the mode shape vectors in (12),

us =

ns
∑

s=1

ūsps , va =

na
∑

a=1

v̄ara (13)

in which ps and ra are the modal coordinates for the structure and absorber modes, respectively.
The modal expansions are substituted into the equations of motion (7) and (8). When the

structure equation is pre-multiplied with ūT
s and the corresponding absorber equation by v̄T

a ,
the modal equations can upon use of the orthogonality relations from (12) be expressed as

mss
jj p̈j +

Ns
∑

s=1

cssjsṗs + kssjjpj +

Na
∑

k=1

msa
jkr̈k +

Na
∑

k=1

ksajkrk = fj (14)

maa
kkr̈k +

Na
∑

a=1

caakaṙa + kaakkrk +

Ns
∑

j=1

msa
kj p̈j +

Ns
∑

j=1

ksakjpj = 0 (15)

with index j = 1, 2, . . . , Ns ≤ ns and k = 1, 2, . . . , Na ≤ na representing the number of modes
included. The modal mass and stiffness are given as

mss
jj = ūT

j mssūj , kssjj = ūT
j kssūj , maa

kk = v̄T
k maav̄k , maa

kk = v̄T
k kaav̄k (16)

while the corresponding damping coefficients are

cssjs = ūT
j cssūs , caaka = v̄T

k caav̄a (17)

The coupling coefficients are finally determined by similar expressions,

msa
ja = ūT

j msav̄a , ksaja = ūT
j ksav̄a , msa

ks = v̄T
k m

T
saūs , ksaks = v̄T

k k
T
saūs (18)

Absorber calibration

In the present case only a single absorber mode Na = 1 is assumed, thus neglecting any damping
coupling with other absorber modes. The structural motion is furthermore omitted, whereby
cssjs = 0. In the frequency domain, the modal equations then reduce to

(−ω2mss
jj + kssjj )pj + (−ω2msa

j1 + ksaj1)r1 = fj (19)

(−ω2maa
11 + iωcaa11 + kaa11

)

r1 + (−ω2msa
1r + ksa1r)pr = 0 (20)

in which the coupling with other structure modes has been neglected as well. This leaves
the modal equations in (19)-(20) for damping of vibration mode j = r. The equations are
conveniently normalized by the modal structure stiffness kssrr, which gives

(−ξ2 + 1)p + (−ξ2µ∗ + κ∗)r = f (21)

(−ξ2µ+ iξβ + κ
)

r + (−ξ2µ∗ + κ∗)p = 0 (22)

in which p = pr and r = r1 to simplify the notation. The non-dimensional frequency is defined
as

ξ = ω

√

mss
11

kssrr
(23)

while the absorber mass, stiffness and damper ratios are introduced as

µ =
maa

11

mss
rr

, κ =
kaa11
kssrr

, β =
caa11

√

mss
rrk

ss
rr

(24)
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with the two coupling ratios given similarly as

µ∗ =
msa

r1

mss
rr

, κ∗ =
ksar1
kssrr

(25)

Hereby the modal system of equations contain five absorber parameters, two more than for
the classic absorber format [2]. These supplemental coupling ratios µ∗ and κ∗ may be chosen to
represent the modal interaction with other structure and absorber modes, [3]. The characteristic
equation can be written as

(µ− µ2
∗
)ξ4 − ξ2(κ+ µ− 2µ∗κ∗) + κ− κ∗ + iξβ(−ξ2 + 1) = 0 (26)

which recovers the classic equation for the tuned mass absorber when µ∗ = µ and κ∗ = 0. It
may be verified that for an infinite damper ratio β → ∞, the characteristic equation recovers
the correct solution ξ = 1. The equal modal calibration from [2, 4] then leads to the following
optimality conditions

κ = µ− µ2
∗
+ κ∗ , β =

√

2(µ2
∗
+ κ∗(1− 2µ∗))(µ − µ2

∗
) (27)

which depends on the coupling ratios µ∗ and κ∗.

Results

The presentation will demonstrate the calibration procedure for the present absorber format.
Initially the two coupling ratios µ∗ and κ∗ are tuned so that the characteristic equation (26)
matches the correct two natural frequency ratios ξA and ξB associated with β = 0, obtained
by solving the full flexible FE problem. Subsequently the actual absorber stiffness ratio κ
and damper ratio β are calibrated from (27) for a given mass ratio µ. Because the coupling
coefficients are properly adjusted with respect to the flexible vibration absorber placed on a
flexible structure, the accuracy of the present procedure is illustrated by a numerical example.
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Summary. This article presents a geometrical optimization with JuliaFEM and Gmsh. The 
structure of the optimization loop and chosen methods and approaches are described and 
discussed. An eigenfrequency optimization example case with two different geometrical bars is 
shown. Results demonstrate that JuliaFEM and Gmsh provide a useful and fast platform for 
geometrical optimization.  

Keywords: JuliaFEM, Gmsh, optimization, eigenfrequency analysis 

Introduction 

JuliaFEM is a free, open-source finite element solver that enables users to efficiently simulate 
mechanical systems with speed and accuracy [1]. When using JuliaFEM with tools like Gmsh, it 
is possible to create parametric geometries and mesh through Julia. Gmsh is a free tool for 3D 
finite element mesh generation. It can be used to generate a CAD geometry and includes some 
post-processing possibilities. Gmsh is designed for efficient and parametric geometry creation. 
Gmsh itself has also solver, but in this case, JuliaFEM is used instead. Gmsh also has a 
graphical user interface and script files, but it can also be used efficiently through C++, C, 
Python, and Julia API. [2] 

Used together, JuliaFEM and Gmsh, enables the user to create, iterate, and optimize 
geometrical forms fast. Created geometry, based upon input parameters, is generated and 
simulated inside the optimization loop. Depending on the design, input parameters are set and 
limited to a range which creates a realistic shape. The maximum number of parameters is not 
clearly defined, but keeping the number relatively small helps to observe more apparent changes 
in the goal parameters. In this text, a model is created to optimize two simple geometrical bars, 
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shown in Figure 1, to match their eigenfrequencies to a specific range. JuliaFEM has been 
previously shown to be a reliable solver for eigenfrequency problems [3].  

Figure 1. Bar geometry with a) circular and with b) square cross-section. 

Material and Methods 

In a geometrical shape optimization case, it is essential to set appropriate boundary 
conditions for the input parameters. Input parameters should always produce a valid geometry. 
In simple terms, this means that for example, you should limit the hole diameter inside the bar 
to be smaller than the bar diameter. It is also possible to chain these parameters together to have 
more robust geometrical input. After the input data is defined the geometry itself is formed. In 
this case, this is was done with Gmsh. Gmsh has its parametric geometry generation tools that 
use simple parametric inputs to generate different geometrical options. These include basic 
shapes, features, and operations, such as solids, fillets, and Boolean operations. Gmsh has its 
visualization option, which is useful when first creating a valid geometry. With the boundary 
conditions applied, it is possible to generate an input geometry and a good quality mesh quickly. 

Mesh is saved as an external file to ensure documentation, but it is also conceivable to use 
the created mesh directly in JuliaFEM, without the need for external files. However, this was 
not implemented in this test but could be considered as a possible further development.  

Julia optimization toolbox contains a wide variety of optimization algorithms. They are 
roughly divided into two categories based on the requirement of function derivative. Most 
conventional algorithms are based on the known change of the optimized function. In this case, 
the result of the optimization is obtained through simulation. It is not feasible to estimate the 
derivative of the object in question but to consider the problem as derivative-free. Julia’s JuMP 
package includes many optimization solvers and problem classes [4]. In this case, a derivate free 
optimization is used, namely COBYLA, (Constrained optimization by linear approximation). 
COBYLA is a numerical optimization method for constrained problems where the derivative of 
the objective function is not known, invented by Michael J. D. Powell. The algorithm iteratively 
approximates the actual problem with linear models. An approximate linear programming 
problem is solved during the iteration, and the possible optimal solution is achieved. This 
solution is evaluated using the original objective and constraint functions. This creates a new 
point in the optimization space. Based on this solution, the new iteration is made, and progress 
on the solution is checked. If the solution converges to a specific value or when the number of 
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maximum iterations is reached, the final solution is given [5] The structure of the optimization 
loop is shown in Table 1. 

Table 1. Steps in optimization loop. 

Step Action 

1 Generate input parameters for optimisation algorithm. 
2 Create geometry based on inputs. 

3 Mesh geometry (and export).  

4 Read mesh into JuliaFEM. 
5 Create JuliaFEM model. 
6 Solve JuliaFEM Model. 
7 Return result to the optimization algorithm. 

Results and discussion 

The result of the optimization shows that it is possible to quickly iterate through several 
possible parameters sets and find optimized results. Example result shown in Figure 2. A single 
iteration step takes only a few minutes. In this case, the created model had multiple local 
minima. The effect of this was observed by the sensitivity for the starting parameters. By 
selecting suitable parameters, it was possible to obtain an optimized solution. 

Figure 2. Examples of both bars first eigenmode. 
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Summary. During inelastic buckling and according to the deformation theory of plasticity, 
Poisson’s ratio varies in the elastoplastic region of stress-strain curve as well as the other 
parameters such as secant modulus and strains. In this study, the inelastic buckling equation of 
plate are perfectly developed due to variation of Poisson’s ratio when the plate is subjected to 
multi axial loads. Using generalized integral transform, this equation is solved for simply 
supported plate and the results is compared with those in which Poisson’s ratio is ½ (the 
incompressible value for isotropic materials). The results show that the inelastic buckling loads 
is generally decrease and for thicker plate, the differences significantly decrease.  

Key words: inelastic buckling, deformation theory, Poisson’s ratio, Ramberg-Osgood curve 

Introduction 

Deformation theory of plasticity and Incremental theory of plasticity are two main theories to 
describe inelastic buckling of plates. In deformation theory of plasticity, the total strain is related 
to the total stress by the secant modulus [1] and variations of strains and stresses during buckling 
are used to develop inelastic buckling equation of plate. In the previous studies, it is supposed 
that in the nonlinear (elastoplastic) region of stress-strain curve, the material is incompressible 
and then, Poisson’s ratio is always ½ (for isotropic materials). As a result, the variation was being 
only applied on the strains and secant modulus in the stress-strain relations (Hook’s low) [2]. For 
a nonlinear stress-strain curve such as the Ramberg-Osgood representation [3], Poisson’s ratio 
changes from the elastic value to the incompressible value of ½ as the stress is increased above 
the yield stress [4]: 

𝜈 =
1

2
−

𝐸௦

𝐸
൬

1

2
− 𝜈൰ (1) 

 
where E is the Young’s modulus, 𝐸௦ is the secant modulus and 𝜈 is the elastic value of 
Poisson’s ratio. Then, it is necessary to apply variation to Poisson’s ratio as well as the other 
parameters. Recently, variation of Poisson’s ratio has been applied and some imperfect equations 
have been developed for inelastic buckling of plates [1]. 

In this paper, using J2 deformation theory of plasticity [1] and applying variation to all 
mechanical properties, the perfect equation for inelastic buckling of plates under multi axial 
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stresses is developed. Using generalized integral transform method [5], the equation is solved for 
simply supported plate and effect of variation of Poisson’s ratio on the inelastic buckling load is 
compared with those of previous studies.  

The inelastic buckling of plate 

Figure 1 shows a rectangular plate with a×b×t dimensions under biaxial and shear stresses. Using 
the stress-strain relations, with general nonlinear materials properties, 𝐸௦ and 𝜈 (Eq. 2) and 
applying variations on them, Eq. (3) will be obtained which shows the moment-curvature 
relations. 

 

Figure 1. A simply supported plate subjected to multi axial stresses. 
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where 𝛿𝜀௫ =
డమ(ఋ௪)
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 (𝛿𝑤 is variation of plate deflection in z 

direction) and 
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and 𝐸௧ is the tangent modulus. Eqs. (4) show that as expected, the bending stiffness matrix (Eq. 
3) is symmetric.   

Substituting Eqs. (3) in the plate equation of equilibrium [6], the inelastic buckling equation 
of plates will be obtained: 
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(6) 

 

The results and discussion 

The generalized integral transform method can be used to solve Eq. (6) and obtain the buckling 
stresses in the different modes [5]. Table 1 shows the buckling stresses of plates that have been 
already considered in Ref. [7]. In these examples, a=b=20 in. and the Ramberg-Osgood curve 
model are used with 𝐸 = 10psi, 𝜎. = 10ହ psi and n=10. In Ref. [7], Poisson’s ratio is always 
supposed to be ½ and a finite element method has been used to find the buckling load. In Eq. (6), 
𝜈 = 0.3 and 𝜈 is obtained from Eq. (1). Table 1 shows three load cases: uniaxial, biaxial and shear 
loadings. To validate the analytical method with those of finite element method [7], the buckling 
stresses are obtained again when 𝜈 = 0.5 as shown in Table 1.  

The results show that due to variation of Poisson’s ratio, in both uniaxial and shear loadings 
the inelastic buckling loads decrease, although increasing the plate thickness, decreasing the 
differences. However, for biaxial loading and thicker plates, the inelastic buckling load is 
overestimated, while the differences is not significant similar to the previous load cases.   
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    Table 1. Buckling stress of simply supported plate under three load cases 
 

Thickness 

(in.) 

Critical Stress (psi) 
Diff. 

(%) 

Thickness 

(in.) 

Critical Stress (psi) 
Diff. 

(%) 
Present 

[7] 
Present 

[7] 
ν < 0.5 ν = 0.5 ν < 0.5 ν = 0.5 

𝜎௫ ≠ 0, 𝜎௬ = 𝜏 = 0 𝜎௬ = 𝜎௫, 𝜏 = 0 

0.77867 54610 65000 65000 16 1.12500 56482 65000 65000 13.1 

0.85800 65405 75000 75000 12.8 1.29980 70218 75000 75000 6.4 

0.96449 78124 85000 85000 8 1.60231 83657 85000 85000 1.6 

1.12019 90991 95000 95000 4.2 2.08258 95162 95000 95000 0.17 

1.36678 102903 105000 105000 2 2.77755 105550 105000 105000 0.52 

1.76752 113907 115000 115000 0.95 3.78569 115462 115000 115000 0.4 

2.39053 124413 125000 125000 0.47 5.26002 125298 125000 125000 0.24 

𝜎௫ = 𝜎௬ = 0, 𝜏 ≠ 0 

0.4 33288 39336 39414 15.5 0.6 52635 56565 56604 7 

0.5 45275 50251 50313 10 0.7 57910 60760 60792 4.7 

 

Conclusion 

Applying variation to Poisson’s ratio, an analytical method is developed to obtain inelastic 
buckling load of simply supported plate subjected to multi axial loads. The results show that the 
buckling load usually decreases if the variation of Poisson’s ratio is considered, although 
increasing the plate thickness, decreasing the differences for all loading cases.   
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Summary. Gradient- and density-based topology optimization algorithms for steady-state dynamic
problems in acoustics or structural vibrations involve the definition of artificial material parameters in
hard scattering or void regions. In this paper, a new model is proposed that remedies some observed
problems with existing models.
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Introduction

Gradient- and density-based topology optimization inherently involve the definition of one or
more artificial material parameters in hard scattering or void regions (fictitious domains). For
static structural problems an artificial low stiffness is assigned to void regions in order to avoid
a singular stiffness matrix. Generally, the choice of this minimum value is trivial and results
regarding the accuracy of the corresponding solution has been provided [1].

Dynamic problems such as in acoustics, elastic wave propagation and steady-state structural
vibrations involve a second material parameter (eg. mass density). The effect of the choice of
the corresponding value in the fictitious domain is non-trivial and less studied, eg. [2] discusses
the occurrence of low frequency structural resonances in the void region for structural vibration
problems and [3] discuss similar issues for acoustic wave propagation problems.

Here, we present a new model based on the transition from the wave equation to the diffusion
equation in the fictitious domain. The model is developed using a 1D simplified model and will
be extended for topology optimization problem is forthcoming works.

A 1D model

We consider a 1D model for wave propagation as illustrated in Fig. 1. with wave propagation
modelled by the general one-dimensional wave equation:

(Au′)′ + ω2Bu = 0, (1)

L

I

R

T

1 3

2

Figure 1. A 1D wave propagation example. I is an incoming (plane) wave, R is the wave reflected at the
interface to the inclusion and T is the wave transmitted through the inclusion.
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Figure 2. Wave transmission coefficient τ = |t|2 shown vs. wavenumber parameter γ = ωL/(2πcinc) for
different values of the impedance contrast parameter σ =

√
AincBinc/(AB).

in which ω is the wave frequency and A and B are generalized material parameters. We consider
the reflection and transmission of an incident wave (I) by an inclusion (shaded gray) of length
L. Both ends of the domain are considered open. In domain 1 the wave motion is specified by:

u1(x) = e−i
ω
c x + rei

ω
c x, (2)

in which c =
√
A/B is the wave speed. The first part represents the incoming wave (of unit

magnitude) and the second part represents the reflected wave with (complex) reflection factor
r. In domain 3 we have the transmitted wave:

u3(x) = te−i
ω
c x, (3)

where t is the (complex) transmission factor.

The standard inclusion model

In standard models the two material parameter inside the inclusion domain, denoted Ainc and
Binc, are chosen as sufficiently large parameters. In Fig. 2 we show the resulting transmission
coefficient τ = |t|2 plotted versus the non-dimensional wavenumber parameter γ = ωL/(2πcinc)
for different values of the impedance contrast parameter σ =

√
AincBinc/(AB). The resonance

effect discussed extensively in [3] is noted from the figure for γ = 1/2 (and multiples hereof).
As also suggested in [3] this problem can be effectively avoided by tailoring the value of γ by
modifying the ratio between Ainc and Binc (thus changing the wave speed within the inclusion
cinc =

√
Ainc/Binc).

Here, the main focus is on another problematic issue with the existing model which is illus-
trated in Fig. 3. Here, we plot the wave field within the 1D domain with the inclusion spanning
the x-axis from 0.2 to 0.8. Left column shows results for a low frequency wave and right col-
umn plots are for a wave of higher frequency. The top row is for γ = 0.05 and bottom row
for γ = 0.25. Additionally, all plots include results for two different values of the impedance
contrast.

Noteworthy is that regardless of the value of the contrast parameter, frequency and γ param-
eter chosen there will always exist a finite wave field inside the inclusion. The wave amplitude
decays, at most, linearly as seen in the top row figures for the high value of σ. Thus, with the
traditional model we have little flexibility to control of the field level present in the inclusion.
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Figure 3. Wave amplitude vs. position in the domain with the inclusion spanning the x-axis from 0.2 to
0.8. Left column: low frequency wave, right column: high frequency wave. Top row: γ = 0.05, bottom
row: γ = 0.25.

Figure 4. Wave transmission coefficient τ = |t|2 shown vs. wavenumber γ = ωL/(2πcinc) for different
values of the material contrast parameter σ =

√
AincBinc/(AB).

The proposed model

In order to avoid the limitations of the existing model, we propose to model the inclusion domain
using the diffusion equation rather that the wave equation:

(Aincu
′)′ − ω2Bincu = 0, (4)

which provides a solution of the form

u2(x) = ae
− ω
cinc

x
+ be

ω
cinc

x
, (5)

ie. in the form of an exponential decaying and growing term.
In Fig. 4 we see the corresponding plot of the transmission coefficient τ . We note that the

new model effectively eliminates the resonance problem. The transmission decays smoothly
when increasing the wavenumber parameter γ and also when increasing the impedance contrast
parameter σ.
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Figure 5. Wave amplitude vs. position in the domain with the inclusion spanning the region from 0.2 to
0.8. Top row: γ = 0.25, bottom row: γ = 1.0.

More importantly, Fig. 5 shows the corresponding amplitude field. It is now seen that the
proposed model offers an effective way of controlling the decay of the amplitude inside the
inclusion by increasing the wavenumber parameter γ.

Conclusions

In the present paper a new contrast model for material parameters in fictitious domains has
been proposed for use in steady-state dynamic problems. The model is based on the diffusion
equation and effectively removes the presence of resonance in the fictitious domain and allows
for a tunable reduction of the field amplitude within the domain.
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Summary. In computational research in the engineering sciences, the established knowledge, meth-
ods and tools from computer science, information technology, and software engineering together present
a huge untapped potential for productivity. We look at version control, which is a family of tools used by
software industry professionals to automatically track code changes. This enables reliable archival and
comparison of existing versions, as well as eliminates the human error of accidentally resuming work
from an outdated base version. Modern tools facilitate teamwork even simultaneously on the same file.
Finally, beside source code, the same tools can manage LATEX sources for articles and books just as well.
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Introduction

Computational research in the engineering sciences can be roughly described as one part me-
chanics, one part mathematics, and one part software engineering. However, in academia,
knowledge of effective and efficient tools and practices for software development is often in
practice limited to departments or faculties of information technology or computer science. In
the engineering sciences, software engineering is often performed in an ad-hoc manner, even
though creating solvers for numerical simulations forms an integral part of the work.

Software development is a complex endeavor. Even though libraries provide much of the
algorithmically complex low-level functionality of any real-world numerical solver (e.g. sparse
linear equation system solvers, eigenvalue solvers), an element of engineering is always re-
quired for the custom code that combines the components into a useful application. Occasion-
ally one also needs to engineer custom algorithms, and implement mathematical models (e.g.
new material models) for which no software yet exists. To develop software effectively and ef-
ficiently, one stands to benefit from the established knowledge, methods and tools in computer
science, information technology, and software engineering.

Theoretical and practical advances such as functional programming and automated test-
ing increase program reliability, leading to less time spent finding bugs. Following established
principles of code organization, patterns and idioms improves code structure, increasing main-
tainability and reusability.

However, as software engineering is a large topic, here we concentrate only on a specific
family of tools that significantly enhances the trackability of code changes, and by extension,
in a scientific context, the verifiability of already performed research, namely version control.
Specifically, we focus on a popular distributed version control system (DVCS) called git.

