' Aalto University

Jokinen, Jussi P.P.; Wang, Zhenxin; Sarcar, Sayan; Oulasvirta, Antti; Ren, Xiangshi
Adaptive feature guidance: Modelling visual search with graphical layouts

Published in:
International Journal of Human Computer Studies

DOI:
10.1016/}.ijhcs.2019.102376

Published: 01/04/2020

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:

Jokinen, J. P. P., Wang, Z., Sarcar, S., Oulasvirta, A., & Ren, X. (2020). Adaptive feature guidance: Modelling
visual search with graphical layouts. International Journal of Human Computer Studies, 136, Article 102376.
https://doi.org/10.1016/].ijhcs.2019.102376

This material is protected by colpyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by ?/ou for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other tuhse: Elgctronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.


https://doi.org/10.1016/j.ijhcs.2019.102376
https://doi.org/10.1016/j.ijhcs.2019.102376

International Journal of Human-Computer Studies 136 (2020) 102376

Contents lists available at ScienceDirect

Computer
Studies

International Journal of Human-Computer Studies

journal homepage: www.elsevier.com/locate/ijhcs

Adaptive feature guidance: Modelling visual search with graphical layouts | M)

Check for
updates

Jussi P.P. Jokinen*? Zhenxin Wang®, Sayan Sarcar™‘, Antti Oulasvirta®‘, Xiangshi Ren”

& Department of Communications and Networking, Aalto University, Finland

b Center for Human-Engaged Computing (CHEC), School of Information at Kochi University of Technology, Japan
€ Faculty of Library, Information and Media Science, University of Tsukuba, Japan

d Finnish Center for Artificial Intelligence FCAI

ARTICLE INFO ABSTRACT

We present a computational model of visual search on graphical layouts. It assumes that the visual system is
maximising expected utility when choosing where to fixate next. Three utility estimates are available for each
visual search target: one by unguided perception only, and two, where perception is guided by long-term
memory (location or visual feature). The system is adaptive, starting to rely more upon long-term memory when
its estimates improve with experience. However, it needs to relapse back to perception-guided search if the
layout changes. The model provides a tool for practitioners to evaluate how easy it is to find an item for a novice
or an expert, and what happens if a layout is changed. The model suggests, for example, that (1) layouts that are
visually homogeneous are harder to learn and more vulnerable to changes, (2) elements that are visually salient
are easier to search and more robust to changes, and (3) moving a non-salient element far away from original
location is particularly damaging. The model provided a good match with human data in a study with realistic

Keywords:

Visual search
Computational modelling
Learning

graphical layouts.

1. Introduction

This paper investigates a central topic in human-computer interac-
tion (HCI) research: how users learn graphical user interfaces and how
changes in visual design affect performance (Chen and Liu, 2008;
Cockburn et al., 2007; 2015; Dunlop and Levine, 2012; Ehret, 2002;
Jokinen et al., 2017; Paik et al., 2015; Sears et al., 2001; Somberg,
1987). People are continuously exposed to new, updated, or redesigned
interfaces. When making decisions on whether to continue using a
changed interface they weigh the expected benefits against costs such
as learning costs (Venkatesh et al., 2016). A change in a familiar design
can have an instant effect on usability and can cause frustration. This
paper contributes to the understanding of key questions in this space:
(1) why some changes are less costly to learn, and (2) why some layouts
are more robust to change.

Our long-term goal is an accurate and plausible model to support
decision-making and design (Bailly et al., 2014; Byrne, 2001; Card
et al., 1983; Cockburn et al., 2007; John et al., 2004; Kieras and Hornof,
2014; Kieras and Meyer, 1997). Although computational models have
been successful in predicting expert performance in a range of inter-
active tasks, much work remains to be done in modelling how novices
gradually become more skilled users (Jokinen et al., 2017). Novice-to-
expert transition is a central problem in HCI, and the psychological

* Corresponding author.
E-mail address: jussi.jokinen@aalto.fi (J.P.P. Jokinen).

https://doi.org/10.1016/j.ijhcs.2019.102376

understanding of this transition will help to design interventions that
aid users in becoming experts (e.g., Malacria et al., 2013). The im-
portance of such models is in their capacity to entertain counterfactual
scenarios, allowing the modeller to change the task and user parameters
to investigate various types of “what ifs”. This is necessary for interface
optimisation (e.g., Sarcar et al., 2018) and research of psychological
basis of interface use (e.g., Borst et al., 2015).