The main benefits of version control include the reliable archival and identification of each
existing version, as well as convenient comparison between any two existing versions. It also
eliminates the human error of accidentally resuming work from an outdated base version. In
the rare case where that nevertheless happens, it is possible to extract just the changes, and if the
base versions are similar enough, to automatically re-apply the changes onto the correct base
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version. Version control also facilitates collaboration, by making it convenient to review and
merge changes from multiple sources, even if several people edit the same file simultaneously.
In the merge step, human intervention is required only if the edits conflict with each other;
otherwise the system can merge automatically.

Version control not only keeps source code versioning manageable, but it can help with
managing versioning and collaboration also with other kinds of text documents, such as LATEX
sources for scientific papers and books. Some scientific editor software, such as the graphical
LATEX-based word processor LyX, actually employ git as a change-tracking engine.

Understanding version control

To understand and appreciate version control, we must first understand the spirit of software
engineering. The aim is to produce correct software quickly. It is no surprise the prevailing
opinion in the software engineering community is that an integral part of an effective strategy
to achieve the aim is to automate as much of the process as reasonably possible.

For example, static code analyzers and static type checkers automatically check program
source code, helping to eliminate certain classes of human error before the program is even run.
Build systems automate the compilation process, helping to make it repeatable. Automated
tests detect regressions, i.e. situations where changes to the code cause a previously discovered
and already fixed issue to reappear. Packaging systems automate the installation process of the
software for end users. Usually such installation packages are generated automatically. For a
sampling of developments in software engineering automation, see [3].

In certain contexts, even programming itself can be automated. Code generation techniques
shift the responsibility for writing repetitive, formulaic parts of a program to the computer. A
classic example is GNU Bison, which automatically generates parsers for programming lan-
guages, based on a high-level formal grammar specification. In a sense, the Lisp community
has taken this idea to its logical extreme. The Racket programming language, a modern Lisp
in the Scheme family, is mostly built in itself [4], via syntactic macros: essentially, code that
writes code. (This train of thought leads to a related recurring theme in software engineering,
abstraction, but that is beyond the scope of this presentation; see e.g. [5].)

During its lifetime, software typically needs to be able to change, so that it can be extended
to fulfill new requirements, as well as to allow fixing any issues discovered during use. This
meta-requirement introduces the need to track code changes, and identify versions, reliably.
The essential motivation behind version control is to automate this.

Following [1], version control systems (VCS) can be roughly divided into three generations,
where the main historical trend is toward increased concurrency. First-generation systems had
no networking support, and operated on one file at a time. Second-generation systems stored
the version history on a centralized server, and were able to operate on multiple files. Third-
generation systems work in a distributed manner and operate on changesets. During the past
decade, the third-generation systems git and mercurial (hg) have both become widely used, and
are currently the de facto standard tools for version control.

In a distributed version control system (DVCS), the full version history is stored locally on
the user’s computer. The local histories (forks) belonging to different users may evolve inde-
pendently, and each may have multiple branches. Branches can be selectively synchronized
between different forks. Often, in practice, a master fork is kept (in git usually called origin and
stored on a network-accessible server), but this is not strictly required. In DVCS, the purpose
of the master fork is just to help synchronization between users, and to have an official master
in projects where that is desirable. Network access is required only during synchronization.

An important development from the last decade is the rise of a kind of social media for
version control. Many open-source projects use a collaborative revision control site such as
GitHub or BitBucket as their main source-code distribution channel. From a social perspective,
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Figure 1. Some git concepts. In git, changesets are first-class. The transient labels master and feature in
the middle are the actual branches; the content of a revision is constructed (roughly) by following the
arrows. The label moves when a new commit is added. HEAD is the tip of the currently active branch.

this has a major impact, for two reasons. First, having a centralized service and a unified pre-
sentation format makes it much easier for prospective users to search for open-source software.
Secondly, these sites host additional services beyond just third-generation version control. For
example, GitHub provides a public online issue tracker for any project that wants one, as well
as pull requests (PR), a collaboration feature where users may upload changes made to some-
one else’s project and request for a merge. (Not to be confused with git request-pull, which
is the original command-line feature without the added social functionality.) Transparency and
repeatability of science stand to benefit from openly publishing any custom code that acts as a
basis for scientific claims; collaborative revision control sites can thus be useful for science, too.

Core concepts of the git version control system

The version of the directory tree of the project that is currently being worked on forms the
working tree. The version history is stored separately, so even if a file is deleted from the working
tree, it remains (essentially forever) in the history. The working tree is separate from the HEAD
revision, which is the latest version in the history (on the branch that is being worked on).
Figure 1 illustrates some key concepts with the help of a simple example version history.

When we edit the files in our project as usual, the working tree changes. The history remains
as-is. When we are done with a particular set of changes (a changeset), and wish to record it into
the history, we first add our changes to the staging area. This is an intermediate storage location,
separate from both the history and the working tree, used for preparing the next changeset.

The basic unit of recording a set of changes is the commit. It is also a verb; the act of recording
a changeset into the history is called committing. The system automatically records information
such as which lines of which files were changed, by whom, and when. This allows the VCS
to construct, upon request, the full history of a file or a particular line in a file, showing who
changed it and when. (In git, this feature is called git blame.)

It is possible to compare any two revisions (including the working tree and the revision
currently in the staging area) to see what has changed. This is called diffing; the automatically
generated comparison report is the diff. Diffing is particularly valuable for both collaboration
and debugging. A diff can also act as a patch: a set of changes to be replayed later.

To facilitate later searching, when committing, we must enter a descriptive commit message.
These messages are automatically saved into a searchable commit log. For first-time users of
version control, the need to manually describe every changeset may appear foreign and intim-
idating. Why such bureaucracy?

The unfortunate fact is that commit messages cannot be automatically generated, since their
whole purpose is to explain what a particular changeset means to a human. This is precisely
where their advantage lies. Describing our commits gives us searchability and auditability,
while using terms meaningful to us. Having to be explicit about the meaning helps bring clar-
ity to the thought process, helping to isolate conceptually separate changes (for presentation
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purposes, as well as being able to easily look at or pick just those changes later). And in any
case, it is cheap. It is reasonable to commit no more often than when a changeset can be con-
sidered reasonably complete. Usually one short line is enough as the message, such as “add
feature X”, “resolve issue Y”, “fix off-by-one error”, “clean up the implementation of Z”. Note
the wording; it is customary to write the first line of the message in the imperative mood. This
is short, to the point, and quick to read when browsing the log.

For organization purposes, or if concerned about losing work in progress, it is possible to
branch off a given revision, and commit into the branch. The default branch is, by convention,
usually named master. If a project is large enough to have separate stable and development
branches, the latter is usually named develop. A project may have any number of branches.
Typically additional branches are used for developing new features (one branch per feature).

Changes made in one branch can be merged into another branch, even if the files in the
merge target branch have changed in between. This is what makes feature branches workable.
Git is smart enough to figure out simple position changes (so line numbers in a patch do not
have to be exact, as long as the context can be found). When not, the system reports the merge
conflict to the user, showing both versions of each conflicting section, and asks the user to fix
the conflict manually and then tell git to continue merging.

To clean up the commit log before merging a branch, it is possible to amend a commit to fix
any typos in the message, or to squash several commits into one. The general convention is to
not change any published commits, but any commits that are still local only can be reformatted
this way before publishing them.

To communicate with a network-accessible server (or, in general, with another fork of the
same project), one may push or pull changes. The other end is called the remote. Pulling updates
the local fork using data from the remote (retrieving changes made by others), while pushing
(assuming we have write access to the remote) updates the fork on the remote with the data in
the local fork (publishing our changes).

The primary user interface of git is a set of command-line utilities. Graphical frontends
exist, but many offer only basic features. However, Emacs has Magit, with excellent feature
coverage and convenient single-keypress commands.

In conclusion, version control can offer trackability and auditability not only for software
projects, but also for scientific authoring. git is a widely used third-generation, distributed
version control system (DVCS), suitable for both single-user and collaborative use cases. In the
presentation, we will look at some examples.
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Summary. Computation of the fatigue strength in high-cycle loading may require high computer power.
In this paper, backward difference schemes and discontinuous Galerkin time-integration methods are
compared in solving a continuum based high-cycle fatigue model.
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Introduction

Ottosen, Stenström and Ristinmaa proposed in 2008 [7] a concept for a macroscopic high-cycle
fatigue (HCF) model which treats all stress components in a unified manner and is suitable for
arbitrary loading histories, thus liberating from the definition of an equivalent cycle, which is a
severe drawback of many existing HCF models. Another benefit of the continuum based model
is its natural extensibility to anisotropy, low-cycle fatigue, stochastic and stress gradient features
[5, 3, 4, 8]. The basic ingredients of the continuum based HCF model are the endurance surface
and the evolution equations for its movement and the fatigue damage. In [7] the endurance
surface for isotropic fatigue is defined as

β =
1

σ−1
(σ +A tr(σ)− σ−1) = 0, (1)

where the effective von Mises type stress is

σ =

√
3

2
tr(s −α)2, (2)

where s = σ− tr(σ)I is the deviatoric stress tensor and I the identity tensor. σ−1 is the fatigue
stress amplitude for a fully reversed loading and A describes the slope of the Haigh diagram.
More complex forms of the endurance surface have been published, see [1, 2]. Movement of the
endurance surface is described by the deviatoric tensor α, for which a Zieger type evoluion is
chosen:

α̇ =

{
C(s −α)β̇, if β, β̇ ≥ 0,

0, otherwise.
(3)

The evolution equation for damage development is postulated as

Ḋ =

{
g (β,D) β̇, if β, β̇ ≥ 0,

0, otherwise.
(4)

Here, the original [7] damage function g(β) = K exp(Lβ) is used. The three additional material
parameters C,K and L can be calibrated from the S-N curves.
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Integration

As in the implicit integration of plastic constitutive models, the trial value of the rate of the
endurance surface is determined assuming that α̇ = 0 , which results in

β̇trial =
1

σ−1

(
3

2

(s −α)

σ
+AI

)
: σ̇, (5)

where : denotes the double dot product A : B = tr(ABT ). If βtrial ≥ 0 and β̇trial ≥ 0, then
loading occurs, and taking the α-tensor evolution into account results in

β̇ =
1

σ−1 + Cσ

(
3

2

(s −α)

σ
+AI

)
: σ̇. (6)

In contrast to standard plasticity, the evolution does not occur if βtrial ≥ 0 and β̇trial < 0.

Compared methods

Backward difference schemes

The backward difference formula method of order k (BDFk) applied to α̇ can be written as

α̇(tn,αn) ≈
k∑
j=0

cjαn−j =: f(tn,αn) (7)

where the constants cj arise from the derivatives of Lagrange interpolation polynomial basis
functions `j at tn, which can be expressed as

`j(t) =
∏

0≤i≤k
i6=j

t− tn−i
tn−j − tn−i

, (8)

cj := `′j(tn). (9)

Discontinuous Galerkin approach

Let us denote a generic evolution equations as

ẏ = f (y), (10)

where y = [σ, ω]T and f = [f σ, fω]T . The discontinuous Galerkin method of degree q can be
stated as follows [6]. For a given time interval In = (tn, tn+1], find y (polynomial of degree q)
such that ∫

In

(ẏ − f (y))T ŷdt+ JynK
T ŷ+

n = 0. (11)

For the test functions ŷ , polynomials of degree q are used. The notations y+
n and y−n are the

limits y±n = limε→0 y(tn ± |ε|), JynK = y+
n − y−n . These notations are illustrated in Fig. 1.

Concluding remarks

A preliminary study for the assesment of the backward difference and discontinuous Galerkin
time integration methods for an evolution equation based high-cycle fatigue model has been
performed.
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Summary. We optimize the rise of a tied-arch bridge based on minimization of the total costs 
for the whole bridge structure. The optimal height of the arch is found by using the force length 
method and integral calculations over the tied-arch structure. Load-bearing material quantities 
are determined for the arch rib, the tie structure and the hanger cables. The cost increase 
depending on the height of the arch has been taken into account. The optimal rise l/h is shown to 
be dependent on the span length of the arch. 

Key words: bridge engineering, structural optimization, tied-arch bridge 

Introduction 

The maximum span length of arch bridge has reached 552 m and longer spans are designed. The 
modern construction material is steel, often used as composite structure with concrete.  

    The arch itself is the major player in the structure. Generally used l/h-relation of arches has 
been in the range of 4 to 7, as in Ref. [1]. Actually, many research papers refer to traditionally 
used rises of arches being as optimal values. 
   The shapes of arches follow often geometric well-known shapes like circle, catenary, parabola 
and ellipse. Combinations of these shapes are used, too. In the bridges one should f orget old 

tradition and use only momentless shapes for permanent loads, as in Ref. [2].  
   Parabolic arch is used in this study. The accuracy is acceptable for preliminary studies, but for 
the final design it is not recommended because of the bending moment as in Ref [3]. In reality  

the distribution of vertical loads carried by the arch is never uniform, which is needed for 
momentless parabola. 

Optimal Rises of Tied-Arch Bridges 

Optimal rise for minimum material quantity for constant stress 

The minimum of the axial force length of the momentless structure gives also the minimum 
material quantity of the structure. In the force length method, the axial forces of the form-found 

momentless structure are multiplied by the lengths of the structure members, as in Ref [3].  The 
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material quantities of each structure component can be calculated dividing the force length by 
the stress used and multiplying this by the material density. 
                                                             

 
                                  Figure 1. Parabolic tied arch. 

 
The sum of force lengths of the parabolic tied-arch is 

 

=2  (1+ ) dx +   + 2q )  

           =  ) +   ) + (  )                          (1) 

 

                 

The minimum of the force length function, when q = 1 and l = 1, is found from the equation  

                                                                                                 (2) 

 

The optimum rise of parabolic arch for the minimum load bearing material in tied-arch bridge is 
 

                                                   and then                                                      (3) 

as in Ref.  [4].                                                         
 

 
Figure 2. Relative load bearing material quantity in tied-arch structure, the minimum at  

 l/h = 2,309 when equal stresses are used. 
 
                         

Optimal cost-effective rise using fixed unit prices 
 
The cost-optimized height h is found from the condition 
 

                                         =  )+  ) + ( ) = 0.                                    (4) 
                                                                                      

and the optimal height   of the tied-arch becomes 
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                                                               = )                                              (5)            

 

where  
l is the span length of the arch, 

is the unit cost of arch rib divided by the assumed stress level,  

  is the unit cost of the tie divided by the assumed stress level 
 is the unit cost of the hangers.  

 
The relative cost as function of the rise l/h is shown in Fig. 3. 
 

                               
Figure 3. Relative costs of the tied-arch structure in relation to l/h using the stresses and fixed 

unit prices as given in the example below, minimum at l/h = 2,795. 

Optimal cost-effective rise in relation to the height of arch 

We suppose that the unit price in steel structures at a bridge site from the ground level price, to  
the height H [m], increases by e [€/kg]. We assume also that the price increases in  the second 
power of the height h. The relative cost function of the steel of the arch is then 

                                                   

                                                                                                                         (6) 

and 

                                                                       .                                                               (7) 

 
Denoting e/σcH

2 = k, we get the total cost function of tied-arch bridge as 
 

                                            = )                                         

 

                                                     + .                                           (8) 

 

Setting  = 0, we get a quartic equation for the optimal height h 

 

                      (9) 

                                                         

 
Example 
 

Calculate the cost-optimized heights of the tied-arch bridge when the unit price of steel at bridge 
site, on ground level, is 8 €/kg and at the level of 100 m 15 €/kg. The price increases 
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quadratically (Figure 4).  The unit price used for ties and hangers are 20 €/kg and 30 €/kg, 

respectively. The stresses used for permanent loads are: arch 150 MPa, tie 700 MPa and 
hangers 450 MPa.  
 

                          
Figure 4. Unit price of steel in relation to the height. 

 
As an example, when the span length is 500 m, the l/h-value for minimum costs is 4,0. Figure 5  
shows the optimum l/h-values in relation to the span length calculated using parabolic arch. 
 

                                

Figure 5. Cost-optimum l/h in relation to span length when the price of steel in the arch   
depends on the arch height (in the example case).  

 

The optimal rise relation of tied arches, with vertical hangers, depends on the span length . The 
calculations for cost minimum rise relation for tied arch bridges from spans to  150 m to 500 
results l/h-relations from 3,0 to 4,0 respectively. The optimal heights are higher than 
traditionally used. 
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Summary. A 2-D micropolar equivalent single-layer (ESL), first-order shear deformation (FSDT) plate
model for 3-D lattice core sandwich panels is developed.
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Introduction

We develop a 2-D micropolar equivalent single-layer (ESL), first-order shear deformation (FSDT)
plate model for 3-D lattice core sandwich panels. First, 3-D lattice core unit cells are modeled
by classical beam and shell finite elements. A discrete-to-continuum transformation is applied
to the microscale unit cells and their strain and kinetic energy densities are expressed in terms of
the macroscale 2-D plate kinematics. The hyperelastic constitutive relations and the equations
of motion (via Hamilton’s principle) for the micropolar plate are derived by assuming energy
equivalence between the 3-D unit cells and the 2-D plate. The Navier solution is developed for
the 2-D micropolar ESL-FSDT plate model to study the bending, buckling, and free vibration of
simply-supported lattice core sandwich panels. In a line load bending problem [1], a 2-D classical
ESL-FSDT plate model yields displacement errors of 34–175% for face sheet thicknesses of 2–10
mm compared to a 3-D FE solution, whereas the 2-D micropolar model gives only small errors
of 2.7–3.4% as it can emulate the 3-D deformations better through non-classical antisymmetric
shear behavior and local bending and twisting.

Numerical example

Let us consider the buckling of web-core sandwich panels subjected to uniaxial and biaxial
compression. We use the Navier solution for two-dimensional ESL-FSDT plate models based on
micropolar and classical elasticity. In addition, a 3-D finite element model for web-core sandwich
panels is used to provide accurate reference solutions against which the ESL-FSDT models can
be evaluated.

Figure 1 presents the setup for the buckling problems and the critical buckling modes cal-
culated by the 3-D FE model. Figures 2(a) and 2(b) show the lowest buckling loads up to
m = 11 (m is the number of half-waves in x−direction) under uniaxial and biaxial compression,
respectively. In both cases we can see that the 2-D micropolar ESL-FSDT plate results are in
good agreement with the 3-D FE results, whereas the 2-D classical results are not. The classical
model can predict well only the lowest mode (m = 1, n = 1) but note that it predicts the critical
mode incorrectly in both cases, as the buckling loads decrease in an non-physical manner as the
mode number increases.
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Figure 1. Setup for web-core plate buckling analysis and the critical buckling modes for uniaxial and
biaxial compression.

Figure 2. Buckling loads of a web-core sandwich panel under a) uniaxial and b) biaxial compression. The
ESL-FSDT plate model based on classical elasticity gives erroneous results for the critical buckling mode
and load, whereas the 2-D micropolar model is in good agreement with the 3-D results in both cases.
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Summary. For oxide coatings, prepared by applying plasma electrolytic oxidation (PEO) to
aluminium alloy Al6082, this conference contribution presents the finite element (FE)
microstructural modeling of the PEO coatings. By utilizing the coating phase maps, obtained by
electron back-scattered diffraction (EBSD) technique, the corresponding images have been
converted into FE models with a detailed microstructure representation. By utilizing experimental
data such as loading-unloading curves obtained upon micro-indentation using a Berkovich tip on
the coatings cross-sections and surfaces, the material models representing the coating constituent
phases have been calibrated.

Key words: micro-indentation, hardness, finite element modeling, PEO coatings, mechanical
performance

Introduction

Weight is one of key factors influencing vehicle energy consumption and emissions. Hence, there
is a growing effort to replace conventional steels and cast irons with light metals and alloys, e.g.,
aluminum and magnesium. Although these metals have good strength-to-weight characteristics,
they suffer from poor corrosion and wear properties. Coating a surface with a thin layer changes
the surface material properties and is an important tool for controlling friction, corrosion and
wear. PEO is a relatively novel surface modification technique to create ceramic coatings on the
surface of metals, such as aluminium, and their alloys  (Refs. [1, 2]).

The present contribution focuses on the FE microstructural modeling of Al6082 PEO coatings
of three different thicknesses, namely, 15 µm, 20 µm and 30 µm, which are labeled, respectively,
as PEO-15µm, PEO-20µm and PEO-30µm coatings. By performing FE simulations of the micro-
indentation tests using conical and spherical tips, the influence of the aluminium oxide phases on
the coating mechanical performance has been computationally investigated. The local stress
distributions on microstructural level have been studied in details. The FE modelling has been
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carried out using VTT Propertune™ which is a computational modelling-based material design
methodology providing a portfolio of software packages combined with commercial modelling
tools such as Abaqus (Refs. [3,4]).

Figure 1. EBSD phase map of PEO-20µm coating (top) and corresponding FE model (bottom).

FE model generation and calibration

By utilizing OOF2 program (Ref. [5]) the EBSD phase map images have been converted into
pixel-based  FE  models  (see  figure  1).  For  the  PEO-15µm FE model  (see  figure  2),  numerical
simulations have been performed in axially symmetric problem setting by utilizing an elastic
conic tip made of diamond with 70.3° half-angle. The coating has width 48.55 µm and thickness
11.2 µm under the indenter. The computational domain has been extended such that the total area
is of 248.5 µm × 576.25 µm size.

Figure 2. FE model of PEO-15µm coating indentation with a conic tip in an axisymmetric
problem setting.

 The green colour corresponds to ,Al2O3 phase-ߛ  the  indenter  material  is  depicted  in  grey,
Al6082 substrate has red colour. The material models are chosen to be isotropic perfectly plastic
with Young’s modulus Poisson’s ratio ,ܧ and yield stress ߥ . The material phases are perfectlyߪ
connected, i.e., displacements are continuous at the material interface. For determining the elastic
modulus and the Poisson’s ratio of the phases, the following expression is used (Ref. [6])
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1
ܧ

=
1− ଶߥ

ܧ
+

1 − ଶߥ

ܧ
(1)

which links the measured data for the reduced modulus  with the elastic constants of the sampleܧ
and ܧ) (ߥ  and  the  indenter  andܧ)  .(ߥ  The  yield  stress  values  have  been  calibrated  by
accomplishing a series of numerical simulations on indentation with a conic tip. The material
parameter values are collected in table 1.