This paper contributes to models of visual search and learning in the
domain of graphical interfaces. The model builds on existing work in
the modelling of visual attention and learning in HCL. It covers a large
number of known, important visual primitives of regular graphical
layouts, including element locations (Ehret, 2002; Jokinen et al., 2017)
as well as visual features like size and shape and color (Ehret, 2002;
Nyamsuren and Taatgen, 2013), alongside with relearning of changed
layouts (Jokinen et al., 2017). The model predicts how users (1) vi-
sually search layouts, accounting for the top-down and bottom-up ef-
fects of the visual features (e.g., colour, size, and shape) of the layout
elements but also the number of these elements; (2) learn the visual
locations and features of the elements over time; and (3) relearn layouts
that have been changed. There exist multiple models for predicting one
or two of these three considerations (Ehret, 2002; Jokinen et al., 2017;
Kieras and Hornof, 2014), but so far none has covered all three. The
new model can simulate how users cope with a wide array of real-life

Received 28 February 2019; Received in revised form 26 July 2019; Accepted 12 November 2019

Available online 30 November 2019

1071-5819/ © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/BY/4.0/).


http://www.sciencedirect.com/science/journal/10715819
https://www.elsevier.com/locate/ijhcs
https://doi.org/10.1016/j.ijhcs.2019.102376
https://doi.org/10.1016/j.ijhcs.2019.102376
mailto:jussi.jokinen@aalto.fi
https://doi.org/10.1016/j.ijhcs.2019.102376
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2019.102376&domain=pdf

J.P.P. Jokinen, et al.

layouts, ranging from web sites and menus to mobile Uls.

Our point of departure is the observation that human vision is
fundamentally limited in its information-processing capacity (Cave and
Bichot, 1999; Rayner, 2009; Salvucci, 2001). Firstly, the anatomy of the
eye restricts the region which can be seen clearly. Visual acuity is best
in the fovea, subtending 2° from the centre of vision (fixation), and
worsens quickly towards the parafovea (5°) and peripheral region (be-
yond parafovea). This necessitates ballistic eye movements (saccades),
which bring the fixation and thus visual clarity to areas of interest.
Preparing and executing such a movement takes time, and this again
limits the information processing capacity of the human vision. These
bounds result in the emphasis of strategic adaptation in determining how
to search for a target. In other words, the visual system is confronted
with a sampling problem: it has to decide where to deploy attention next
(Wolfe and Horowitz, 2017). To approach this problem, we assume that
the visual system is “cognitively bounded rational” or “computationally
rational” (Gershman et al., 2015; Lewis et al., 2014). The control of
gaze in a visual search is understood as utility-maximisation under
constraints posed by the task, the capabilities of the visual system, and
the layout.

To model the adaptive capability in visual search, our model con-
verges psychological principles under a concept we call adaptive feature
guidance. It instantiates three cognitive hypotheses about learning,
memory, and vision to model visual search with Uls. The main princi-
ples converging in the model are utility learning (Anderson, 2007;
Rescorla and Wagner, 1972), associative learning (Anderson, 1976;
Anderson et al., 1998) and feature guidance (Nyamsuren and Taatgen,
2013; Wolfe and Horowitz, 2017). We assume that a controller chooses a
set of features from two sources of information so as to maximise the
expected learned utility of the next attention shift: bottom-up and top-
down. On one hand, every visual object in a layout has a saliency value
determined by its visual features, such as size, shape, and colour, and by
its position with respect to focal and peripheral vision and to sur-
rounding visual elements (Chen et al., 2015; Kieras and Hornof, 2014;
Nyamsuren and Taatgen, 2013; Treisman and Gelade, 1980; Williams,
1967; Wolfe and Horowitz, 2017). On the other hand, its choice can be
informed by two memory systems (short- and long-term). The visual
short-term memory (VSTM) tries to inhibit visits to already visited lo-
cations. It serves as an efficient means of supporting visual search when
the layout is new. Moreover, as the model searches for targets, in-
formation about them is encoded within associative long-term memory
(LTM) storage. This stores associations between objects and their fea-
tures (Anderson, 1976; Anderson et al., 1998). With more exposure to a
layout, the controller learns to rely more on LTM, allowing it to use
feature guidance of vision towards targets sooner. This memory, how-
ever, does not learn perfectly and is compromised by decay over time.

In sum, the adaptive feature guidance model simulates visual
search, which has adaptive resources (utility learning, STM, LTM) to
guide the search with an emphasis on the features of the visual ele-
ments. The model’s adaptive nature means that the search policy, that
is, the actions that the model takes in its search through a Ul, is gen-
erated and updated adaptively. For instance, assume a model that si-
mulates expert behaviour in that it recalls the positions of all UI ele-
ments, and a sudden modification of the layout such that some of the
elements change position but remain visually the same. The model
learns to not utilise its positional knowledge of the moved elements,
instead relying on what it remembers about their visual features to
guide its search, until it relearns the new element locations.