Table 1. Material parameter values used in simulations.

[GPa] ,ܧ ߥ , [GPa]ߪ

Indenter 1140 0.07 -

Al6082 71 0.33 0.28

Al2O3-ߛ 210.9 0.21 5.8

The dark colour in figure 2 represents areas being the secondary phases, grain boundaries, zones
with porosity and microcracks which are treated as soft material and considered to be isotropic
perfectly plastic as well. For the soft material model validation, the experimental data on hardness
versus penetration depth obtained by the PEO-15µm coating surface micro-indentation (with
Berkovich tip) have been utilized. Experimental data are presented as the blue dots in figure 3.
Final thickness of the polished coating specimen used in the experimental study is 9 µm. The soft
material has the same Poisson’s ratio as the aluminium oxide. The Young’s modulus and yield
stress are calibrated by fitting the FE simulation results with the experimental data. Figure 3 shows
and compares the simulation results for two sets of the soft material moduli values.

Figure 3. FE simulation results of PEO-15µm coating indentation. Values for Young’s modulus
and yield stress ܧ . of soft material are given in GPaߪ
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Summary. Goal oriented recovery of sectional forces and stresses in structural mechanics 

Key words: Isogeometric analysis, Goal oriented adaptivity, sectional forces, stresses 

Introduction 

The new paradigm of Isogeometric analysis, which was introduced by Thomas J. R. Hughes et 
al. [1], demonstrates that much is to be gained with respect to efficiency, quality and accuracy in 
analysis by replacing traditional Finite Elements by volumetric B-splines or NURBS elements. 
However, B-splines and NURBS are not flexible as they lack the possibilities of local 
refinement. However, the LR B-splines proposed by [2] facilitate adaptive mesh refinement [3]. 

To do Goal Oriented Adaptivity (GOA) i.e., adapt the finite element mesh for an identified 
Quantity of Interest (QI) (e.g., stress at a point or stress resultants at a cross section) we need a 
reliable a posteriori error estimator to drive the adaptive refinement procedure. Kumar, 
Kvamsdal and Johannessen [4] developed Continuous Global L2 (CGL2) and Superconvergent 
Patch Recovery (SPR) error estimation methods applicable for LR B-splines, whereas in [5] we 
constructed an error estimator based on a Serendipity pairing of approximation spaces. We 
achieved very good results for all approaches (i.e., effectivity indices closed to 1) when applied 
to classical benchmark problems.  

We will herein present results obtained for GOA for recovery of stresses and sectional 
forces in structural mechanics. The error estimates are based on use of CGL2. 
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Summary. We present a recently developed least squares stabilized symmetric Nitsche method for
enforcement of Dirichlet boundary conditions for elliptic problems of second order in cut isogeometric
analysis (CutIGA). We consider C1 splines and stabilize the standard Nitsche method by adding an
element wise least squares terms in the vicinity of the Dirichlet boundary and an additional term on the
boundary which involves the tangential gradient. This approach enables us to prove coercivity, without
invoking standard inverse estimates, and optimal order a priori error estimates.

Key words: isogeometric analysis, cut elements, cutfem, stabilization, least squares

Introduction

Cut finite element methods [2] allow the boundary of the computational domain to cut through
the mesh in an arbitrary way leading to so called cut elements in the vicinity of the bound-
ary. Since cut elements are not shape regular standard inverse inequalities used in the analysis
of Nitsche’s method for weak enforcement of Dirichlet boundary conditions does not hold and
therefore the method must be stabilized in some way to guarantee coercivity. Standard ap-
proaches such as face based stabilization [2] or agglomeration [1, 6] leads to fill in in the stiffness
matrix, which is avoided in the new method since the stabilization is element based.

In this note we review a recent version of Nitsche’s method for cut isogeometric analysis
proposed in [5] that enables us to prove coercivity without using inverse inequalities. The new
formulation requires C1 spline spaces and involves an additional least squares control of the
Laplacian on elements close to the boundary and a tangential gradient control along the bound-
ary. The additional terms provide better discrete representations of the function spaces used
in analysis of the continuous elliptic problem and are therefore less sensitive to the underlying
element geometry. In fact, we show coercivity for the new method in V = H2(Ω), in contrast
to standard Nitsche where coercivity is established for the finite element space Vh.

The Model Problem and Method

Let Ω be a domain in Rd with smooth boundary ∂Ω and consider the problem: find u : Ω→ R
such that

−∆u = f in Ω, u = g on ∂Ω (1)

For sufficiently regular data there exists a unique solution to this problem and we assume that
the solution satisfies the regularity estimate

‖u‖Hs(Ω) . ‖f‖Hs−2(Ω) + ‖g‖Hs−1/2(∂Ω) (2)

for some s ≥ 2. Here and below a . b means that there is a positive constant C such that
a ≤ Cb.
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δ
Uδ(∂Ω) ∩ Ω

Th,δ ∩ Ω

Figure 1. The subdomains Uδ(∂Ω) and Th,δ ∩ Ω.

Let Th,0 be a partition of Rd into cubes with size h. Let Vh,0 be the space of C1 splines of
order p ≥ 2 on Th,0, with standard basis Bh,0. Let the active spline space be defined by

Vh = span(Bh), Bh = {ϕ ∈ Bh,0 | supp(ϕ) ∩ Ω 6= ∅} (3)

The finite element method then takes the form: find uh ∈ Vh such that

Ah(uh, v) = Lh(v) v ∈ Vh (4)

The forms are defined as follows:

Ah(v, w) = ah(v, w)− (n · ∇v, w)∂Ω − (v, n · ∇w)∂Ω + βbh(v, w) (5)

ah(v, w) = (∇v,∇w)Ω + τδ2(∆v,∆w)Th,δ∩Ω (6)

bh(v, w) = (2 + τ−1)δ−1(v, w)∂Ω + 2δ(∇T v,∇Tw)∂Ω (7)

Lh(v) = (f, v)Ω − τδ2(f,∆v)Th,δ∩Ω − (g, n · ∇v)∂Ω + βbh(g, v) (8)

and we employed the following notation:

• β is the penalty parameter which can take a moderate value, for instance 5 ≤ β, and τ > 0
is a parameter which enables us to trade weight between the least squares bulk term and
the standard Nitsche term.

• ∇T is the tangential gradient at ∂Ω defined by ∇T = P∇, where P = I − n ⊗ n is the
projection of vectors in Rd onto the tangent plane of the boundary ∂Ω.

• In (6) and (8) we used the form

(v, w)Th,δ∩Ω =
∑

T∈Th,δ

(v, w)T∩Ω (9)

where Th,δ ⊂ Th is defined by

Th,δ = Th(Uδ(∂Ω)) = {T ∈ Th : T ∩ Uδ(∂Ω) 6= ∅} (10)

and Uδ(∂Ω) = {x ∈ Ω : dist(x, ∂Ω) < δ} with δ ∼ h. In practice, if δ = h is used, Th,δ
may be taken as the set of all elements that intersect the Dirichlet boundary ∂Ω and their
neighbors, i.e. Th,δ = Nh(Th(∂Ω)), see Figure 1.
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Discussion. The new terms, δ2(∆v,∆w)Th,δ∩Ω and δ(∇T v,∇Tw)∂Ω with δ ∼ h, provide ad-
ditional control on the elements in the vicinity of the boundary and along the boundary. The
additional control along the boundary may be interpreted as weak enforcement of Dirichlet
boundary conditions in H1/2(∂Ω), the trace space of H1(Ω), and we note that

h−1‖v‖2∂Ω + h‖∇T v‖2∂Ω (11)

is a discrete version of ‖v‖2
H1/2(∂Ω)

, which is more precise compared to the standard Nitsche

method due to the presence of the second term. In the case when we do not have any cut
elements we may employ an inverse inequality to conclude that

h−1‖v‖2∂Ω + h‖∇T v‖2∂Ω . h−1‖v‖2∂Ω (12)

and we recover the standard Nitsche penalty term. This is however not possible in the cut case
where the additional term plays a key role. Furthermore, for w ∈ H1(Ω) we have the standard
estimate

|(n · ∇v, w)∂Ω| ≤ (‖∇v‖2Ω + ‖∆v‖2Ω)1/2‖w‖H1(Ω) (13)

and thus for the left hand side to be well posed we need control of ‖∆v‖Ω in addition to ‖∇v‖Ω.
We note that δ2(∆v,∆w)Th,δ∩Ω provides such control close to the boundary, which turns out to
be enough. Finally, if we do not have cut elements an inverse inequality gives

δ2‖∆v‖2Ω . ‖∇v‖2Ω (14)

since δ ∼ h and thus in that case δ2‖∆v‖2Ω is dominated by ‖∇v‖2Ω, which is already present in
the standard variational form.

Summary of Theoretical Results

We summarize the main results in the analysis of the stabilized finite element method. Define
the norms

|||v|||2h = ‖v‖2ah + ‖v‖2bh (15)

‖v‖2ah = ah(v, v) = ‖∇v‖2Ω + τδ2‖∆v‖2Th,δ∩Ω (16)

‖v‖2bh = bh(v, v) = (2 + τ−1)δ−1‖v‖2∂Ω + 2δ‖∇T v‖2∂Ω (17)

• Galerkin Orthogonality. It holds

Ah(u− uh, v) = 0 ∀v ∈ Vh (18)

This identity follows directly from the consistency of the standard Nitsche method and
the fact that we have only added consistent least squares terms.

• Weak Trace Form Inequality. The following estimate holds

|(n · ∇v, w)∂Ω| . ‖v‖ah‖w‖bh v, w ∈ V (19)

where V = H2(Ω).

• Coercivity. For β > 0 sufficiently large the form Ah is coercive

|||v|||2h . Ah(v, v) v ∈ V (20)

Note that we get coercivity on V not on Vh which is the case in the standard Nitsche
method.
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Figure 2. Numerical example. Left: Computational mesh with the subdomain Th,δ ∩ Ω and the support
of C1 splines selected for basis function removal indicated. Right: Numerical solution.

• Continuity. The form Ah is continuous

|Ah(v, w)| . |||v|||h|||w|||h v, w ∈ V (21)

• Error Estimates. The following error estimates holds

|||u− uh|||h . hp‖u‖Hp+1(Ω) (22)

‖u− uh‖Ω . hp+1‖u‖Hp+1(Ω) (23)

Conditioning of the Stiffness Matrix. Despite the fact that we have coercivity with respect
to the energy norm ||| · |||h the stiffness matrix may be highly ill conditioned, possibly depending
on the position of Ω in the background mesh Th,0. This can be understood by observing that
minϕ∈Bh |||ϕ|||h may be arbitrarily small. To remedy this problem we may employ so called basis
removal where we simply remove basis functions with very small energy norm without sacrificing
accuracy, see [4] for details. If an iterative solver is used we first apply a preconditioner, see for
instance [3], to the stiffness matrix.

Numerical Example

To illustrate the method we give a small numerical example in Figure 2 where we solve a non-
homogeneous Dirichlet problem on a circular domain. For this example we use C1 splines (p = 2)
and parameter values δ = h, β = 5 and τ = 0.1.
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Summary. Development of a digital twin for thruster driveline digital twin. Adaptation of ISO
16281 for bearing and DIN 743 for shaft fatigue analysis into a digital twin framework. 
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Introduction 

International standards have for long been a cornerstone for fatigue life analysis in the design 
phase for machine elements, such as bearings and shafts. Fatigue life prediction is usually done 
based on the assumed operational profile of the machine and thus it has to be substantially 
conservative. This usually leads to over sized parts and shorter than needed maintenance 
intervals.  

To more closely predict the fatigue life of machine elements we can embed sensors into our 
systems to monitor the actual operational conditions the machine and then perform the fatigue 
life analysis on our measured data. Since our data might not accurately represent the average 
conditions if e.g. it experiences some once in a lifetime loading in the early stages our model 
might be too conservative or if loading is only minimal, but we predict that some extreme 
loading will occur in the future, our prediction might be skewed. To account for the loadings we 
assume to happen, we generate the future loading profiles using Bayesian analysis. 

This combination of live measurement data and physics-based analysis of a real asset is 
what is called the digital twin. In this master’s thesis ISO 16281 standard for bearing fatigue life 
prediction and DIN 743 fatigue life prediction we adapted to a real time analysis of an asset 
based on measured loading profiles. As the aforementioned standards were developed for use in 
the design phase of the asset, provided some unique obstacles, but we were able to overcome 
these and adapt them into the digital twin environment. 
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Summary. Methodology for damage modeling of cyclically loaded metal contacts is presented. Flexible
multibody dynamics is used to simulate vibrations of large combustion engine powers system, and espe-
cially counterweights (CWs) bolted to the crankshaft. Vibration results match well with the measurement
from the real engine. Non-linear finite element method is used to simulate contact behavior between the
CW and crankshaft. Local hardening of the friction coefficient and material removal due to wear is
considered by using contact subroutine in commercial finite element solver Abaqus. The methodology
can be used to predict surface damage due to fretting and the effect of wear on contact behavior.

Key words: multibody dynamics, finite element method, contact, friction, fretting, wear

Introduction

Simulation of highly loaded clamped metal contacts has become utmost important in the de-
velopment of medium speed combustion engines. In a large combustion engine, there are lots
of heavily loaded contact interfaces and large moving sub-assemblies which reliability need to
be ensured by simulation. Today, non-linear Finite Element Method (FEM) is used to simulate
contacts, especially in industrial cases where geometries are complicated. Wärtsilä has a long
history in structural FEM simulations starting at 1973 [1]. Also flexible multi-body simulation
(MBS) methodology is commonly used in Wärtsilä to be able to capture complicated dynamics
of engine components [2, 3]. Laboratory testing of large engines is expensive, and damage in
critical contacts can lead to unexpected catastrophic failures. An example of connecting rod
failure caused by fretting fatigue can be found from [4].

Fretting fatigue is a dangerous damage phenomenon in contacts caused by small-amplitude
cyclic sliding. In fretting fatigue, localized cyclic surface stresses cause crack initiation even
without remarkable macroscale stresses in the structure. Furthermore, fretting wear affects the
contact pressure distribution and changes the contact behavior and may cause loosening of the
contact. In fretting the coefficient of friction (COF) is varying a lot as a function of load cycles
and loading, which sets numerical and theoretical challenges in the simulation of such cases.
Some studies to consider variable friction [5] and non-uniform friction [6, 7] in the simulation of
fretting experiments has been made. Effects of fretting wear have been studied by implementing
Archard wear law [8, 9, 10]. However, applications of these kinds of models in component level
simulations are very limited. One example without wear simulation can be found from [11].

This paper describes a contact model that considers local COF ”hardening” and material
removal due to wear in cyclically loaded clamped metal contacts. Model is implemented in
commercial FEM solver Abaqus by using subroutine UINTER. The presented methodology is
applied to a bolted contact interface between crankshaft and counterweight of a large, medium-
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speed combustion engine to evaluate the risk of surface damage due to fretting and effect of
wear on the functionality of the joint.

Methods

Power system dynamics of a large combustion engine is complicated due to several excitation
sources. However, power system vibrations can be simulated accurately by using flexible multi-
body simulation (MBS) even up to high frequencies. Such a model is shown in Fig.1 and similar
MBS models are described in more detail in [2, 12]. MBS model was validated by acceleration
measurements in a running engine by using the measurement device described in [13].

Figure 1. Flexible MBS model of large engine power system.

Contact stresses and displacements between the crankshaft and CW are solved by using
the non-linear finite element model in Abaqus. The model includes one CW bolted to the
piece of the crankshaft, and results from MBS are used as boundary conditions. Contact is
modeled using the standard surface to surface discretization with the finite sliding formulation
of Abaqus. However, the contact physics in normal and tangential directions are replaced by
subroutine UINTER. Local COF evolution is described by using accumulated frictional energy
dissipation. This approach is motivated by the COF measurements in [14], and it conveniently
includes the effect of contact pressure and slip. Material removal due to wear is modeled by
introducing a nodal gap according to Archard wear law. In fretting conditions, the hardening of
COF is very fast, and max value of COF is usually obtained around some hundreds of cycles as
can be seen from the results [15, 16]. Same experiments show that there is a stable value of COF
below which contact stays in stick condition and surface damage does not occur. The maximum
value of this stable limit is also used in the contact model. COF for analysis increment n is
defined as

µn+1 =

{
µn + k · ∆γsleq · τeq if µn+1 < µmax

µmax if µn+1 ≥ µmax,
(1)

where k is a constant defining the speed of friction coefficient increase, ∆γsleq is equivalent
”plastic” slip, τeq is equivalent shear traction and µmax is maximum allowed value of the COF.

If the contact is sliding after the stabilized COF distribution is obtained, wear simulation is
activated. This sequencing is done due to the fact that COF hardening is much faster than the
effect of wear. Material removal depth due to wear is defined as

rn+1 =

{
rn + w · ∆γsleq · p if p ≥ plim

rn if p < plim,
(2)

where w is a constant, p is contact pressure and plim is the limit value below which the wear
does not occur. In this case, low value of 1 MPa is used.
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Results and discussion

MBS results show that crankshaft experiences low frequency (<100Hz) axial and torsional vi-
brations caused by the firing forces and higher frequency (>100 Hz) vibration coming from the
gear trains and thrust bearing impacts. Comparison of simulated and measured acceleration
spectrum in Fig.2 show that the MBS model can well capture CW vibration even up to 1kHz.
Lowest CW natural frequencies are in the range of 200-1000Hz, and the most significant natural
mode where CW wings are vibrating in opposite phase with each other is close to 400Hz.

Figure 2. Simulated and measured CW acceleration spectra.

Non-linear contact simulation in Abaqus reveals that almost the whole contact areas are
sliding with initial COF of 0.2. Stabilized COF distribution in Fig.3a shows areas where COF
has not increased meaning that those areas have been all the time in stick, but elsewhere the
COF has increased. Maximum allowed COF was 0.7 and some areas have reached this value
meaning that surface damage would be expected on these areas based on the measurements
in [15]. Some areas of the contact slide even with maximum COF of 0.7 and wear simulation
results to about 0.1mm deep material removal as shown in Fig.3b. As wear only happens locally
without causing loosening of the contact, it means that the contact shakes down to fully stuck
condition. Future stress and fatigue analysis could be performed to investigate if the worn state
is dangerous or not. The presented methodology can be applied to cyclically loaded clamped
metal contacts to examine their functionality over the lifetime and also to predict if surface
damage or wear occurs.

Figure 3. Simulated and measured CW acceleration spectra.
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Summary. A vast amount of research continues to go into developing robust numerics to handle rate-
independent crystal plasticity - either by making use of additional constitutive models or complex numer-
ics. The present work attempts to circumvent such special measures by taking a new approach to develop
a numerical solution procedure for a rate-independent crystal plasticity, relying on the Fleck and Willis
gradient plasticity theory. The adopted constitutive model reduces to that of conventional plasticity in
the limit of zero length parameter and, thus, constitutes a tool that covers both branches of plasticity.

Key words: Crystal plasticity, Rate-independent, Finite element modeling

Introduction

The issue with rate-independent crystal plasticity boils down to a uniqueness problem in deter-
mining which slip systems are active. In essence, plastic incompressibility requires five (α = 5)
linearly independent slip systems when adopting a Schmid-like relation of the plastic strain in-

crement. This can be realized by written out: ε̇pij =
∑

α µ
(α)
ij γ̇

(α), with µ
(α)
ij being the Schmid

orientation tensor for the α’th slip system, and γ̇(α) the associated slip increment. The problem
arises when one includes the 6’th slip system, being easily imaginable for real crystals (FCC
crystals have 12 independent slip systems, BCC crystals have a many as 48). One thereby ends
up with an over-determined system (the five plastic strain increment component is not uniquely
described), whereby a particular solution is out of reach. Pierce et al. [1] demonstrated that
this uniqueness problem can be circumvented by adopting a rate-sensitive model formulation
where the increment of plastic strain is tied to the current stress state rather than the stress
increments (as in the rate-independent case). This approach allows widening the parameter
space, but it leaves a strain rate dependency in the model (although the model response can be
pushed towards the rate-independent limit).

The present work attempts to follow a similar idea but here lets gradient effects regularized
the problems at hand. The work takes offset in the Fleck and Willis theory where two equilibrium
equations (or rather, one conventional equilibrium and one equilibrium for each slip system) is

considered. These read: σij,j = 0 (in absence of body forces) and q(α) − τ (α) − ξ
(α)
i s

(α)
i = 0,

where σij is the Cauchy stress tensor, ξ(α) is the higher order stress, q(α) is the micro-stress,

and s
(α)
i is the slip system direction. Based on the higher order equilibrium equation, Fleck and

Willis put forward the Minimum Principle I which delivers the slip rate field to with a plastic
multiplier with in a rate-independent framework (see e.g. Nielsen and Niordson [4]). In a crystal
plasticity setup, the Minimum Principle I reads

H = inf
γ̇(α)∗

∫
V

(
τF [γ(α)e ]γ̇(α)∗e + ξE(α)s

(α)
i γ̇

(α)∗
,i − sijµ

(α)
ij γ̇

(α)∗
)

dV −
∫
S
r(α)γ̇(α)∗dS, (1)

119



where the flow stress on the α’th slip system is τF [γ
(α)
e ], the energetic higher order stress is ξE(α)

(and r(α) the related higher order tractions). It is worth to notice that the variation in the slip
rate field is directly tied to the current stress state through Eq. (1), while only the magnitude
of the field is determined in a subsequent step relying on the conventional equilibrium equation.
It is the expectation that such dependency on the surrounding stress field for a specific material
point (holding a number of slip systems) can facilitate a numerical implementation without
further specialize algorithms, or additional constitutive models, to determine which slip systems
are active. The proposed numerical procedure employs the finite element method and essentially
extends the work in Nielsen and Niordson [4] (focusing on isotropic plasticity) to a corresponding
crystal plasticity framework in line with Niordson and Kysar [3].

Results

The numerical procedure is demonstrated through
Fig. 1, displaying the overall load-displacement
curves when subjecting a HCP-like crystal to shear
loading. The crystal is orientated such that the defor-
mation takes place in the basal plane, while the slip
systems are oriented at θ = [90,−30, 30]◦ as indicated
in the Fig 1. The new rate-independent framework is
compared to its (readily implemented) visco-plastic
counterpart for two distinct length scales and two
levels of strain hardening. The prediction of the two
models are very close when pushing the visco-plastic
model towards the rate-independent limit. Moreover,
it is seen that the new model easily copes with hav-
ing one slip system (at 90◦) active in the beginning,
while continued strain hardening on that the first ac-
tive slip system subsequently allows the two remain-
ing slip systems to be activated.

Figure 1. Load-displacement curve for mono-
tonic shearing of a HCP-like single crystal.

Concluding remarks

A rate-independent crystal plasticity framework relying on the Fleck and Willis [2] plasticity
theory has been implemented within a 1D finite element framework. Shear deformation of an
oriented HCP crystal is considered and the activation of multiple slip system demonstrated.
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Summary. It is shown that some of the Finnish national choices concerning application of the EN 1990
structural design standard may lead to lower level of reliability than what is desired in the standard.
Namely, the load combination rule that is currently being employed may lead to decreased level of
reliability especially when variable loads constitute a major portion of the total load which is a typical
situation for steel trusses located e.g. in the Finnish regions of North Ostrobothnia and Kainuu.

Key words: structural reliability, snow load, design principles of structures

Introduction

Let us assume a design situation where the behaviour of a critical structural component can be
characterized by a group of random variables X = (X1, X2, . . . , Xn), that represent e.g. loads,
material properties or uncertainties related to the mathematical models. The limit state of the
structure can then be characterized by a limit state function g(X), which in the analysis of
ultimate limit state can be assumed to be of the form

g(X) = R(X) − E(X),

where R(X) represents the resistance of the structural component and E(X) represents the
effect of an action to the component. Both quantities are assumed to be expressed in the same
unit.

The safe, unsafe, and the ultimate limit state are then characterized by the conditions
g(X) ≥ 0, g(X) < 0, and, g(X) = 0, respectively.

Let us consider a situation, where a structural component is loaded by a single variable load
Q in addition to its self-weight G. The structural response is assumed to be linear with the same
proportionality coefficient under both loads. If the uncertainties in the formulation and analysis
of the mathematical model of the structure are denoted by the random variable θE , then the
effect of the loads is given by

E = θE(G+Q). (1)

If θR is a similar random variable related to the uncertainties of the resistance model, then the
limit state function becomes

g(X) = θRR− θE(G+Q), (2)

where the random variables are X = (G,Q,R, θE , θR). The failure probability pf can then be
written in terms of the joint probability density distribution fg(X) as

pf =

∫
g(X)≤0

fg(X) dX. (3)
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Determination of the joint probability density and computation of (3) constitute a major
problem in structural reliability analysis. However, in the current situation, it can be assumed
that the resistance and the load effect represent e.g. a single stress resultant such as normal
force or bending moment that is used to determine the structural performance. Then the failure
probability becomes

pf =

∫ ∞
−∞

fE(z)

∫ z

−∞
fR(s) dsdz (4)

Often, like in Annex C of EN 1990 [1], an alternative measure of reliability is defined by the
reliability index β, which is related to the failure probability as

pf = Φ(−β), (5)

where Φ is the cumulative distribution function of the standardised normal distribution.

Results for one variable load

In general, the design value of the action effect Ed for a single variable action is written as

Ed = γGGk + γQQk, (6)

where Gk and Qk are the characteristic values of the permanent and variable load, respectively,
and γG and γQ are the corresponding partial factors. Similarly, the, design value of the resistance
is

Rd = Rk/γM (7)

where Rk is its characteristic value and γM denotes the partial factor for the material.
The National Building Code of Finland [3] defines the design load as the less favourable

action from the two expressions

Ed1 = 1.15Gk + 1.5Qk & Ed2 = 1.35Gk (8)

It is clear, that the level of reliability depends on the ratio of the characteristic load values
defined as

χ = Qk/(Gk +Qk). (9)

Variation of the reliability index with χ for different choices of partial factors can be assesed by
approximate computation of the failure probability (4). Following the approach of [2] and using
there suggested probability distributions for generic actions, resistance, and uncertainties, the
results shown in Fig. 1 can be obtained for a 50-year time period.

Concluding remarks

The results show that the target reliability of β = 3.8 set in the EN 1990 standard may not be
reached by the choice (8) especially when χ is high (or very low). In a recent master’s thesis
work [4], it was shown that in a typical design situation of steel truss under snow load in Finland,
the values of χ vary in the range 0.75-0.87, and the high end may be reached e.g. in the regions
of North Ostrobothnia and Kainuu. The level of reliability could be increased by increasing the
values of partial factors. It should be noted that similar conclusions have been drawn earlier in
[5] by using slightly different arguments.

Finally, it should be noted that the reliability assessment depends heavily on the assumed
probability distributions for different quantities and also on the approximative method used to
evaluate the joint probability density (3). Therefore, the results of these preliminary studies
should be approached with some caution. Anyway, it is clear that further investigations are
necessary and a more detailed analysis is on the way [6, 7].
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γm=1.0, γG={1.15,1.35}, γQ = {1.5,0.0}
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Figure 1. Variation of the reliabity index with χ.
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Summary. For three-dimensional cellular beam- and plate-like structures with a triangular 
microarchitecture, this conference contribution presents a family of two-scale beam and plate 
models relying on the anisotropic form of Mindlin's strain gradient elasticity theory of form II. 
A computational homogenization method is adopted for determining the constitutive parameters 
of the related classical and higher-order constitutive tensors. Isogeometric conforming Galerkin 
methods are applied for solving the beam and plate problems. Numerical examples illustrate the 
reliability and efficiency of the dimensionally reduced structural models and numerical methods 
– in capturing the bending size effects induced by the microarchitecture, in particular.

Key words: lattice microarchitecture, cellular structures, Euler–Bernoulli beam, Timoshenko 
beam, Kirchhoff plate, Reissner–Mindlin plate, size effects, strain gradient thermoelasticity, 
isogeometric analysis 

Introduction 

Cellular or lattice metamaterials, realized today even in nano- and micro-scales, have become an 
extremely promising class of lightweight, functional metamaterials. On one hand, the rapid 
development of additive manufacturing technologies for different parent materials across the 
scales has played an important role in this trend. On the other hand, the extreme fundamental 
properties of lattice architectures have increased the attractiveness of this class of metamaterials: 
high and adjustable stiffness-to-weight ratio, strength-to-weight ratio and surface-to-volume 
ratio have made different kinds of lattices apt for a variety of applications in machines, vehicles, 
buildings or bioproducts, e.g., as lightweight structures, dampers, absorbers, insulators, heat 
exchangers and filters. 
     Modeling the physics and mechanics of solids and structures with a lattice microarchitecture 

is neither trivial nor computationally cheap for several reasons mainly related to the complex 
geometries of the underlying microarchitecture (see the illustrations in Fig. 1).  
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Figure 1. A triangular planar lattice (left) and its cellular spacial extrusion (right). 

Structures, models and methods 

The present contribution focuses on the theoretical and numerical physico-mathematical 
modeling of thin and thick beam- and plate-like structures composed of a cellular triangular 
microarchitecture metamaterial (see Fig. 2 and Fig. 3, left). The thermomechanical modelling of 
these microarchitectural structures is accomplished in the framework of orthotropic strain 
gradient thermo-elasticity (having origins in Ref. [1]) via the corresponding beam and plate 
models, Galerkin methods (see Refs. [2–10]) as well as computational homogenization of 
classical and non-classical types (see Refs. [5, 6, 9]).  
     In essence, it is shown that with generalized beam and plate models dimensionally reduced 

from a three-dimensional orthotropic Mindlin type strain gradient solid (formulated in Ref. [9]), 
the size-dependent mechanical bending of thin and thick beams and plates can be modelled in a 
theoretically novel and computationally efficient way (see Refs. [5, 6, 9]). A computational 
homogenization method determines the required set of non-classical material parameters via 
matching the global responses of full-field simulations with the corresponding ones of the 
chosen generalized beam or plate models for a representative family of simple test problems. 
The material parameters of the classical elasticity tensor, in turn, are determined by classical 
computational homogenization followed by a reduction to the constitutive counterparts of the 
beam and plate models. For the dimension reduction models, isogeometric conforming Galerkin 
methods are utilized for numerical solutions (Fig. 3, right), whereas in the computational 
validation full-field finite element analysis with standard two- or three-dimensional elements is 
used (Fig. 3, left). 
     A natural extension to the current results for beams and plates is to consider modelling 

analogous shell-like structures by generalized shell models, such as the Kirchhoff–Love model 
introduced in Ref. [10]. 

Figure 2. Beam-like planar structures with triangular lattice microarchitectures. 
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Figure 3. A plate-like cellular spacial structure (left, 3D FEM model) and its 
higher-order planar plate model (right, 2D IGA model) in bending. 
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Summary. In this work, we describe the soft biological tissue deformations for a rat Achilles tendon.
The work has been done in the framework of the absolute nodal coordinate formulation (ANCF). Here we
demonstrate the element based on this formulation for the modeling of soft tissues and further possible
opportunities in multibody system dynamic applications through the objectivity test. For the modeling
of biological tissue in the case of three-dimensional elasticity, we use the incompressible anisotropic
Gasser-Ogden-Holzaphel (GOH) model. We also implement viscoelastic effects into our model with the
generalized one-dimensional Maxwell model. The obtained results verified against the commercial finite
element software ANSYS, moreover to check the description of the rat tendons we have taken used the
obtained results from the practical experiments.

Key words: Biomechanics, Achilles tendon, Fibrous material, Incompressibility, Flexible multibody sys-

tem dynamics

Introduction

The Achilles tendons are an important part of a biological organism. They are responsible for
the transmission of mechanical forces produced by muscles to the bones. Although the attempts
to understand the mechanism and functional role have been undertaken for a long period of time
[1], they remain unclear [2, 3]. This fact is not a surprise, such as, it is an extremely complex
system, the functioning of which depends on a huge number of factors, from each element
of the living organism as age and physiological conditions, genetic factors, etc [4, 5]. In this
case, the computational analysis even in the case of simplified models may give answers for the
understanding and possible responses to the physical loading. One of the ways for the analysis
of bodies subjected to large nonlinear geometrical and material deformations is the description
with the absolute nodal coordinate formulation (ANCF). In this work, we will do our research
based on the three-nodded element with quadratically interpolated position (displacement) field
in longotudinal direction and linearily interpoalted in thickness directions [6]. Kinematics of
this type of ANCF element is shown in Figure 1.

The peculiarity of the absolute nodal coordinate formulation is the usage of the components
of the deformation gradient as rotational degrees of freedom. With the help of this element, we
describe the model with several features related to the biological tissues, namely viscoelasticity,
nonlinear elasticity, and anisotropy.

Model

In this work, the nearly incompressible material model is considered. In our case, at the con-
tinuum level we choose as the model of investigation the anisotropic Gasser-Ogden-Holzapfel
(GOH) reinforced by one family fibres [8]. Then, the overall strain energy density function
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Figure 1. ANCF three-node deficient beam element with vector in current and referent configurations

is decomposed into volumetric and isochoric parts through decomposition of the deformation
gradient

F = J
1
3F, (1)

where J is the determinant of the deformation gradient. The strain energy density has the
following form

Ψ = Ψiso(C, A) +

m∑
α=1

Υiso
α (C, A, Γα) + Ψvol(J), (2)

Ψvol is volumetric part describes the hydrostatic pressure. Υiso
α are functions to characterize

viscoelastic response (deceptive potential, responsible for the thermodynamic non–equilibrium
state) [8]. From these expressions we derive the stress response, which has the following form

S = 2
∂Ψ

∂C
= Svol + Siso +

m∑
α=1

Qα, (3)

Qα is non-equilibrium stresses in the sense of non-equilibrium thermodynamics, where

Svol =
∂Ψvol

∂J
JC−1, Siso = 2

∑
k

∂Ψiso

∂Ik

∂Ik
∂C

, Qα = 2
∂Υiso

α

∂C
. (4)

The viscoelastic effects we describe with the generalized Maxwell model with the equation
for Qα [8]

Qα =

∫ T

0+
βαexp(−(T − t)/τα)

d

dt
Siso(t)dt. (5)

τα is relaxation time, βα is a free-energy factor. Here, we also discuss the damage of tissue under
deformation through the Mullins effect. It is described with discontinuous damage model [9].

S = Svol + g(Θm
s )Siso +

m∑
α=1

Qα, (6)

where g(Θm
s ) is a reduction factor.

Θm
s = max

s∈[0,t]

√
Ψiso(s), g(x) = β1 + (1− β1)

1− exp(−x/α)

x/α
, β1 ∈ [0, 1], α ∈ [0,∞)

β1 and α are regraded as given model parameters.
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Result

The model with all named above features with in-house MATLAB code for the ANCF element
was used to describe the simple uniaxial tension problem.

We have taken beam-like structures with circular cross-sections and applied them to describe
the experiments with rat tendons. The first cycles were used for the optimisation routine and
then with obtained parameters the model was extended up to the three cycles.
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Figure 2. Load-displacement behavior of GOH beam

Conclusion

This work considers the behaviour of the ANCF elements in conjunction with the incompressible
anisotropic model with viscoelastic and damage effects. The convergence of the system based
on ANCF element was checked with varying different meshes and even in case one element it
represents results well.
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Introduction

A lug or pinned connection is a simple assembly type that allows for quick assembly and dis-
assembly. The connection have many practical applications both in mechanical and civil engi-
neering cases. In the present work the loading on the assembly is assumed to be cyclic so that
the design criteria for strength is fatigue, i.e. the maximum stress in the assembly. The usual
design of lug joints is controlled by standards, e.g. ISO2338.

The stress state is 3 dimensional but still the normal design is constant through the thickness
so focus is on the cross sectional design. The typical sectional design is circular and stress
concentration factor charts can be found in the literature. The typical assumption used is that
it is sufficient to use a 2D model, where a further assumption of either plane stress or plane
strain is needed. In practical designs where the thickness is of the same order as the pin diameter
we find that there is a significant variation in the stress in the axial direction. The same type
of variation is also found in e.g. interference fits, see e.g. [1]. For simplification we will however
here neglect the 3D effect on the stress concentration.

In the present work the aim is to minimize the stress concentration resulting in an increased
strength of the connection. The finite element method (FEM) is used as the analysis tool,
and for the successful application a number of aspects must be taken into account, and will be
discussed in relation to the design. The different aspects includes,

• The definition of the stress concentration factor.

• Mesh refinement (in non-linear contact analysis).

• Head distance.

• Poisson’s ratio.

• Plane stress or plane strain.

• Friction.

• Clearance.

The design optimization is performed using shape optimization. For the present optimization
we have the special case that the shape to be designed is the contact zone. The selected shape
parameterization used is the super elliptical one. Further information can be found in [2].
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FEM-DEM in Modeling Ice-structure Interaction Process

Janne Ranta, Arttu Polojärvi and Jukka Tuhkuri
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Summary. This extended abstract briefly introduces our recent modeling work on ice loads on wide,
inclined, Arctic marine structures, like drilling platforms or harbor structures. The work is based on
hundreds of two-dimensional combined finite-discrete element method (FEM-DEM) simulations on ice-
structure interaction process. In such processes, a floating sea ice cover, driven by winds and currents,
goes through a failure process and breaks into a large number of ice blocks, which interact with each
other and the structure. The ice load is the end result of this interaction process. We have used the
simulation data i) to study the loading process and the related parameters, ii) to analyze the statistic of
ice loads, and iii) to investigate the mechanisms that limit the ice load values on the structure.

Key words: Combined finite-discrete element method, ice loads, Arctic technology

Introduction

Arctic operations, such as marine transportation, offshore wind energy, and offshore drilling,
require reliable prediction of sea ice loads applied on the structures. The ice loads arise from a
complex and stochastic ice-structure interaction process. Simulations of ice-structure interaction
process need to consider a complicated process including fragmentation of ice, formation and
motion of ice blocks, and interactions between the blocks as well as between the blocks and
the structure. Particle-based methods, such as discrete element and combined finite-discrete
element method (DEM and FEM-DEM), allow detailed studies on complex ice loading scenarios
and they are often used in ice engineering [1].

During the recent years, we have used 2D combined finite-discrete element method (2D
FEM-DEM) simulations to study the mechanisms that limit peak ice loads on wide, inclined,
offshore structures [2, 3, 4, 5]. Figure 1 illustrates our simulations, which have a floating and
continuous ice sheet pushed against an inclined rigid structure. The initially intact ice sheet fails
into a rubble pile of ice blocks, which interact with each other and the structure. Our studies
have focused on parameter effects, statistics of ice loads, and on the mechanisms that limit the
ice load values. This extended abstract briefly describes how we have used the simulations and
summarizes some of the main results from our simulation-based studies.

Results

One interesting feature of 2D FEM-DEM simulations on ice-structure interaction processes is
that they indicate that the loading process is sensitive to its initial conditions – the simulated ice-
structure interaction processes themselves are deterministic. This sensitivity can be utilized to
study the statistics of ice loads: we have used simulation sets containing tens of simulations, with
each set including simulations with equal parameters, except slightly different initial conditions.
Simulations within each set, differing by their initial conditions only, produced different ice
loading processes and different maximum peak ice load values (Figure 2). The peak ice load
data from hundreds of simulations has enabled us to study the statistics of peak ice loads.
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Figure 1. Snapshots of a 2D FEM-DEM-simulated ice-structure interaction process described by the
length L of the ice pushed against an inclined structure. The ice sheet moves with velocity v and breaks
into ice blocks in the vicinity of the structure. Broken ice forms an ice rubble pile in front of the structure.
The first figure shows the initial vertical velocity perturbation v0. Ice sheet thickness h was 1.25 m. Figure
is from [2]
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Figure 2. Two ice load F -records from two simulations with same parameterization but different initial
conditions: (a) F plotted against length of pushed ice, L, and (b) close-ups of the maximum peak ice
load, F p, events. The value of F p differs between the simulations. The ice thickness h = 1.25 m and the
plastic limit σp = 1 MPa. Figure is from [5].

One central question that the studies on peak ice load statistics aim to answer is: What type
of distributions do peak ice loads follow? Our work has shown that the peak load distributions in
our simulations appear to be right-skewed and thus non-normal. Gumbel distribution appeared
to describe the data well. Further we have shown, that the large scatter, which is typical for
ice load data, is due to the ice-structure interaction process itself. Often it is believed that
the scatter is due to sea ice being inhomogeneous. Due to the scatter, a large number of
observations is needed when, for example, parameter effects are of interest: To reliably observe
a 15 % difference in the mean peak load values due to a single parameter requires more than 80
observations in total. This is a very large number of observations to be attained experimentally.
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The study on the parameter effects showed that the ice thickness has a very strong effect on
peak ice load magnitudes. Further, the inclination angle of the structure also affects the loads,
but the effect is less strong and decreases during the process. On the other hand, the effect of
other parameters, such as ice-structure friction coefficient, is fairly weak. This encouraged us to
search for simple peak ice load formulae, such as the one described below, whereas traditional
models and design standards are formulated so that they require using fairly large number of
parameters. In addition our simulations showed, that the relative importance of the parameters
changes during the interaction process. This indicates that the stage of the interaction process
should be taken into account in ice load models. Also this finding means, that the load models
based on the experimental data with a small amount of ice pushed against a structure, may
not account for the changes in the ice failure process and may, thus, lead to inaccurate ice load
predictions.

In our studies on the mechanics of peak ice loads, we have shown that the peak ice load data
is normalized with good accuracy by multiplying the load values with 1/

√
h3, where h is the ice

thickness. This suggests that the peak ice load values are governed by buckling. We developed
a buckling model, which quantifies the effect of the so-called force chains and the related peak
ice load values in the interaction process with fair accuracy. Further, we have also extended the
buckling model so that it accounts for a mixed-mode ice failure process, where the root cause
of ice failure can be is either ice buckling or local edge crushing of ice. We also derived an
algorithm, which is capable of producing large amounts of virtual ice load data that compares
fairly well with full-scale observations.

Conclusions

Above we have introduced our numerical modeling work on ice loads on an inclined, wide,
structure. The strength of numerical models is that they can be used to produce hundreds of
interaction processes with full control over the model parameters. This control allows detailed
studies on ice load statistics and the related mechanical phenomena. Such control is never
available in full- or model-scale experiments. We believe that the understanding of ice load
statistics allows conceiving simplified ice load models, which can be reliably used to study the
ice loads on structures. This type of models have the potential of yielding insight for the analysis
of complex ice-structure interaction processes.
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Summary. This article presents the fatigue testing of 32CrMo12 QT steel in two kinds of fatigue 
testing machines. Results of the resonant fatigue testing machine and ultrasonic fatigue testing 
machine are compared. 

Keywords: fatigue testing, QT steel, USF 

Introduction 

It is well-known that dynamically loaded components are vulnerable to fatigue failures. Fatigue 
testing is expensive and takes a lot of time with traditional testing methods. Ultrasonic fatigue 
testing machine uses piezoelectric transducers to generate ultrasonic testing frequencies. Global 
Boiler Works Oy conducts ultrasonic fatigue experiments with equipment developed by the 
Institute of Physics and Materials Science at University of Natural Resources and Life Sciences, 
Vienna (Physics BOKU Vienna). This equipment enables periodic testing, which is essential to 
combat the heating of specimens vibrating with a resonance close to 20 kHz [1].  