The model’s scope is graphical interfaces. Compared to the totality
of visual scenes we deal with, graphical Uls involve a fairly standar-
dised way of representing the visual elements and their features. They
represent a computer program visuospatially for commanding with a
pointing device. The state and controls of a computer program are re-
presented as non-overlapping spatially bounded objects (e.g., rectan-
gular areas such as buttons) that permit interactions that change their
state. Our model takes as input a layout with target elements and

International Journal of Human-Computer Studies 136 (2020) 102376

optionally their frequencies as encountered in the past. It then simu-
lates visual search for these targets and outputs eye-movement data and
search time. The output can be used for detailed analysis of single-task
eye-movement behaviour, or the data can be aggregated to produce
average search times. In addition, the layout can be changed mid-run to
simulate relearning.

The model simulates visual learning of layouts over repeated trials.
Initially, the model has no prior knowledge of the layout and search is
slow, except for visually distinct elements. As the model starts to learn
by creating associations of targets with their locations and visual fea-
tures, search becomes faster. If the layout changes, the model cannot
utilise its memory of the element locations and must relearn them.
However, if the elements retain their distinct features, the model uses
its knowledge concerning these features to quickly find the moved
element. Due to utility learning, the model adapts to the utility of the
available resources. The better the information provided by a resource,
the more it is relied upon. If location information is no longer useful due
to a changed layout, the model prefers to use feature information in-
stead in guiding attention, until the location information has been up-
dated to a level where using it is again the most efficient search
strategy.

Practitioners can use the model as an evaluation tool and in com-
putational design. The input consists of: (1) a segmented a layout,
consisting of rectangular elements with color and size properties; (2)
the target element and (3) the user’s prior history with the layout (if
any). Three types of predictions can be given to answer the following
questions.

® Search time:Given a layout with a number of graphical elements and
their locations and features, what is the visual search time for a
given element?

® Learning time:How long does it take to learn a new layout, given the
number, locations, and visual features of elements?

® Effects of changing a layout:Given a user history with a layout and a
new layout that is a variation thereof, what is the initial impact of
the layout change on visual search times, and how long does it take
to relearn the changed layout?

Predictions to these questions help designers in some recurring
problems. First, a designer can evaluate candidate designs. The model
can predict how difficult a new layout is to learn, either on its own or
compared to a previous layout with which users have experience.
Competing designs can be compared similarly. Second, a designer can
apply computational optimisation methods, such as combinatorial op-
timisation, to search through a larger space of possible designs more
systematically. Here the model serves as an objective function for the
optimiser. Third, a designer may want to assess how to best change a
layout, for example when removing or adding new features. The model
allows making changes to the layout during simulations. We demon-
strate some of these uses at the end of the paper.

The present model deals with single visual targets that the simulated
user wishes to find as quickly as possible. This excludes modelling of
multistage tasks, where the user needs to find information from mul-
tiple visual elements during the same task. Also excluded are dynamic
tasks, where the interface changes during the visual search (but our
model does predict the impact of interface changes that occur between
search tasks). In addition, the model is limited to visual searching, and
thus does not simulate actual interaction with the UI, such as mouse
clicks or button presses. Further, the interfaces presented to the model
are defined symbolically as objects. Any analytics on images of Uls need
to go through a separate segmentation phase to be translated into
model-runnable representations.

In the following, we first describe the model and the principles
behind it, supporting them with a detailed walkthrough examples. We
then present results from an experiment testing the validity across a
range of realistic layouts: a website, a consumer interface, and an



J.P.P. Jokinen, et al.

operating system UI. We use the model to investigate various practical
problems related to layout learning, such as the effect of a new salient
layout element (e.g. an advertisement) on a visual search or a grouping
of items in a layout by their visual features. We conclude with a dis-
cussion of design implications and future work.