Fatigue testing of 32CrMo12 steel 

Quenched and tempered steels are often used in dynamically loaded machine components. In this 
paper, the tested material is 32CrMo12. It is a low alloy steel which has at least 2.8% Cr and 0.3% 
Mo. 32CrMo12 is typically used in the automotive industry and in general mechanical 
engineering components, such as crankshafts, which require high hardness and wear resistance. 
In this paper, the testing temperature is 80 °C and the stress ratio is R=0 for both testing machines. 
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Figure 1. Fatigue test specimens’ geometry. Above resonant fatigue testing specimen and below 
USF specimen. 

Figure 1 shows the geometry of the samples used. Because of the different geometries, the 
risk volumes are different. The risk volumes of the specimens were 82mm3 (USF) and 503mm3 

(resonant fatigue). Furya [2] noticed that if a USF specimen had smaller risk volume than 
specimen used with conventional fatigue testing, the results from ultrasonic testing will imply a 
higher fatigue limit than those from conventional fatigue testing. Lower fatigue limit is usually 
explained with the fact that a higher risk volume leads to a higher probability for the volume to 
include significantly large defects. Larger defects subsequently result in a lower fatigue strength. 
When using equal risk volumes, there is a good agreement between the ultrasonic and 
conventional fatigue test results [3]. 

If the specimens used are different sizes, the results can be compared using the size factor. 
The statistical size factor can be calculated with the weakest link approach according to equations 
(1)-(5) [4]. 

𝑛 =
𝑉𝑒𝑓𝑓

𝑉𝑟𝑒𝑓

(1) 

where Veff=pulsator-specimen effective stress volume and Vref=USF specimen effective 
stress volume 

𝑅 = √0.5
𝑛  (2) 

𝑃 = 1 − 𝑅 (3)
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𝑃 =
1

√2𝜋
∫ 𝑒−

𝑥2

2 𝑑𝑥

𝜆

−∞

(4) 

𝐾𝑠𝑖𝑧𝑒 =
1

1 + 𝜆𝑠𝑟

(5)

Where Ksize=statistical size factor, R=reliability of the single specimen, sr = relative standard 
deviation of fatigue limit. 

The used relative standard deviation value (sr=0.1) based on the results of a separate Bayesian 
analysis of a normally distributed fatigue limit distribution after observing the USF data. Using 
formulas 1-5 the statistical size factor between the two specimens is calculated as Ksize=1.09. 

Figure 2. Fatigue testing results from longitudinal direction of grain flow. 

Fatigue testing results presented in figure 2. With the presented simplified approach, the USF 
test amplitudes were directly scaled by the calculated size factor to account for the difference in 
risk volumes. Runout limit chosen for this series was 1e8 with the ultrasonic fatigue testing and 
1e7 with the resonant fatigue testing machine. Runout specimens were retested at a higher 
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amplitude until they failed, denoted as “rerun fail” in figure 2. Based on the results shown in 
figure 2, the expected fatigue limit is approximately 245 MPa for the USF tests and 255 MPa for 
the resonant fatigue test series. It is important to note, here, that the estimated fatigue limit values 
correspond to a risk volume equal to that of a resonant fatigue test specimen. According to the 
results, the ultrasonic fatigue testing is a suitable method for studying the fatigue properties of a 
QT steel. A more precise comparison would be obtained by using samples with the same risk 
volume.      

Conclusions 

According to literature [5] and fatigue test results of 32CrMo12 steel, ultrasonic fatigue testing is 
a suitable method for studying the fatigue properties of QT steels. Ultrasonic fatigue testing is a 
fast and preferred testing method for very high cycle fatigue testing [6]. Conventional 100Hz 
fatigue testing takes about 11 days to reach 1e8 load cycles; the same amount of cycles is obtained 
in roughly 6 hours with the ultrasonic testing machine. 
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Waveguides that support trapped surface waves

K. M. Ruotsalainen

October 16, 2019

1 Introduction

1.1 The formulation of the problem

We consider the spectral Steklov problem

−∆uε(x) = 0, x ∈ Ωε,

∂νu
ε(x) = 0, x ∈ ∂Ωε \ Γε (1.1)

∂zu
ε(x) = λεuε(x), x ∈ Γε,

in a duct Ωε, see Fig.1.

Figure 1: a) Curved channel, b) The cross-section

For the parameter ε = 0 we have a straight cylinder Ω0 = R × Θ with a
constant cross-section Θ ⊂ R2 bounded by the line segment γ = {x′ = (x2, x3) :
x3 = 0, |x2| ≤ 1} and a piecewise smooth curve connecting the points (±1, 0)
inside the lower half plane R2

− = {x′ : x3 < 0}, see �g.2. Without loss of
generality we assume that the length of γ is 2. Considering Ω0 as the water
domain, the free surface is denoted by Γ = R× γ and by Σ = ∂Ω \ Γ the union
of walls and bottom.

The waveguide Ωε is obtained from Ω0 by bending the channel in some local
neighbourhood of the origin. Hence Υε is a slightly deformed mid-line Υ0 of Γ
- the abscissa axis. The water domain Ωε is formed by sliding the cross-section
Θ along the curve Υε.

In the neighbourhood U of Υε on the plane {x : x3 = 0}, we introduce the
local coordinate system (η, ς), where η is the oriented distance to Υε and ς is
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Figure 2: a) Free surface and the cross-section, b) a straight channel

the arc length on Υε. We assume that the curvature κε(ς) of Υε satis�es the
conditions

κε(ς) = εκ0(ς), κ0(ς) ∈ C∞(R), κ0(ς) = 0 for |ς| > l > 0. (1.2)

The curved channel with a constant cross-section Θ, Fig.1, is then

Ωε = {x : ς ∈ R, (η, z) ∈ ω}, (1.3)

where z = x3 is the vertical coordinate. According to (1.2), the channel (1.3)
has cylindrical outlets to in�nity Ωε± = {x ∈ Ωε : ±ς > l} and the curved
middle part Ωε0 = {x ∈ Ωε : |ς| < l}, see Fig.1.

1.2 Spectra of the problem

It is well-known that the continuous spectrum σ0
co of the problem is the closed

real semi-axis R+ = [0,+∞) in the complex plane C. The threshold values

0 = Λ0 < Λ1 ≤ Λ2 ≤ · · · ≤ Λj ≤ · · · → +∞ (1.4)

divide σ0
co into the intervals of constant multiplicity. In what follows we concern

the �rst interval (0,Λ1). The entries of the sequence (1.4) are the eigenvalues
of the model problem on the cross-section

−∆′U(x′) = 0, x′ ∈ ω,
∂νU(x′) = 0, x′ ∈ ∂ω \ γ, (1.5)

∂zU(x′) = ΛU(x′), x′ ∈ γ,

where ∆′ is the Laplacian in the cross-section.
The spectrum of the problem in the straight channel is absolutely continuous

but, for ε > 0, the spectrum σε = R+ of problem (1.1) may contain embedded
eigenvalues forming the point spectrum σεp. The main goal: �nd a domain Θ
and a curve Υε, that is, the curvature κε in (1.2), such that σεp includes at least
one eigenvalue

λε = Λ1 − ε2µ2. (1.6)
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1.3 Criteria for the trapped mode

In the sequel, we assume that the �rst positive eigenvalue in the sequence (1.4)
is simple, that is

Λ1 < Λ2. (1.7)

By the Max-Min principle, cf. [11, Ch. 22], the non-positive part of the
M -spectrum of the problem

−∆′V (x′) = MV (x′), x′ ∈ ω,
∂νV (x′) = 0, x′ ∈ ∂ω \ γ, (1.8)

∂zV (x′) = Λ1V (x′), x′ ∈ γ,

consists of two eigenvalues M0 < 0 and M1 = 0. The corresponding eigenfunc-
tions are denoted by V0 and V1 normalized in the Lebesgue space L2(ω):

‖V0;L2(ω)‖ = ‖V1;L2(ω)‖ = 1.

Notice that V1 = U1.
The solution of perturbed problem with the parameter λε in (1.6)

−∆′V ε(x′) = M εV ε(x′), x′ ∈ ω,
∂νV

ε(x′) = 0, x′ ∈ ∂ω \ γ, (1.9)

∂zV
ε(x′) = λεV ε(x′), x′ ∈ γ,

has the asymptotic expansion

M ε
q = Mq + ε2M ]

q + M̃ ε
q ,

V εq = Vq + ε2V ]q + Ṽ εq . (1.10)

The correction terms in the asymptotic ansätze with q = 0, 1 are deduced from
the problem

−∆′V ]q (x′)−MqV
]
q (x′) = M ]

q(x′)Vq(x
′) =: Fq(x

′), x′ ∈ ω,
∂νV

]
q (x′) = 0, x′ ∈ ∂ω \ γ, (1.11)

∂zV
]
q (x′)− Λ1V

]
q (x′) = −µ2Vq(x

′) =: Gq(x
′), x′ ∈ γ.

Here the existence of M ] and V ] follows from the compatibility condition and

M ]
q = µ2‖Vq;L2(γ)‖2 > 0. (1.12)

In the straight part of the channel there are two oscillatory and two expo-
nential waves

wε0±(x) = aε0e
±imε

0x1V ε0 (x′), (1.13)

vε1±(x) = aε1e
±mε

1x1V ε1 (x′), (1.14)

where

mε
0 =

√
−M ε

0 = m0 +O(ε2), m0 =
√
−M0 > 0,

m1
ε =

√
M1

ε = ε(m1 +O(ε2)), m1 = µ‖U1;L2(γ)‖ > 0.
(1.15)
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Furthermore, aεq is a normalization factor:

aεq = (2mε
q)
− 1

2 ‖V εq ;L2(ω)‖−1, q = 0, 1 (1.16)

aε0 = a0
0 +O(ε2), a0

0 = (2
√
−M0)−

1
2 , (1.17)

aε1 = ε−
1
2 a0

1(1 +O(ε2)), a0
1 = 2−

1
2µ−1‖Vq;L2(γ)‖−1. (1.18)

Following [1], see also [7], we introduce the exponential wave packets

wε1±(x) = 2−
1
2 (vε1+(x)∓ ivε1−(x)) (1.19)

and by straightforward computation, we have

Q(wεj±, w
ε
k±) = ±iδj,k, Q(wεj±, w

ε
k∓) = 0, j, k = 0, 1, (1.20)

where δj,k is the Kronecker symbol and Q(·, ·) is the symplectic (sesqui-linear
and anti-Hermitian) form

Q(v, w) =

∫
ω

(
w(R, x′)

∂v

∂x1
(R, x′)− v(R, x′)

∂w

∂x1
(R, x′)

)
dx′.

It is known, see e.g. [1, 7, 9], that the orthogonality and normalization
conditions (1.20) assure the existence of the following solutions to the problem
(Pε):

Zε0±(x) = χ±(ς)wε0∓(ς, n, z) +
∑
θ=±

χθ(ς)S
ε
θ±w

ε
0,±(ς, n, z)

+ χ+(ς)Sε1±w
ε
1−(ς, n, z) + χ−(ς)T ε1±v

ε
1+(ς, n, z) + Z̃ε0±(x) (1.21)

Zε1(x) = χ+(ς)wε1−(ς, n, z) +
∑
θ=±

χθ(ς)S
ε
θ1w

ε
0,±(ς, n, z)

+ χ+(ς)Sε11w
ε
1+(ς, n, z) + χ−(ς)T ε11v

ε
1+(ς, n, z) + Z̃ε1(x). (1.22)

Here, the remainders Z̃ε0±(x) and Z̃ε1(x) get the exponential decay o(e−δ|ς|)
while the exponents δ > 0 are de�ned by the eigenvalues (1.7) and can be �xed
independently on ε ∈ (0, ε0], ε0 > 0.

The coe�cients in (1.21) and (1.22) form a 3× 3-matrix Sε,

Sε =

[
Sε•• Sε•1
Sε1• Sε11

]
, Sε•• =

[
Sε++ Sε+−
Sε−+ Sε−−

]
, Sε•1 =

[
Sε+1

Sε−1,

]
which is called the augmented scattering matrix, which is symmetric and unitary.

Theorem 1. The condition
Sε11 = −1 (1.23)

is su�cient for the existence of trapped mode.

Assuming that the curvature is of the form

κ0(ς) = κ0
0(ς) + τ+κ

0
+(ς) + τ−κ

0
−(ς) (1.24)

µ = µ0 + τ0 (1.25)
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of the quantities in (1.1) and (1.6). Using the asymptotic analysis the su�cient
condition can be reduced to an abstract �xed point equation

τ = T ε(τ). (1.26)

We shall make the following assumptions:
(A1): Let us introduce the quantities

J1(κ0) =

∫ l

−l
κ0(ς) dς, K1 =

∫
Θ

U1(n, z)∂nU1(n, z) dndz K0 =

∫
Θ

V0(n, z)∂nU1(n, z) dndz.

(1.27)
The �rst assumption is that

K0 6= 0,K1 6= 0, K1J1(κ0) < 0. (1.28)

(A2): The second condition is that Now we �x κ0 and κ0
± such that

Re
(

(1 + i)J±(κ0
0)
)

= 0, (1.29)

Re
(

(1 + i)J±(κ0
p)
)

= δ±,k, k = ±, (1.30)

where the functionals J± are given by

J±(κ0) = a0
0

∫ l

−l
e∓im0ςκ0(ς)dς.

We will show that the operator T ε is a contraction in the ball

Bρ = {τ = (τ0, τ+, τ−) ∈ R3 : |τ | < ρ}

for small positive ε and ρ. Thus the Banach �xed point theorem delivers a
unique solution of (1.26) which additionally satis�es the estimate

|τ | ≤ cε. (1.31)

In this way, we obtain the curved channel with a constant cross-section which
has a trapped mode and the embedded eigenvalue

λε(τ) = Λ1 − ε2(µ0 + τ0)2,

cf. (1.6) and (1.25).
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Numerical modelling of concrete fracture: a 

mesoscopic approach based on embedded 

discontinuity FEM 
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Summary. This article presents a numerical study on concrete failure under uniaxial 
compression. For this end, a fracture model based on the embedded discontinuity finite elements 
is employed. Concrete mesostructure, i.e. the aggregates and the cement matrix, is explicitly 
described by convex polygons. Numerical simulations (in 2D) demonstrate that the present 
approach can predict the salient features of concrete fracture modes even when the crack 
initiation is based solely on the first principal stress criterion.   

Key words: mesoscopic model, concrete fracture, finite elements, embedded discontinuity 

Introduction 

Numerical modelling of concrete fracture processes is an important and challenging task in 
Civil Engineering. The classical approach based on homogenisation of the aggregates-in-cement 
matrix mesostructure is still the foremost method in analyses of concrete structures (especially 
large structures such as dams). However, the mesoscopic approach describing the aggregate-
mortar structure explicitly is indispensable in the analyses of the effect of aggregate shape, size 
and mechanical properties on the overall behaviour of a specific concrete. Moreover, as 
aggregates introduce various fracture toughening mechanisms, such as crack stopping, 
redirection and branching [1], their explicit description is crucial.  

This paper presents a numerical modelling approach where the concrete mesostructure is 
explicitly described and the concrete fracture is modelled based on the embedded discontinuity 
finite elements [2]. The original model presented by Saksala [3] is modified here by allowing 
cracks to initiate only in mode I, i.e. by the first principal stress (Rankine) criterion.   

Concrete fracture model 

Concrete fracture is described by the embedded discontinuity finite elements. In the present 
context this means that an ordinary constant strain triangle (CST) in enriched with special 
functions to model discontinuities [2, 3]. For a CST element with a strong discontinuity (crack) 
illustrated in Figure 1a, the displacement and strain fields are 
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where d is the displacement jump vector,  and e

i iN u are the standard interpolation function 
and displacement vector at node i (with summation on repeated i), and

d
H is the Heaviside 

function at discontinuity d with normal n. Finally,  is a function that restricts the effect of the 
displacement jump within the corresponding finite element so that the essential boundary 
conditions remain unaffected. This function is chosen by criterion (1). 

A bi-surface, plasticity inspired model for solving the displacement jump vector and the 
traction updates, as well as to control the softening behavior at the discontinuity. The 
components of this model are 
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where t and s are the tension (mode I) and shear (mode II) loading functions, 
respectively, ,  are the internal variable and its rate, m is the crack tangent vector, t and s
are elastic limits in tension and shear, respectively, I II,α α are the mode I and II crack opening 
vectors, E is the elasticity tensor, t s,  are the mode I and II opening increments, respectively, 
h is the softening modulus, and s is the constant viscosity modulus. The softening slope 
parameter g is defined by the mode I fracture energy GIc by g = t/GIc. It should be noted that 
that last equations in (2) are the consistency conditions. Viscosity is thus included in the spirit of  
the viscoplastic consistency approach.  

A fracture occurs, i.e. a discontinuity is embedded in an element, upon violation of the 
Rankine criterion. However, once a crack is introduced, it can fail in both shear and tensile 
mode, as governed by model (2). The material point level behaviour is linear elastic up to 
fracture. However, as heterogeneity is naturally included in the model by the hard aggregates 
and the weak microcracks in the cement matrix, global nonlinear pre-peak behaviour can be 
captured, as will be shown in the numerical simulations. 

The global equations of motion are solved with an explicit time integrator.  

Concrete mesostructure 

Concrete is described as a bi-phasic material with explicit aggregates in a mortar matrix. The 
aggregates are taken to be convex polygons. The resulting mortar-aggregate structure is meshed 
with the ordinary CST elements. Concrete contains inherent microcrack populations induced by 
hydration processes, for example. These cracks have, expectedly, a non-negligible influence on 
the concrete failure processes.  

In the numerical concrete mesostructure in Figure 1b, the aggregates are represented by 50 
polygons of different shapes and sizes. The blue lines (598 in total) represent the inherent 
microcrack population. The interface transition zone (ITZ) is here accounted for by lowering the 
strength to one half of the intact value of the elements surrounding the aggregates. 
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Figure 1. CST element with a discontinuity (a), and numerical concrete mesostructure (b). 

The mortar is taken as the Portland cement while the aggregates are granitic rock Some of the 
key material properties are for mortar: E = 27.5 GPa;  = 0.2;  = 2400 kg/m3; t = 3.5 MPa; s 
= 7 MPa; GIc = 0.02 N/m and for aggregates: E = 60 GPa;  = 0.17;  = 2400 kg/m3; t = 10 
MPa; s = 25 MPa; GIc = 0.04 N/m.  

Numerical example 

Uniaxial compression test is simulated as a numerical example. In addition to the original 
Rankine cracking criterion, where a crack is parallel to the first principal direction, a crack 
reorientation is tested: from among the element edge normals, the one that is most parallel to the 
first principal direction is selected. This scheme should result in a different kind of failure mode 
as, unlike in the Rankine criterion, the crack normal is not orthogonal to the loading direction. 
The simulation results are shown in Figure 2. 

Figure 2. Uniaxial compression test: failure mode for crack reorientation (initial cracks and ITZ 
not included) (a) and for original orientation (initial cracks and ITZ included) (b), stress-strain 
responses (c), and crack distributions for crack reorientation (d) and for original orientation (e).  
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The failure modes (plotted as the magnitude of crack opening vectorss) shown in Figure 2a and 
b indeed attest different failure modes: the reorientation scheme results in a typical shear failure 
mode observed in the experiments [4] while the original Rankine criterion results in a multiple 
axial splitting mode, which is also observed in the experiments. The corresponding compressive 
strengths, as readable in Figure 2c, are 33 MPa and 54 MPa – typical values for normal and 
intermediate high strength concretes. Finally, Figure 2d and c show the final crack distributions. 
Cracks are almost everywhere in the numerical samples but the deformation (crack opening) 
localizes only in part of them to form macrocracks. Cracking occurs also in aggregates.   

Conclusion 

The concrete fracture modelling approach presented here show some predictive capabilities. 
Namely, by giving the mortar cement and the aggregates realistic material properties, low and 
high strength concrete behavior, including the peak stresses and the failure modes, in uniaxial 
compression can be replicated. Moreover, the simulation results with the first principal stress 
criterion corroborate the hypothesis that brittle materials failure in uniaxial compression is a 
violent multiple axial splitting mode.  
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Summary. A computationally efficient strategy to prescribe periodic boundary conditions on three-
dimensional Representative Volume Elements (RVEs) is outlined. In particular, the cases of having an
Euler-Bernoulli beam and a Kirchhoff-Love plate problem at the macroscale are considered within a
computational homogenisation framework. Special solid elements for the boundary region of the periodic
mesh have been developed, in which some of the degrees of freedom depend on those of their periodic
counterparts, the macroscopic data and the size of the RVE.

Key words: periodicity, computational homogenisation, beam, plate, multiscale

Introduction

Computational Multiscale Modelling (CMM), specifically the FE2 method, is suitable for anal-
ysis of large-scale reinforced concrete structures, such as e.g. bridges. Detailed results such
as crack widths and crack patterns can be efficiently obtained for large structures, where con-
ventional single-scale finite element analyses would be impractical. In the FE2 method, the
large-scale effective response is obtained from computational homogenisation of the response
of Representative Volume Elements (RVEs), which are located at the integration points. The
macroscopic fields are prescribed on the RVEs via suitable boundary conditions, and the re-
sponse is homogenised (averaged) to produce a macroscopic quantity, cf. [1]. In order to
increase computational efficiency of the model, the large-scale structure can often be modelled
with plate/shell elements, while the detailed subscale response of the material is best described
with three-dimensional RVE models. In this work, we outline the main formulation of the large-
scale and subscale problems for macroscopic Euler-Bernoulli beams and Kirchhoff-Love plates.
A computationally efficient way of prescribing the macroscopic fields via periodic boundary con-
dition at the subscale, using special tetrahedral elements developed in this study, is presented.

Large-scale problem

The large-scale problem for an Euler-Bernoulli beam, which occupies region [0, L] and is sub-
jected to bending around the y-axis, can be expressed in the weak form as follows:∫ L

0
N̄
∂δū

∂x
dx = [Npδū]L0 +

∫ L

0
bδū dx, (1)∫ L

0
M̄
∂2δw̄

∂x2
dx =

[
Mp

∂δw̄

∂x

]L
0

− [Vpδw̄]L0 −
∫ L

0
qδw̄ dx, (2)
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for suitable test functions δū and δw̄. Here, ū and w̄ are the macroscopic displacements in x-
and z-directions, while b and q are the corresponding distributed loads. The forces Np, Vp,
and Mp are the prescribed normal forces, shear forces and bending moments, respectively. The
effective normal force N̄ and effective bending moment M̄ are obtained from computational
homogenisation upon solution of the pertinent RVE problem as

N̄ =
1

|L�|

∫
Ω�

σxx dΩ, M̄ =
1

|L�|

∫
Ω�

zσxx dΩ, (3)

where σxx is the normal stress in x-direction, L� is the length of the RVE in the x-direction,
and Ω� is the volume of the representative volume element.

For a Kirchhoff-Love plate occupying region Ω with boundary ∂Ω = Γ, the corresponding
large-scale problem can be expressed in the weak form as follows:∫

Ω
N̄ : [δū⊗∇] dΩ =

∫
Γ
Np · δū dΓ +

∫
Ω
b · δū dΩ, (4)∫

Ω
M̄ :

[
δw̄⊗

∗
∇
]

dΩ =

∫
Γ
V K

i δw̄ dΓ−
∫

Γ
Mii

∂δw̄

∂i
dΓ +

∫
Ω
qδw̄ dΩ, (5)

for suitable test functions δū and δw̄. Here, ∇ and
∗
∇ are the differential and curvature opera-

tors. The macroscopic fields ūT = [ū v̄] and w̄ are the in- and out-of-plane displacement fields,
while b and q are the corresponding distributed loads. The forces Np, V K

i are the presribed
boundary normal and Kirchhoff forces, while Mii is the prescribed boundary bending moment.
The effective membrane forces, N̄ , and bending moments, M̄ , can be obtained upon solving
the RVE problem as

N̄ =
1

|A�|

∫
Ω�

σ̂ dΩ, M̄ =
1

|A�|

∫
Ω�

zσ̂ dΩ, (6)

where σ̂ denotes the in-plane projection of the Cauchy stress and A� is the area of the RVE in
the xy-plane.

Subscale problem with periodic boundary conditions

The weak form of the three-dimensional boundary value problem on the RVE is defined in
terms of finding the unknown displacement field uT = [u v w] from the momentum equilibrium
relation ∫

Ω�

σ : [δu⊗∇] dΩ =

∫
Γ�

t̂ · δu dΓ, (7)

with suitable boundary conditions and pertinent test functions δu. In this relation, the RVE is
defined within the region Ω� and is subjected to tractions t̂ on its boundary ∂Ω� = Γ�. In this
work, we consider periodic boundary conditions, which state that the fluctuation part of the
total fields are equal at both boundaries of the RVE. To this end, we define the image (plus) side
and the mirror (minus) side of the representative volume element. The difference in deformation
at these two boundaries is simply governed by the (gradients of) macroscopic fields. For the
Euler-Bernoulli beam we have the following relations linking the macro- and microfields:

u+ − u− =

[
∂ū

∂x
− z ∂

2w̄

∂x2

] [
x+ − x−

]
, (8)

w+ − w− =
∂w̄

∂x

[
x+ − x−

]
, (9)
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Figure 1. Boundary tetrahedral finite element in a cube RVE with periodicity in x-direction. Nodes i′,
j′, and k′ are replaced by their periodic counterparts i, j, k.

where x+ and x− are the x-coordinates of the image and mirror boundaries, respectively. For
the Kirchhoff-Love plate at the macroscale the corresponding relations are:

u+ − u− =

[
∂ū

∂x
− z ∂

2w̄

∂x2

] [
x+ − x−

]
+

[
∂ū

∂y
− z ∂

2w̄

∂x∂y

] [
y+ − y−

]
, (10)

v+ − v− =

[
∂v̄

∂x
− z ∂

2w̄

∂x∂y

] [
x+ − x−

]
+

[
∂v̄

∂y
− z ∂

2w̄

∂y2

] [
y+ − y−

]
, (11)

w+ − w− =
∂w̄

∂x

[
x+ − x−

]
+
∂w̄

∂y

[
y+ − y−

]
. (12)

The differences x+ − x− and y+ − y− represent the distances between the image and mirror
boundaries normal to x and y directions. In the usual case of a cuboid RVE, these simply
translate to the lengths in x- and y-direction, respectively.

Modified boundary tetrahedral finite element

In order to resolve relations (8)–(12) in the RVE model, a new element was developed and
implemented in the open-source code OOFEM [4]. The element, inspired by similar periodic
formulation from [2] and [3], is based on the classical tetrahedral element with linear shape
functions and is intended to represent part of the image bounday of the RVE, cf. Figure 1.

The user defines the boundary element using only the corresponding nodes at the mirror
boundary, the direction of periodicity and the size of the RVE. Additionally, one control node
is defined for the model and is also used in the boundary element definition. The control node
is intended to contain the macroscopic information about the effective fields within its degrees
of freedom. Depending on the macroscopic problem (Euler-Bernoulli beam or Kirchhoff-Love
plate), the control node has either 3 or 10 degrees of freedom - the partial derivatives in relations
(8)–(12). Using these relations, it is possible to express the unknown degrees of freedom of
any boundary element at the image boundary as function of the degrees of freedom of the
corresponding nodes at mirror boundary and the macroscopic information from the control
node, i.e.

u′ = Tu, (13)

where u
′

is the vector containing the displacement degrees of freedom at the image boundary,
while u contains the displacement degrees of freedom of the corresponding nodes at the mirror
boundary as well as the degrees of freedom of the control node. The matrix T is basically a unit
matrix expanded by the corresponding entries from Equations (8)–(12). At any iteration step,
after evaluating the element deformations u′ according to Equation (13), the element stiffness
matrix K

′
and internal force vector f ′int can be computed in the usual fashion. In order to transfer
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Figure 2. Contour plot of the strain εyy in a plate RVE subjected to macroscopic curvatures ∂2w̄/∂x2 = 1,
∂2w̄/∂y2 = −1

back to the mirror boundary and continue with the assembly, we use the following relations:

K = TTK′T, fint = TTf ′int. (14)

Example response

In order to illustrate the method, a sample linear elastic RVE in shape of a cuboid with sizes
Lx = 0.6 m, Ly = 0.4 m and Lz = 0.1 m was considered. A periodic tetrahedral mesh was
created following the method described in [2] and [3]. Subsequently, all elements with nodes
at the image boundaries were replaced by the corresponding modified boundary tetrahedra.
Macroscopic curvatures ∂2w̄/∂x2 = 1, ∂2w̄/∂y2 = −1 were imposed on the RVE by prescribing
them as boundary conditions in the corresponding degrees of freedom of the control node. The
deformed shape and a contour plot of the strain εyy can be seen in Figure 2. It is noteworthy
that the obtained reaction forces in the control node are the effective forces (moments), that
can be used directly in the FE2 scheme.

Conclusions

We proposed new boundary tetrahedral elements, which make it possible to impose an arbitrary
combination of macroscopic in-plane strains, slopes and curvatures as periodic boundary condi-
tions on the RVE. This is a necessary step to apply the FE2 procedure to large-scale structures
modelled with beam and plate/shell elements.
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Summary. A coupled model describing the nerve pulse propagation in nerve axons is numerically
studied and the characteristics of the emerging wave ensemble are described. The key phenomena observed
are: (i) the velocity of the peak of the mechanical pulse is similar to the velocity of the action potential
regardless of the sound velocity value in the lipid bi-layer, (ii) the velocity of the front and the shape
of the mechanical wave depends on sound velocity in the lipid bi-layer, (iii) the shape of the mechanical
wave can have an effect on the velocity and shape of the action potential.

Key words: nerve signal, pseudospectral method, ensemble of waves

Introduction and model equations

In this contribution, the effects associated with the nerve pulse propagation in nerve axons
is investigated using mathematical modelling. The propagation process is composed of three
connected phenomena: (i) the action potential (electrical signal), which is usually considered
when nerve pulse propagation is modelled (see [1] and references therein), (ii) the mechanical
wave propagating on the axon (nerve fibre) surface [2] and (iii) the pressure wave in the axoplasm
inside the axon [3]. In this analysis, the thermodynamical effects are left aside. Possibilities for
accounting for the thermodynamic effects within the present framework can be found in [4].

In a nutshell, our idea is simple. We take established single models describing all effects
related to the nerve pulse propagation that should be considered, propose coupling terms between
the processes that influence each other, and derive a coupled mathematical model describing an
ensemble of waves related to the nerve pulse propagation [5].

For modelling the action potential (AP), the FitzHugh-Nagumo model (FHN) [6] in dimen-
sionless form is used:

ZT = Z
(

Z − C1 − Z2 + C1Z
)

− I +DZXX ,

IT = ε (ZC2 − I) ,
(1)

where Z is trans-membrane potential, I is the combined ion (recovery) current, D is a coefficient,
Ci = ai+ bi where ai are the ‘electrical’ activation coefficients, bi are the ‘mechanical’ activation
coefficients and X,T are the dimensionless spatial and time coordinates, respectively. Subscripts
X,T here and further denote partial derivatives with respect to the indicated coordinate. The
coefficients bi could be taken as b1 = −g1U and b2 = −g2U where gi are constants and U is from
Eq. (2) – the feedback from the mechanical wave.

The mechanical wave (LW) in surrounding biomembrane is modelled by the improved Heimburg-
Jackson (iHJ) model [7, 8]:

UTT = c2UXX +NUUXX +MU2UXX +N (UX)2+

+ 2MU (UX)2 −H1UXXXX +H2UXXTT + g3IX ,
(2)
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Figure 1. Illustrative scheme (right) for the wave ensemble and block diagram of the combined model for
the nerve pulse propagation (left).

where U = ∆ρ is the dimensionless longitudinal density change in the lipid bi-layer, N,M are the
nonlinear coefficients, H1,H2 are the dispersion coefficients, c is the velocity in the unperturbed
state, g3 is the coupling coefficient and IX is the gradient of I from Eq. (1). It should be noted
that while recovery current I is a positive pulse-type quantity, its gradient IX is a bi-polar
quantity which is important for the stability of the solution of the Eq. (2).

For the pressure wave (PW) is axoplasm, a classical wave equation with an added viscous
term is used:

PTT = c2fPXX − µPT + F (Z, J, U), (3)

where P is the dimensionless pressure, cf is the sound velocity in axoplasm, µ is viscosity
coefficient. Here F (Z, J, U) is the coupling term accounting for the possible influence from the
action potential (ion currents) and the mechanical wave in biomembrane. An illustrative scheme
and a block diagram for the proposed model is shown in Fig. 1. In the present contribution a
two component model containing the AP (Eq. (1)) and the LW (Eq. (2)) is used. Simulations
including the PW can be found in [5].

Numerical scheme

A sech2-type localized initial condition with an initial amplitude Zo is applied to Eq. (1) and
we make use of the periodic boundary conditions

Z(X, 0) = Zo sech
2BoX; Z(X,T ) = Z(X + 2Kmπ, T ); m = 1, 2, . . . , (4)

where K = 160, i.e., the total length of the spatial period is 320π. For Eq. (2) we take initial
excitation to be zero and make use of the periodic boundary conditions. The solution repre-
senting the mechanical wave described by Eq. (2) is generated over time as a result of coupling
between the Eqs (1) and (2).

For numerical solving of the Eqs (1) and (2) we use the discrete Fourier transform (DFT)
based pseudospectral method (PSM) [9]. Variable Z is represented in the Fourier space as

̂Z(k, T ) = F [Z] =

n−1
∑

j=0

Z(j∆X,T ) exp

(

−
2πijk

n

)

, (5)

where n is the number of space-grid points (n = 212 in the present paper), ∆X = 2π/n is the
space step, k = 0,±1,±2, . . . ,±(n/2−1),−n/2; i is the imaginary unit, F denotes the DFT and
F−1 denotes the inverse DFT. Basically, the idea of the PSM is to approximate space derivatives
by making use of the DFT

∂mZ

∂Xm
= F−1 [(ik)mF(Z)] , (6)

reducing therefore the partial differential equation (PDE) to an ordinary differential equation
(ODE) and then to use standard ODE solvers for integration with respect to time.
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Figure 2. The left propagating solutions of Eqs (1) (variable Z) and (2) (variable U) . ParametersD = 1,
a1 = 0.2, a2 = 0.2, N = 0.05, M = 0.02, H1 = 0.5, H2 = 0.75, g1 = 0.05, g2 = 0.05, g3 = 0.02, ε = 0.01
(the left plot) and ε = 0.05 (the right plot).

Selected results

The solutions for the coupled model equations (1) and (2) at T = 400 are shown in Fig. 2. The
initial ‘spark’ either leads to a formation of the propagating FHN action potential which then
leads to formation of mechanical waves through coupling (Fig. 2 left) or if the initial value of
the ‘spark’ is below the threshold for the FHN model (1) then it vanishes over a short time
leading to a formation of only a small amplitude mechanical wave which proceeds to propagate
without the FHN action potential (Fig. 2 right). Note the difference in the scales of the left
and right panels in Fig. 2. Here only the waves propagating to the left are shown. The similar
wave-profiles exist propagating to the right which are not shown.

In Fig. 2 (left) we compare action potentials Z and mechanical waves U at dimensionless time
T = 400 provided the velocity of the low frequency sound is different for the lipid bi-layer. A
number of essential characteristics for the coupled model system can be observed: (i) the velocity
of the peak of the mechanical pulse is similar to the velocity of the action potential regardless
of the sound velocity value in the lipid bi-layer within the considered parameter range, (ii) the
velocity of the front and the shape of the mechanical wave depends on sound velocity in the lipid
bi-layer for the Eq. (2), (iii) the shape of the mechanical wave can have an effect on the velocity
and shape of the action potential (if c2 = 0.25 for the mechanical wave then the corresponding
action potential Z has propagated further compared with the case c2 = 0.125).

In Fig. 2 (right) the wave-profiles of the mechanical wave at T = 400 when the initial
excitation for the Eq. (1) is below the threshold at three different values for the c2 is shown.
It can be noted that while the front of the wave-profile propagates at the same velocities as in
Fig. 2 (left), the peak of the packet travels faster than the corresponding wave-profile in Fig. 2
(left). While not shown here, it should be noted that the system can also support solitonic
solutions. For example, in case of c2 = 0.755 under the considered parameters (when ε = 0.05)
a solution where the initial pulse is separated into a train of solitonic pulses emerges [10]. The
cases shown here have an oscillatory structure.

The numerical results demonstrate a number of characteristics for the combined nerve pulse
model which are qualitatively in line with the observations from the experiments. It must be
stressed that presented profiles are for the longitudinal density change while in experiments
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usually a transverse displacement is measured. However, the connection between longitudinal
density change and transverse displacement can be established in a straightforward manner by
drawing inspiration from theory of rods [8].

Finally, it must be mentioned that the results presented here represent a wave ensemble
which is characteristic to a complex material. Complex materials are characterised by their
internal structures and several fields may occur simultaneously. In case of simplified linear
models, depending on initial or boundary conditions, several uncoupled waves may emerge, all
propagating separately. In a complex case, these waves are coupled and the interaction of waves
does not allow to consider them as single waves [11].
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Abstract. This paper investigates the bending behaviour of beams by taking into account (1)
material length scales according to Mindlin’s strain gradient elasticity theory of form II, (2) 
small strains but moderate displacements based on the von Kármán strain assumptions. The 
principle of virtual work is used to derive the nonlinear governing equations in form of a sixth-
order partial differential equation. Thereafter, a conforming Galerkin method based on an 
isogeometric approach is adopted to naturally fulfill the stringent C2-continuity required by the 
beam model. Through numerical benchmarks, the accuracy and validity of the present 
theoretical formulations at linear and nonlinear regimes are confirmed. 

Key words: beam, strain gradient elasticity, isogeometric analysis, geometrical nonlinearity 

Introduction 
Micro-beams are nowadays the key components in micro- and nano-electromechanical systems 
[1] such as micro sensors and actuators, atomic force microscopes, and so on. Therefore, they
get an extreme attention from scientists and researchers as well. As observed through a number
of experimental tests, the classical continuum mechanics without any intrinsic length scale
parameters wrongly predicts and describes the static and dynamic behaviour of the small-size
structures under various mechanical conditions, for example, in torsion of a copper wire [2],
bending of an epoxy beam [3], and plastic hardening of a thin nickel beam [4]. This leads to the
necessity of non-classical continuum theories which include material length scale parameters, in
addition to the classical Lame’s constants used in the conventional elasticity theory, in order to
capture the size-dependencies. Another class of structures obeying the non-classical continuum
theories is microarchitectural thin structures (of any scale) with the characteristic length scale of
microstructures close to the dimensions of the structure itself, such as its thickness [5].

Strain gradient elasticity theory pioneered by Mindlin [6] is a well-known non-classical 
continuum theory which includes higher-order gradient terms of displacements (or strains) in 
the strain energy density. The Mindlin continuum theory can be simplified into some simple 
one-parameter continuum theories involving only one material length scale parameter, such as 
Aifantis’s strain gradient theory [7] (ASGT), modified strain gradient theory (MSGT) [3], 
modified couple stress theory (MCST) [8] and simplified strain gradient theory (SSGT) [9]. 
Furthermore, from the point of view of structural mechanics and experiments, micro- or 
microarchitectural beams can exhibit large deformations in which the mid-plane stretching 
becomes dominant, resulting in a geometrical nonlinearity [10]. Within the nonlinear regime, 
analytical solution approaches work only in some simple cases of geometries, loadings and 
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boundary conditions. Therefore, numerical techniques must be developed for solving the 
complex partial differential equations governing the problem settings. Due to the salient features 
of isogeometric analysis, higher-order continuity achieved by using B-spline shape functions 
particularly, a conforming isogeometric Cp-1-continuous discretization (with order p  3) is 
utilized to naturally fulfil the C2-continuity requirement without any additional variables [11]. 

Objective 
The main purpose of this paper is to further extend the study of strain-gradient-elastic thin 
beams [11] within the regime of nonlinear deformations: 

First, we formulate a nonlinear strain-gradient-elastic beam model based on the general 
Mindlin’s elasticity theory of form II. By appropriately choosing the length scale parameters, 
various simplified one-parameter formulations corresponding to the MSGT, ASGT, MCST and 
SSGT can be retrieved.  

Second, we adopt isogeometric B-spline basis functions for implementing a conforming 
Cp-1-continuous method. Then by applying the Newton–Raphson method, the nonlinear beam 
bending problem is solved iteratively. Through numerical benchmarks, the accuracy and 
validity of the present theoretical formulations at linear and nonlinear regimes are confirmed. 

Third, we demonstrate the advantage of applying the strain gradient elasticity theory for 
analyzing 2D triangular lattice structures. By using a one-dimensional reduction model for the 
corresponding microarchitectural beam structures, we significantly reduce the number of 
degrees of freedom resulting in essential savings in computational costs, while maintaining a 
valid level of accuracy, as compared to standard 2D finite element simulations. 

References 

[1] Y.-C. Hu, C. Chang, and S. Huang, Some design considerations on the electrostatically
actuated microstructures. Sensors and Actuators A: Physical, 112(1):155–161, 2004.

[2] N. Fleck, et al., Strain gradient plasticity: theory and experiment. Acta Metallurgica et
materialia, 42(2):475–487, 1994.

[3] D.C. Lam, et al., Experiments and theory in strain gradient elasticity. Journal of the
Mechanics and Physics of Solids, 51(8):1477–1508, 2003.

[4] J.S. Stölken and A. Evans, A microbend test method for measuring the plasticity length
scale. Acta Materialia, 46(14):5109–5115, 1998.

[5] S. Khakalo, V. Balobanov and J. Niiranen, Modelling size-dependent bending, buckling
and vibrations of 2D triangular lattices by strain gradient elasticity models: Applications
to sandwich beams and auxetics. International Journal of Engineering Science, 127:33–
52, 2018.

[6] R.D. Mindlin, Micro-structure in linear elasticity. Archive for Rational Mechanics and
Analysis, 16(1):51–78, 1964.

[7] E.C. Aifantis, On the role of gradients in the localization of deformation and fracture.
International Journal of Engineering Science, 30(10):1279–1299, 1992.

[8] F. Yang, et al., Couple stress based strain gradient theory for elasticity. International
Journal of Solids and Structures, 39(10):2731–2743, 2002.

[9] B. Altan and E. Aifantis, On some aspects in the special theory of gradient elasticity.
Journal of the Mechanical Behavior of Materials, 8(3):231–282, 1997.

[10] S. Ramezani, A micro scale geometrically non-linear Timoshenko beam model based on
strain gradient elasticity theory. International Journal of Non-Linear Mechanics,
47(8):863–873, 2012.

[11] J. Niiranen, et al., Variational formulations, model comparisons and numerical methods
for Euler–Bernoulli micro- and nano-beam models. Mathematics and Mechanics of
Solids, 24(1):312–335, 2019.

159



Proceedings of the 32nd Nordic Seminar on Computational Mechanics
A.H. Niemi and H. Koivurova (Eds.)
© University of Oulu, 2019

Continuum damage modelling of quasi-brittle 

materials by using the material point method 

Quoc-Anh. Tran, Tuan H. A. Nguyen*, Jarkko Niiranen and Wojciech Sołowski

Department of Civil Engineering, Aalto University, Finland  
(*) Corresponding author, email address: tuan.3.nguyen@aalto.fi 

Summary. This works focuses on the modelling of damage of quasi-brittle materials in the 
framework of the Material Point Method (MPM). The adopted local damage formulation is 
enhanced with a localization limiter derived from the framework of fracture mechanics in terms 
of fracture energy. The model is therefore capable of simulating strain softening without suffering 
from mesh size dependency. The problems associated to highly distorted elements undergoing 
strain localization are effectively alleviated by using the Convected Particle Domain Interpolation 
Material Point Method combined with the generalized alpha scheme. Numerical tests are 
conducted for both quasi-static and dynamic loading conditions in order to demonstrate the 
features of the developed model.  

Key words: continuum damage, localization limiter, fracture energy, MPM 

Continuum damage model 

Continuum damage models describe quasi-brittle fracture which exhibits strain softening and 
eventually leads to failure. In the so-called local continuum approaches, when reaching a certain 
level of an accumulated damage, strain softening results in the ill-posedness of the system of 
equations describing the deformation process. Consequently, numerical solutions suffer from 
mesh dependency and do not converge to physically meaningful solutions. In order to alleviate 
this problem, the non-local damage models, including integral [1] and differential types [2, 3], are 
introduced by incorporating an internal length scale parameter into the governing equations. 
However, both of the two approaches require additional variables, as the nonlocal strains must be 
calculated from their local counterparts, and therefore significantly increase the numerical effort. 
An alternative method is to integrate a length scale parameter, which plays the role of a 
localization limiter, directly into the softening law as proposed by Kurumatani et al. [4].   

The material point method 

The finite element method (FEM), while immensely popular in the industrial design and analysis 
software, cannot easily model extremely large deformations due to the problems of mesh 
distortion. When a mesh distorts, as in the case of strain localization inside damage zones, the 
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Jacobian matrices of the distorted elements become nearly singular, which exacerbates numerical 
errors. These errors accumulate through time steps and eventually lead to unphysical solutions. 
In this paper, the Material Point Method (MPM) [5] is introduced for tackling these situations 
without searching for neighbor particles like in other mesh-free methods. The MPM discretizes a 
continuum body with a finite set of material points in the original configuration and these points 
are tracked during the deformation process. Accordingly, a fixed Eulerian mesh is used to solve 
the balance equations of the problem. In this work, we adopt the Convected Particle Domain 
Interpolation [6] method, an advanced MPM version developed to enhance the numerical 
accuracy and stability. We also apply the generalized alpha scheme [7] in order to reduce the 
velocity oscillations of impact loadings. The proposed damage model and the MPM method are 
implemented in the Uintah software [8].  

Fracture energy-based damage model in the framework of the MPM 

This work presents MPM damage simulations of a quasi-brittle sample with the effect of the strain 
rate on the damage profiles taken into account. The damage formulation proposed in [4] is 
adopted. Herein, a history parameter of the strain intensity, which in turn drives a scalar damage 
parameter, is assigned to each material point. Through the loading process, the damage parameters 
are calculated and the state of the material is updated accordingly, which represents the damage 
propagation. The speed of material degradation is controlled by fracture energy in order to remedy 
the over-localization of damage during mesh refinements. A mesh convergence study is carried 
out under a quasi-static loading case by setting a low value for the loading rate. Then, the rate of 
loading is gradually increased and the corresponding structural responses and damage profiles are 
analyzed accordingly.  
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Summary. This contribution concerns the multi-scale and multi-physics finite element analysis of struc-
tural power composites, i.e. multifunctional composites with simultaneous load bearing and energy
storing functionality. We are particularly interested in obtaining the effective macro-scale properties of
the structural electrolyte by employing computational homogenization to capture the effects of micro-
heterogeneities on the sub-scale. The sub-scale problem is defined by a statistical volume element that
is numerically generated, and the effective properties are obtained by conducting virtual material testing
on the synthetic microstructure.

Keywords: structural electrolyte, artificial microstructure, statistical volume element, computational ho-

mogenization, virtual material testing

Structural power composites

Carbon fibers are not only widely used as structural reinforcement materials; they are also attrac-
tive for use in electrode components due to their excellent intercalation properties. Combining
and utilizing both of its functionalities, strength and ionic storage capacity, at once results in new
multifunctional materials called structural power composites, such as the structural battery and
structural supercapacitor that have simultaneous load bearing and energy storing functionality
[1, 2].

If two different needs are addressed with a multifunctional material instead of two separate
subsystems, then significant weight and volume savings can be achieved [2]. In short, this
innovation enhances the system performance in various applications, and addresses the demand
for more efficient and sustainable systems. However, due to the infancy of this technology, more
studies need to be conducted.

In this contribution, we are particularly interested in the structural electrolyte, which is a
crucial component for all structural power composites. The structural electrolyte’s function is
to be electrically insulating, but ionically conductive while being able to carry mechanical loads.
The considered structural electrolyte consists of a highly porous solid polymer matrix, where the
pores are interconnected and form a complex channel system that contains liquid electrolyte.
Since both the solid phase and the pore space are continuous, the structural electrolyte forms
a bicontinuous system. The aim of this contribution is to study the ionic conductivity and the
stiffness of the structural electrolyte with finite element analysis.
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Two-scale modeling by computational homogenization

In order to include the effects of micro-heterogeneities in the structural electrolyte microstruc-
ture, we employ computational homogenization [3] to separate the sub-scale and the macro-scale.
Doing this allows us to compute the effective properties for the macro-scale via homogenization
of the sub-scale problem. The sub-scale problem is defined by a Statistical Volume Element
(SVE) that characterizes the material heterogeneity. The SVE is given by an artificial mi-
crostructure that is numerically generated in a fashion that enables us to use periodic boundary
conditions. Different approaches to the artificial microstructure generation are used depending
on the desired morphology of the structural electrolyte microstructure, see Figure 1.

(a) (b) (c) (d)

Figure 1: SEM scans of the solid polymer matrix and corresponding artificial structures. (a)
SEM scan 50MTM57/2.3M 1PC [4], and (b) its artificial counterpart. (c) SEM scan AB/0.65
[5]1, and (d) its artificial counterpart.

Since both the mechanical properties and the electrochemical conductivity are of interest,
we solve the linear elasticity and linear diffusion problem on the sub-scale. Here, we assume
that there is no mechanical resistance from the liquid electrolyte in the pore channels when the
structural electrolyte is loaded mechanically, i.e. the structural electrolyte is considered to be a
drained system. Furthermore, we assume that diffusion cannot take place in the solid polymer
matrix, and that the diffusion problem is stationary and decoupled from the mechanical problem.

The strong form of the sub-scale linear elasticity and diffusion problem in the SVE domain
Ω� is given as

− σ ·∇ = 0 in Ω�, (1)

σ = E : ε, (2)

ε := (u⊗∇)sym, (3)

∇ · j = 0 in Ω�, (4)

j = −D ·∇µ, (5)

where σ is the sub-scale stress, u is the displacement field, ε is the linear symmetric sub-scale
strain and E is the sub-scale isotropic stiffness tensor for the linear elasticity problem. For the
diffusion problem j is the sub-scale ion mass flux, µ is the sub-scale electro-chemical potential
and D is the isotropic sub-scale conductivity tensor which is, in the simplest case of isotropy,
defined as D = DI.

1Modified and reproduced with permission by Niklas Ihrner [5] under the license CC BY 3.0.
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While formulating the corresponding weak forms is straightforward, the scale separation
needs to be addressed properly. The prolongation rule employs an additive split of the displace-
ment field and the electro-chemical potential field

u(x) = uM(x) + us(x), x ∈ Ω�, (6)

µ(x) = µM(x) + µs(x), x ∈ Ω�. (7)

Here, uM(x) and µM(x) are the smooth displacement and electro-chemical potential fields, while
us(x) and µs(x) are the sub-scale displacement and electro-chemical potential fluctuation fields.
The smooth fields are prescribed according to the assumption of first order homogenization as

uM(x) = ε̄ · [x− x̄], x ∈ Ω�, (8)

µM(x) = ∇µ̄ · [x− x̄], x ∈ Ω�, (9)

where the imposed macro-scale strain ε̄ and electro-chemical potential gradient ∇µ̄ serve as the
driving forces for respective problem. Rigid body motion on the macro-scale does not affect the
mechanical response, and a constant macro-scale electro-chemical potential µ̄ is omitted since
it does not change the diffusion process in the stationary case. The reference point x̄ is chosen
arbitrarily, but a common choice is the SVE centre.

The next step is to specify the boundary conditions. The strongly periodic boundary con-
ditions (SPBC) are mainly defined by the micro-periodicity assumption. Micro-periodicity as-
sumes that the sub-scale fluctuation fields us and µs are periodic on the boundary of the SVE.
Before defining the micro-periodicity assumption formally, it is first necessary to introduce the
boundary split Γ� = Γ+

� ∪ Γ−
�, where Γ+

� is the image boundary (”positive” side) and Γ−
� is the

mirror boundary (”negative” side). The consequence of introducing such a boundary split is
that every point on a boundary gets a partner point on the opposite side. The next step is to
introduce the periodic mapping operator ϕper : Γ+

� 7→ Γ−
� such that x− = ϕper(x

+). Finally, the
micro-periodicity of the displacement and ion concentration fluctuation field can be expressed
as

us(x) = us(ϕper(x)), ∀x ∈ Γ+
�, (10)

µs(x) = µs(ϕper(x)), ∀x ∈ Γ+
�. (11)

Moreover, the symmetry condition of the sub-scale stress and ion mass flux are defined as

σ(x) · n = σ(ϕper(x)) · n, ∀x ∈ Γ+
�, (12)

j(x) · n = j(ϕper(x)) · n, ∀x ∈ Γ+
�, (13)

where n denotes the outward-pointing normal on Γ+
�. Hence, the surface fluxes t := σ · n and

j := j · n are anti-periodic.
Although the SPBC are defined here, they are implemented in a weak sense. Nevertheless,

all of this gives a solvable sub-scale problem. Lastly, we introduce the homogenization of the
sub-scale quantities which is defined by the SVE volume average operator

〈•〉� :=
1

|Ω�|

∫
Ω�

• dΩ, (14)
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which gives the macro-scale stress and ion mass flux in a post-processing step as

σ̄ = 〈σ〉�, (15)

j̄ = 〈j〉�. (16)

Since the linear elasticity problem is solved in a strain-controlled setting, and the macro-scale ion
concentration gradient is prescribed in the linear diffusion problem, it becomes a trivial task to
compute the corresponding effective properties based on the macro-scale constitutive equations.

Preliminary numerical results

The effective Young’s modulus Ē (normalized) and the effective diffusion coefficient D̄ (normal-
ized) are computed for a wide range of porosities φ and structures, see Figure 2. Note that the
different structures only exist in certain porosity ranges since each structural electrolyte must
be a bicontinuous system.
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Figure 2: Effective properties for different microstructures and their relevant ranges of porosity.
(a) Effective Young’s modulus (normalized). (b) Effective diffusion coefficient (normalized).
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Summary. In the production of cement, which is the main component of concrete production, the
process generates about 5% of the global carbon dioxide emissions. In addition, bioproduct and pulp mills
produce significant quantities of soda ash and bio-ash, which is still largely unused. In this paper we will
introduce our study related to improving the environmental friendliness of concrete used in construction
by utilizing pulp mill waste while its long-term durability and strength and porosity properties meet the
goals set for construction. The project ‘sustainable bioresidual concrete’ is on-going and only preliminary
numerical results with measurements are presented here.

Key words: Concrete, Mathematical modelling, Sustainability, Carbon dioxide, Finite element method

Introduction

The aim of the project is to improve the environmental friendliness of concrete used in construc-
tion by using pulp mill waste while its long-term durability and strength and porosity properties
meet the goals set for construction. In the project we will produce test pieces of concrete mixed
in various ways, including cement, water, sand, ash and green liquor dregs (GLD). Concrete
samples and their required strength and porosity properties are measured in both the JAMK’s
(Jyväskylä University of Applied Sciences) Concrete Technology Laboratory and by utilizing
X-ray microtomography device of the Department of Physics at the University of Jyväskylä.
In addition, samples and material and behavioral models are built on JYU’s (University of
Jyväskylä) Faculty of Information Technology to help optimize processes and sustainability.

One of the most important raw materials in construction is still concrete. While other forms
of construction, such as wood and steel construction, are gaining in popularity, the application
of these types of construction is much smaller than that of concrete construction. However,
concrete as a building material is problematic; the production of one of its key components,
cement, is environmentally harmful; it is estimated that 5% of the world’s anthropogenic carbon
dioxide emissions come from cement production. To prevent this, additives are used in the
concrete, such as coal ash (= fly ash) and paper sludge as a waste-based source of calcite in
cement [1].

The bio-ash and soda ash produced by the forest industry are not suitable for direct use
as a concrete component. This has posed challenges for the recovery of forest industry waste
in the construction industry. The project will result in a resource efficient way of utilizing the
waste described above as a raw material and / or mixer for concrete. Studies show that fly
ash improves many of the properties of concrete and reduces the amount of cement needed.
Preliminary studies have also shown that the use of bio-ash and soda ash can improve the
properties of concrete with respect to some criterias. The challenge so far has been considered
due to variations in the composition of these waste fractions.
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Figure 1. Cross sections from the concrete samples including 0% (left), 5% (center) and 10% (right)
bio-ash.
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Figure 2. Material model for tension (left) and compression (right).

Concrete strength problems have been encountered especially in various infrastructures. One
cause of the strength problems is the porosity of the concrete, which has caused, in particular, a
decrease in compressive strength. Compressive strength is the most important strength property
of concrete. However, the relationship between the porosity of concrete and its compressive
strength is complex and has been extensively studied. However, at present, there are reliable
mathematical models which can be used to predict the relationship between the porosity of a
concrete and its strength; the main factor in the modeling is the pore size, and in particular the
pore size distribution, which can be used to determine its effect on concrete strength.

Mathematical modelling of the case

X-ray tomography is used to reveal the structure of the samples having different amount of
bio-ash, see Fig. 1. The size of the measured samples is roughly 5 mm×5 mm×5 mm. The pore
size distributions are defined and used as a base structure of various sized simulation samples.
Material model (Fig. 2) used in the simulations is based on typical behavior of concrete [2].
An example of simulated behavior under z-directional compressional stress is presented in Fig.
3. The developed model will be validated with respect to the data obtained and separate
compression and/or endurance measurements. Once the model and the numerics involved in
solving it are at a reliable level, multi-objective optimization can be initiated for a variety of
material contents and uses.
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Figure 3. Simulated von Mises stress (top row) and maximum principal strain (bottom row) during the
concrete damage under z-directional compressional stress. Size of the simulated sample is 0.5 mm×0.5
mm×0.5 mm.
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Conclusions

In this paper, we have introduced the process model we use in mathematical modeling of
biodesidual concrete and in strength and durability analyzes. Our aim is to produce more
environmentally friendly concrete for the construction industry and to eliminate problematic
soda ash from the paper and board industry.
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Summary. Selected sequential designs of experiment strategies were compared using simulated data.
Namely, Staircase (up-and-down), D-optimal, objective and subjective predictive strategies were studied
using Monte Carlo simulation. Subjective criteria are optimal for their objective, but might not give
robust characterization of the general distribution. Staircase method was found to work surprisingly
well, given a well chosen step size. The D-optimal and objective predictive strategies were found the
most robust.

Key words: Sequential design of experiments, Fatigue testing

Introduction

Fatigue is still largely experimental science and thus robust, accurate and fast fatigue test ma-
chines and methods are needed to make fatigue testing more informative and cheaper. Recently,
increased focus has been on improving the data analysis - extracting more information out of
the same data set by means of statistical analysis and by including more relevant metadata
as explanatory variables [1]. The latter approach requires development of more sophisticated
models for the analysis. Another classical, and much studied, option to improve the information
value of experiments is the design of experiments (DoE) [2]. In the field of fatigue, barring a
few exceptions [3, 4], staircase method (also known as the up-and-down method) has cemented
its popularity [5]. The design of experiment strategy was invented by Dixon and Mood in 1948
[6] with particular interest in finding the median value of the underlying distribution in binary
response tests. Its popularity has been increased by its simplicity; little training is needed for
the laboratory staff to perform tests using this strategy.

In non-linear models, the use of sequential design over batch design based on prior is superior.
This is straight-forward to understand as the DoE based on prior information does not utilize
the information from the test results and is thus unable to adapt to the changed situation. Wald
[7] was a pioneer in developing sequential analysis. Adopting Bayesian approach is natural in the
DoE problems as, from mathematical point of view, no design can be made without prior infor-
mation. Another benefit of the Bayesian approach is the usefulness of the information retained
in the full posterior in DoE problems. Predictions can be made from the posterior distribution
and different loss/utility functions, indicating the purpose of the experiments, can be calculated
from it to design the experiments [2]. Lindley introduced the measure of information provided
by an experiment [8]. The D-optimality also has roots in the information theory - maximizing
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the expected gain of Shannon information [9, 10, 11]. Predictive accuracy improvement can be
formulated as utility function to drive the tests as well [2]. Other, and computationally more ex-
pensive DoE methods [12] rely on statistical decision making theory and Dynamic Programming
[13].

In this paper, Staircase method, D-optimal, objective and subjective predictive design of
experiment strategies were compared for testing the fatigue strength of pre-defined number of
cycles.

Model

Consider the fatigue strength to be a random variable Z that follows Normal distribution

Z ∼ N (µ, σ2), (1)

where µ is the location parameter and σ is the scale parameter. Testing at stress amplitude
x ∈ D then yields a binary response Y ∈ Y: the specimen either fails or survives. We can thus
say, that the response is generated from a Bernoulli distribution with failure probability p(x)
that depends on the stress amplitude.

Y ∼ Ber(p(x)) (2)

The probability of failure is equivalent to the probability of fatigue strength being lower than
the applied stress amplitude

P (fail) = P (Z < x) (3)

From this, it follows that
Y ∼ Ber(P (Z < x)) (4)

As we adopt Bayesian framework, the likelihood is

f(y | θ) =

{
P (Z < x), y = 1 (fail),

1− P (Z < x), y = 0 (survive),
(5)

where θ ∈ Θ represents the parameter vector [µ, σ]. We set the prior distributions for these
parameters. If the observations were direct samples of fatigue limit, we could have used the
conjugate prior of Normal-inverse-Gamma distribution for Normal distributed variable. As that
is not the case, we choose the prior mean value to follow Normal distribution

µ ∼ N (µµ, σ
2
µ) (6)

and the prior standard deviation to follow log-Normal distribution

lnσ ∼ N (µσ, σ
2
σ). (7)

The updating of posterior is performed using Bayesian inference

f(θ | y) =
f(y | θ)f(θ)

f(y)
, (8)

where f(θ) is the prior distribution and f(y) =
∫
f(y | θ)f(θ)dθ is the evidence.
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Staircase method

In the staircase method, initial test level x0 is assigned, preferably close to the prior mean value.
In addition, the step size d is determined before the tests. Dixon and Mood suggested that the
step size should be between 0.5 to 2.0 times the true standard deviation of the fatigue strength
[6]. In the algorithm, tests are initiated from the initial test level and if failure is observed, next
test level is decreased by the step size; and after observation of survive, the next test level is
increased by the step size.

xi+1 =

{
xi − d, yi = 1 (fail)

xi + d, yi = 0 (survive)
(9)

The stationary distributions have been analyzed in [14] and the test points are typically sym-
metrically distributed on both sides of the median value. The algorithm is designed to find
the median value, but is not optimal for testing the standard deviation. Another problem with
this method is that, combined with the Maximum Likelihood -method and relatively small sam-
ple sizes (20-30) typical for fatigue testing, it is quite common to get degenerate fatigue limit
distributions. This occurs when the fatigue test has both responses (fail and survive) only at
one test level, and above that every time the specimen have failed and below survived. The
probability of getting such sample is naturally increased with too high step size. This stiffness
of the algorithm and inability of changing the step size based on the observations is the cost for
the simplicity of the algorithm.

D-optimal

Lindley states, that sometimes the purpose of the experiment can be to gain information of the
world [8]. The D-optimality criterion can be derived both from Fisher’s information matrix as
well as from information theory [2]. The information theoretic approach maximizes the expected
Kullback-Leibler divergence between the posterior and prior distributions

xi+1 = arg max
x∈D

Ey
[∫

log

(
f(θ | y, x)

f(θ)

)
f(θ | y, x)dθ

]
(10)

Kullback-Leibler divergence is the expected gain in differential Shannon information [9, 10].

Predictive criteria

Sometimes the purpose of the experiment is to make predictions. This could be seen as the
typical scenario for fatigue testing.

Objective

In objective testing we are interested of improving the prediction capabilities of the fatigue
strength, without any specific load level in mind. One way to achieve this is to maximize the
expected Kullback-Leibler divergence between the posterior and prior predictive distributions.
Posterior predictive distribution can be calculated from

f(x | y) =

∫
f(x | θ)f(θ | y)dθ (11)

And prior predictive is

f(x) =

∫
f(x | θ)f(θ)dθ (12)

Finally, the next test level can be computed from

xi+1 = arg max
x∈D

Ey
[∫

log

(
f(z | y, x)

f(z)

)
f(z | y, x)dz

]
. (13)
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Subjective

In subjective testing the prediction accuracy of e.g. component specific load levels or pre-
defined failure quantiles (required reliability) are of interest. Typically the expected variance is
minimized. For the case of specific load level spectrum w(x) with

∫
w(x)dx = 1 and interest in

failure probability we get

xi+1 = arg min
x∈D

Ey
[∫

w(z)Varθ (F (z | θ)) dz
]
. (14)

For prediction accuracy of certain quantile p̂ again the expected variance is minimized

xi+1 = arg min
x∈D

Ey
[
Varθ

(
F−1(p̂ | θ)

)]
, (15)

where F−1(· | θ) is the quantile function.

Methods

A simulation distribution for fatigue strength with parameters (µ, σ) = (200, 20) were arbitrarily
chosen. The specimen-wise fatigue strengths were sampled for 50 specimen. This way each
DoE algorithm operated on the same underlying data. A total of 500 repeats of Monte Carlo
simulation were performed for each DoE algorithm. The DoE algorithms chosen for comparison
were

• Staircase test with (x0, d) = (200, 20) (perfect guess)

• D-optimal criterion (Kullback-Leibler)

• Predictive Kullback-Leibler

• Predictive quantile (1/1000 failure probability)

• Predictive level (load ∼ N (100, 10))

• Staircase test with (x0, d) = (200, 10)

• Staircase test with (x0, d) = (200, 40)

The prior hyperparameters were arbitrarily chosen to be (µµ, σµ) = (200, 50) and (µσ, σσ) =
(3, 0.4) representing a generous amount of uncertainty. The credibility regions for prior cdfs are
shown in Figure 1.

Following metrics were followed:

• Prediction distribution Kullback-Leibler divergence to the real simulation distribution

• Predictive distribution standard deviation

• Failure probability at stress corresponding to the true failure probability 1/1000

• Standard deviation of the failure probability prediction

• 1/1000 failure probability quantile mean

• 1/1000 failure probability quantile standard deviation

173



50 100 150 200 250 300 350
0.00

0.25

0.50

0.75

1.00

Prior

Stress amplitude

C
D

F

50 100150200250300350
0.0
2.5
5.0
7.5

10.0
12.5

StairCase(200.0, 20.0)

Stress amplitude

C
ou

nt

50 100150200250300350
0.00

0.25

0.50

0.75

1.00

C
D

F

50 100150200250300350
0
2
4
6
8

10
12

KullbackLeibler

Stress amplitude

C
ou

nt

50 100150200250300350
0.00

0.25

0.50

0.75

1.00

C
D

F

50 100150200250300350
0
2
4
6
8

PredictiveKullbackLeibler

Stress amplitude

C
ou

nt

50 100150200250300350
0.00

0.25

0.50

0.75

1.00

C
D

F

50 100 150 200 250 300 350
0
5

10
15
20

PredictiveQuantile

Stress amplitude

C
ou

nt

50 100 150 200 250 300 350
0.00

0.25

0.50

0.75

1.00

C
D

F

50 100150200250300350
0

10

20

30

PredictiveLevel

Stress amplitude

C
ou

nt

50 100150200250300350
0.0

0.2

0.4

0.6

0.8

C
D

F
50 100150200250300350

0.0
2.5
5.0
7.5

10.0

StairCase(200.0, 10.0)

Stress amplitude

C
ou

nt

50 100150200250300350
0.00

0.25

0.50

0.75

1.00

C
D

F

50 100 150 200 250 300 350
0

5

10

15

StairCase(200.0, 40.0)

Stress amplitude

C
ou

nt

50 100 150 200 250 300 350
0.00

0.25

0.50

0.75

1.00

C
D

F

Figure 1. Overview of DoE algorithms allocation of 50 test points. Failed tests are shown with light
brown and survived with light blue. The quantiles for CDFs are 1%, 50% (dashed) and 99% in black
lines. The underlying simulation distribution CDF is plotted with red dashed line.
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Figure 2. Results of the Monte Carlo simulation (500 repeats), the mean values of the pre-determined
metrics for each DoE algorithm.

Results

An example of how the DoE algorithms allocate 50 test points is shown in Figure 1. It can be
seen that the staircase test allocates test points symmetrically on both sides of median value,
whereas both Kullback-Leibler based methods allocate resources on testing approximately 20%
and 80% quantiles. Predictive quantile has the goal to minimize the 1/1000 failure probability
quantile and thus it is natural for it to focus on testing the low quantiles, although the algorithm
also tested some occasional high quantiles. The predictive level has the objective to minimize
the prediction variance at stress amplitudes around 90-110 MPa, and is thus very focused on
testing the very low quantiles, for which all the specimen have survived.

The results from the 500 repeats can be seen in Figure 2. The Kullback-Leibler divergence
based control algorithms are stable performers; the development is steady but they are not the
best in anything particular. The robustness of these algorithms can be seen as their strength.
The predictive quantile is slightly worse in the objective metrics, but beats most algorithms
in the low failure probability prediction and robustness of development for the low quantile
estimates. The predictive level only shines in the low failure probability prediction, but performs
sub-optimally for everything else. The Staircase methods with different step sizes have some
interesting characteristics: the optimal step size (d = σ) is on par with the KL-based methods in
the objective metrics, but performs worse in the prediction of the low failure probabilities. The
low quantile prediction variance decreases with increase of step size. Similar trend is seen for
the fatigue strength standard deviation. Two of the methods produced a non-conservative mean
1/1000 quantile: the highest step size Staircase method and the predictive level algorithm. The
KL-based methods have, on average, lower 1/1000 quantile variance compared to the Staircase
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method based tests indicating a better quantification of the standard deviation parameter.

Conclusions

Several sequential test planning strategies were presented and compared. If one has specific use
for the fatigue test data in mind, the subjective utilities could be compelling. On the other
hand, if one is interested in the general characteristics of fatigue strength, the Kullback-Leibler
based methods seem robust also to low quantile estimates, that are typically of interest in fatigue
dimensioning. The inability of Staircase method to adapt the step size based on the observations
is seen as a clear disadvantage. Hybrid utilities, such as combination of quantile prediction and
Kullback-Leibler divergence, and DoE based on dynamic programming could be worth studying
for fatigue testing in the future.
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Summary. The longitudinal impact wave is going to be produced to the Wärtsilä 16 vee 32 crankshaft
by hammering, which simulates the real impact phenomenon in the running engine with 17 ms period. In
this study, this kind of measurement setup is modeled by using commercial Abaqus explicit finite element
program. The intensity of the crankshaft energy levels, acceleration, and strains are followed 25 ms period
after impact. This study shows the locations, which are needed to monitor during measurements and
clarify how the impact wave may affect the high cycle fatigue safety.

Key words: Impact, wave propagation, Explicit FEM, Wärtsilä

Introduction

There are not directly any longitudinal forces or excitation in the running engine. The firing
forces causes bending of the shafts and thus create a remarkable longitudinal extension of the
crankshaft. An axial thrust bearing located near the flywheel end of the crankshaft limits the
longitudinal movement of the crankshaft in the large-bore medium-speed combustion engine.
Longitudinal movement consequently causes periodical impacts to the crankshaft, because it
hits against the engine block through the bearing. This means that there are fluctuating kinetic
and internal energies [1] in the crankshaft causing traveling strain waves to the body. The
impact periodic is 17 ms coming from running speed of the engine. This phenomenon is planned
to measure from the Wärtsilä 16 vee 32 crankshaft. [2, 3, 4]

Global Boiler Works Oy produces pneumatic linear impact hammers. The hammer is used to
create impact energy which is needed in the measurements. The impact speed of the piston can
be adjusted by using reference bar [5, 6] so that the corresponding energy level can be created
as in the real phenomenon in the running engine. The hammer hits single direct impact to the
flywheel end of the crankshaft near the axial thrust bearing.

Finite element method is used to study the measurement setup. There are analytical models
for impacts and wave propagation phenomena, but the usage of these methods is limited into
simple structures [7, 8]. Explicit FEM models accurately physical behavior of impact and wave
propagation in complex shape structures, if method limitations are not ignored during the
analysis. [9, 10, 11]

The analysis model consists part of the hammer, the mounting equipment, and complete
crankshaft, see figure 1). The Hammer body is connected to anvil by using sliding contact. It is
assumed that the hammer body does not affect the measurements, and it is ignored. The hammer
components, which are included in the model, are the piston and the piston spring. The anvil
and fastening ring are needed to mount the hammer into the crankshaft. Mounting components
are included in the calculation model but without bolts. The crankshaft body is divided into
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Figure 1. The different colors represent different sections in the analyzed calculation model. This is used
to study energy distribution in the structure.

separate parts: head and end sections, gearwheel and crankpins. Every counterweight is a
separate component.

Results

The energy levels are followed in the different parts of the analyzed structure. If we follow
energy distribution between different parts of the model through the analysis time, we can find
the most likely the locations where occurs the highest strain intensities and thus highest stresses
without following single strain waves during the analysis.

The total impact energy goes through the head section of the crankshaft creating highest
strain energies into it. Traveling energy wave excites the first shafts and counterweights. The
traveling wave reflects countless times from every discontinuity surfaces. Impact energy reaches
the end section of the crankshaft within 2.5 ms of the impact.

One hypothesis was that the impact energy is trapped into the head section of the crankshaft
due to large discontinuous surface of the first shaft. This could not be seen from the results.
Still, the highest peak energies are in the first two crankpins and their counterweights through
the analyzed time. The highest strain intensities are probably found from the fillets of these
crankpin shafts. According to results, the mean intensity of the strain is ±5µstrain, which is
possible to measure from the pin surface by using strain gauges. The peak amplitude strains
are close to 20µstrain in the same locations.

The strain gauge measurement is not so optimal for the counterweights. Most of the energy
stays in the kinetic form in the counterweights due to their shape and location in the crankshaft.
According to this result, accelerometers are recommended to use vibration measurements of the
counterweights, especially the first and the third counterweight.

Conclusion

The impact causes measurable strain waves. The analysis results showed that the most exciting
results could be found from the head and the first two crankpins. These locations are recom-
mended to be instrumented carefully. The periodical loading and the high intensity of the strain
can affect to fatigue durability of the component.

There are several sources of damping in the engine, but the effect of damping was estimated
to be small in this case. Thus, damping effects were ignored in this initial analysis. Forthcoming
measurements show the effect of damping in the real structure, which helps to evaluate better
the reliability of the results of the finite element analysis.
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Summary. Information content of fatigue test data is discussed in this paper. Two popular approaches
to quantifying the informativity of experimental data are described. A small numerical example is
presented to show the process of quantifying the information gains when inferring the fatigue limit from
binary data.

Key words: information content, fatigue test, Kullback-Leibler divergence

Introduction

Quantifying the informativity of any experimental data has been under research and studies for
decades. The increased interest is easy to understand and can be explained by two problems of
interest: the inference and the decision problem [1]. For either problem, the idea is to maximise
the benefits of the tests - be it maximising the overall information gained or to help with reaching
a specific decision. Understanding the potential information value helps in both the experimental
design as well as analysing the already observed experimental data.

In fatigue testing, inferring the fatigue limit/strength of a material subject to a pre-defined
test runout limit is a common task. Usually, fatigue limit is defined as the threshold stress
amplitude that the material withstands for an infinite number of cycles without a failure. As
such, it is impossible to verify experimentally. This leads to the concept of censored data. A
failure observation is considered censored data in terms of fatigue limit. It is safe to assume that
within the limits of measuring accuracy, the fatigue limit of the tested specimen is lower than
the failure-inducing load level. Similarly, a runout observation can be considered as censored
data with respect to fatigue life. It can be stated that the specimen did not fail within the
number of loading cycles tested, but could fail if the test was continued. The indirectness of
fatigue test data limits the amount of information gained. Brooks [2] studied the information
loss with different types of censored data. This paper presents some of the main concepts on
the informativity of experimental data. A practical example is shown for analysing the expected
information gain with respect to censored data.

Test Information Quantity

In 1948, Shannon [3] provided the groundwork in information theory, especially for the field of
communication engineering. Based on Shannon’s initial ideas on (discrete) entropy, Lindley [1]
extended the concept to assess the information content of a continuous distribution. Lindley
describes the initial prior information of the parameters interest as
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g0 =

∫
p (θ) log p (θ) dθ, (1)

where p(·) denotes a probability distribution and θ represents the parameter vector. This
definition is equal to the additive inverse of differential entropy, which was presented by Shannon
in his own attempt to expand his discrete entropy to continuous distributions [4].

Similarly, in terms of observed y, the updated information one has about the parameters can
be defined by [1]

g1(y) =

∫
p (θ | y) log p (θ | y) dθ. (2)

The average amount of information provided by the observation y is simply defined by the
expected difference of the two states

g (p (θ)) = Ey (g1 (y)− g0) . (3)

In addition to Lindley, Kullback and Leibler among others further expanded Shannon’s ideas
to statistical theory (see e.g., [5]. The Kullback-Leibler divergence [6] is a measure commonly
used to analyse the difference between two distributions. The measure is not limited to either
discrete or continuous distributions. Within the Bayesian framework, it is considered as a
measure of the information gained when moving from prior to posterior distribution.

The Kullback-Leibler (later abbreviated as KL) divergence can be calculated for continuous
distributions as [7]

DKL(p || q) =

∫ ∞
−∞

p (θ | y) ln

(
p (θ | y)

q (θ)

)
dθ, (4)

where the usual notation of the Bayesian approach is used; p (θ | y) denotes the posterior
probability density having observed data y and q (θ) is the prior probability density. Maximising
the KL divergence leads to a Bayesian experimental D-optimal test design [8].

Fatigue limit example

The following example focuses on the analysis of a normally distributed fatigue limit in the
Bayesian framework. The data is assumed binary, i.e., the data likelihood is defined by

L(y, c|θ) =

{
F (y|θ) | c = 0

F̄ (y|θ) | c = 1
, (5)

where y represents the testing load level, F (·) denotes a cumulative distribution function,
F̄ (·) is the complementary cumulative distribution function and c is the respective binary cen-
soring factor. Here, c value of 0 stands for a failure observation and 1 stands for a runout
observation.

Given that the fatigue limit is assumed normally distributed, the prior parameter probability
space can be defined by two parameters; the distribution mean value parameter µ and the devi-
ation parameter σ. For the numerical example, let the parameters follow normal distributions

µ ∼ N (500, 20) (6)

and

σ ∼ N (100, 30) , (7)
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Figure 1. Prior probability space.

where N (loc, scale) denotes a normal density function with mean loc and standard deviation
scale. Figure 1 shows the contour plot of the joint prior space described by the parameter
distributions.

The prior predictive fatigue limit distribution for an untested specimen is defined by

f(σl) =

∫
f(σl | θ)f(θ)dθ, (8)

where σl stands for the fatigue limit random variable, and f(·) for a probability density
function. The posterior distribution after observing data (y, c) can be defined using the data
likelihood (5)

f(θ | y, c) = L(y, c | θ)f(θ) (9)

Similarly, after observing fatigue data (y, c), the posterior predictive distribution for the
fatigue limit of an untested specimen is described by

f(σl|y, c) =

∫
f(σl | θ)f(θ|y, c)dθ. (10)

For predicting the fatigue limit distribution of the tested specimen, the specimen specific
posterior predictive density is defined as

f(σl) =

∫
f(σl | θ, α(y, c), β(y, c))f(θ | y)dθ, (11)

where the parameters α and β represent the censoring bounds defined by the binary data.
Figure 2 shows the predictive distributions for all the cases mentioned above. The posterior
predictive distributions are plotted after observing data y = 550, c = 1. The figure shows how
the runout observation with relatively high loading shifts the common predictive distribution to
higher load values. Additionally, when analysing the fatigue limit of the tested specimen, the
observed runout limit truncates the specimen-specific posterior predictive distribution.

Figure 3 shows three different approaches to quantifying the expected information gain from
a single specimen test using the KL divergence. The approaches are based on different goals.
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Figure 2. Prior and posterior predictive distributions.

Figure 3. Different approaches with Kullback-Leibler divergence.

The expected divergence distribution obtained from prior to posterior (solid black line) is anal-
ogous to the distribution that is maximised for a Bayesian D-optimal design. Similarly used for
different test designs [8] is the expected KL divergence (dashed purple curve) from predictive
prior distribution to predictive posterior distribution. Lastly, the top-most green line represents
an approach quantifying the expected information gain on the predictive fatigue limit distribu-
tion of the tested specimen. The estimation is equal to the expected KL divergence between the
prior predictive and the (truncated) specimen-specific distribution.

The results show that there is a significant difference between the expected information gain
from a test with the different approaches. It is especially interesting to note that a test provides

183



more information about the predictive specimen-wise distribution compared with the common
distributions. Additionally, the optimal testing point is located in the mean value of the prior
predictive distribution, unlike with the KL measures from common distributions.
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Summary. We consider multiscale topology optimization of an infill structure. The structure is com-
posed of an optimized layout configuration at the macroscale with uniform optimized microstructures as
infill lattices coated by a thin skin. The design optimization of the infill lattice is performed simultane-
ously with the topology optimization of macroscale structure, which also includes the coating. Several
numerical examples demonstrate the effectiveness of the proposed method optimization.
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Introduction

In this work, we optimize a structure that has a solid coating and a periodic infill pattern, which
consists of a periodic distribution of uniform optimized microstructures. Figure 1 schematically
illustrates such a structure.

Henceforth, we refer to the overall layout of the structure as the macroscale design, while
the microscale design denotes the infill pattern’s arrangement. The coating at the macroscale
is designed by using the mathematical morphology based nonlinear filters [8, 9, 3]. These mor-
phology mimicking non-linear filters also distinguish the skin and the infill lattice parts of the
design at the macroscale and realize length scale control on the topologies of the macrostruc-
ture as well as the microstructure. The design optimization of the lattice layout is performed
simultaneously as the design of the macroscale structure. The two-scale topology optimization
method PAMP [5, 6] designs the macro layout and micro topologies. In this work, the classic
Solid Isotropic Material Penalization (SIMP) method [1, 7] designs the layout at the microstruc-
ture. The novel implementation of asymptotic homogenization (NIAH) [2] computes the effective
properties of periodic microstructure.

Morphology

Mathematical morphology is a branch of image analysis, which uses a set B, typically referred
to as the structuring element, to probe and gain information about another set M ⊂ Rd.
Heijmans’ review [4] provides a good introduction to mathematical morphology. The standard
morphological operators are defined for subsets of Rd. Recently, Hägg and Wadbro [3] extended
the definitions of the basic morphological operators for subsets of a bounded domain Ω ⊂ Rd,
and it is these operators that we will use below.

Figure 3 illustrates important morphological to identify the coating the infill parts on the
macroscale. More precisely, Figure 3 shows (i) the so-called structuring element B, (ii) the
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Figure 3. Illustration of morphological operations.

domain M , (iii) M dilated by B relative Ω, (iv) M eroded by B relative Ω, (v) M opened by
B relative Ω, (vi) M closed by B relative Ω, (vii) the interior of the physical domain, and (viii)
an identified boundary region for the physical domain. The operators involved are defined as

DΩ
rB(M) = {m+ b | m ∈ M, b ∈ rB} ∩ Ω, OΩ

rB(M) = DΩ
rB

(
EΩ
rB(M)

)
,

EΩ
rB(M) = {y ∈ Ω | y + rB ⊂ (Rd \ Ω) ∪M}, CΩ

rB(M) = EΩ
rB

(
DΩ

rB(M)
)
,

(1)

where r > 0, rB = {x ∈ RN | r−1x ∈ B}, and y + rB = {x | x− y ∈ rB}. We let rc denote the
width of the coating (0 < rc < r), then the difference

BΩ
{r,rc}B(M) = DΩ

rB

(
EΩ
rB(M)

)
−DΩ

r̂B

(
EΩ
rB(M)

)
, (2)

where r̂ = r − rc, identifies a strip along the boundary of M .

Problem statement

Figure 1 illustrates the test case we consider, and Figure 2 illustrates the macroscale computa-
tional domain. The structure clamped at its left side ΓD and subject to a vertical traction force
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on boundary portion ΓF , which occupies 10 % of the right side of the macroscale design domain
Ω.

We discretize the microscale unit cell Y by M = mx × my square elements and use an
element-wise constant microscale design function αh. By using this function, we define the
microscale material indicator function ηh by using a morphology mimicking filtering procedure
based on the harmonic mean [8, 9, 3]. Here, ηh = 1 where the base material is present and
ηh = 0 in void regions. We discretize the macroscale design domain Ω by N = nx × ny square
elements. We define our macroscale design function ρh to be an element-wise constant function
and let ρ = [ρ1, ρ2, . . . , ρN ]T , where ρn is the value of ρh in Ωn. To identify the infill and coating
at the macroscale, we use combinations of morphology mimicking filters.

Here, we are interested in minimizing the compliance of the structure with a given minimal
length scale as well as under a material budget on both the microscale and the microscale. We
evaluate the material volume fraction on the microscale as

V (α) =
M∑

m=1

vMI
m CY

rm(α)m, (3)

where vMI
m = |Ym|/|Y | is the volume fraction of element m on the microscale and CY

rm approxi-
mates close operator relative to the microscale unit cell Y . On the macroscale, the relative cost
of the coating material compared to the base material is wcoat. Thus, we evaluate the resource
cost of the used material as

W (ρ,α) = V (α)
N∑

n=1

vMA
n CΩ

r (ρ)n +
(
wcoat − V (α)

) N∑
n=1

vMA
n BΩ

{r,rc}(ρ)
2
n. (4)

where vMA
n = |Ωn|/|Ω| is the volume fraction of the nth element on the macroscale, and CΩ

r

and BΩ
{r,rc} approximate the close and boundary indicator operators on the macroscale. The

resulting optimization problem is

min
(ρ,α)∈RN×RM

J(ρ,α)

subject to W (ρ,α) ≤ W ∗, 0 ≤ ρn ≤ 1, n = 1, 2, . . . , N

V MI(α) ≤ V ∗, 0 ≤ αm ≤ 1, m = 1, 2, . . . ,M

KMA(ρ,α)u = f ,

where, J(ρ,α) = fTu is the compliance, and KMA(ρ,α)u = f is the governing equation, where
KMA is the global stiffness matrix, u is the macroscale displacement vector, and f is the global
load vector. The element stiffness matrix is

kMA
e (ρ,α) = Emink0 +

(
kH
e (α)− Emink0

)
OΩ

rB(ρ)
p
e +

(
Ecoatk0 − kH

e (α)
) (

BΩ
{r,rc}B(ρ)

2
e

)q
,

where kH
e (α) is the homogenized element stiffness matrix corresponding to the current mi-

crostructure and OΩ
rB approximates the close and boundary indicator operators on the macroscale.

Results

Figure 4 shows four results optimized using a discretization of 768×512 elements on the macroscale
and 256×256 elements on the microscale. The results are obtained using r = 10hMA, rm = 6hMI,
and from left to right rc = {8, 6, 4, and 2}hMA, where hMA and hMI are the element sizes on the
macroscale and microscale, respectively. The top row shows the macroscale designs, the middle
row shows the coating, and the bottom row shows a 3-by-3 repetition of the microscale designs.
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Figure 4. Results for four different coating radii. The top row shows the macroscale designs and the
bottom row shows a 3-by-3 repetition of the microscale designs.
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