2. Related work and goals
2.1. Models of vision and learning

Learning of Uls has been a topic of long-term interest in HCI re-
search (Anderson and Bischof, 2013; Bederson et al., 2015; Chen and
Liu, 2008; Chen et al., 2017; Keating et al., 2016; Kosmyna et al., 2015;
Paik et al., 2015; Rieman, 1996). However, only a few papers have
looked at the general case of learning graphical user interfaces.
Fleetwood and Byrne (2006) examined visual search strategies for Uls,
with a close focus on eye movements. However, their model did not
cover the effect of learning on eye-movement patterns and search times.
A recent paper presented a model of layout learning, but it focused on
keyboards only (Jokinen et al., 2017). Keyboard layouts are a con-
strained instance of graphical layouts wherein elements are presented
in a grid lattice. All elements are further assumed to be of the same size,
colour, and shape. Conversely, a model utilising an active vision ap-
proach emphasised the features of visual elements and also included the
notion of visual threshold or acuity with respect to the features
(Kieras and Hornof, 2014). However, this model did not cover learning.
An earlier model of layout learning utilised position learning and ad-
dressed some aspects of feature-based search but did not explicate a
model of full feature guidance with visual threshold, nor did it model
relearning of changed layouts (Ehret, 2002). The proposed model
combines ideas from these three and other modelling related research,
in order to create a full model of layout learning. To this end, models of
vision and learning are here reviewed.

2.1.1. Vision

A model of visual search on graphical Uls must make realistic pre-
dictions about the eye movements of the users. Due to visual processing
constraints, the user does not usually see the all visual Ul elements at
once and in detail, but instead can encode only a foveated subset of the
full UL This means that even if the entire layout is shown on one screen,
the user is not able to recognise all of its menus, icons, fields, and other
elements. Therefore, the main problem in visually searching graphical
UIs becomes the problem of attention deployment: where to look next?
This involves both modelling where the visual attention of the user is
deployed, given the visual elements of the UI, as well as what the results
of this attention deployment are - namely in terms of eye movements
and visual encoding of the attended targets.

Many recent visual search models have utilised the EMMA eye-
movement model (Salvucci, 2001) for simulating how the eyes move in
various tasks, such as reading (Salvucci, 2001), visual search
(Fleetwood and Byrne, 2006; Jokinen et al., 2017), and driving (Kujala
and Salvucci, 2015; Salvucci and Macuga, 2002). Likewise, the adaptive
feature guidance model described in this paper utilises the EMMA
model. EMMA describes the cognitive control process of attending and
encoding visual elements. It models visual encoding of elements as both
unobserved attention shifts and observable eye movements. The model
predicts that not all attention shifts require eye movements, because
people can also encode elements close to their current fixation within
the limits of visual acuity. While EMMA predicts eye movements and
encoding time, it does not make statements about what the encoded
target should be.

The problem of eye-movement targeting or attention deployment
has been investigated using different types of computational models
(Kowler, 2011). Usually these models employ the ideas of bottom-up and
top-down processes, either individually or together (Tatler et al., 2005).
The bottom-up process refers to the finding that salience of a visual

International Journal of Human-Computer Studies 136 (2020) 102376

region is a major determinant of attention deployment. Models utilising
the notion of a bottom-up process can be called map-based. They com-
pute salience maps from input images, highlighting regions that are
visually conspicuous. One popular computational implementation of
this approach is the search model by Itti and Koch (2000). It assumes
that visual attention is directed in a winner-take-all fashion to the visual
region that is most conspicuous, that is, that which stands out the most
from its surroundings. In order to prevent the most salient region being
the only area under attention, the model implements an inhibition of
return, where recently attended regions temporarily lose strength. The
assumptions of visual salience, winner-take-all attention deployment,
and inhibition of return are also present in our model of visual search.

Top-down processes depict the role of the high-level visual search
task in determining the region that is attended to next. This means that
attention deployment depends on the search task. A top-down process
requires that the agent, such as a user of a visual U, has task-relevant
knowledge about the features of the desired targets. This top-down
feature guidance can be in the form of visual features, such as colour,
orientation, and size (Wolfe and Horowitz, 2017), or in the form of
explicit knowledge about the location of the target (Jokinen et al.,
2017). The bottom-up and top-down models of visual attention employ
two different sources for attention deployment, salience and guidance,
but the approaches can be integrated into a componential visual search
model, that allows the modelling of both propositions.

An example of a bottom-up and top-down componential model of
visual search is PAAV (Nyamsuren and Taatgen, 2013). It describes the
human visual system as a representation of the environment, where
visual acuity thresholds for individual features, such as their colour,
shape, and size, affect how the environment is represented. As such, it is
modelled after the computational guided search model (Wolfe, 1994). It
distinguishes between two stages of visual processing: pre-attentive and
attentive. The pre-attentive process collects automatically and in par-
allel fashion information about the elements of the visual world, such as
their locations and visual features, as long as these elements are within
the visual acuity thresholds, given the current fixation location, and can
thus be detected by the automatic visual system. This process is used to
calculate the bottom-up activation of the visual items in the environment.
In addition to the bottom-up pre-attentive stage, the model has a top-
down attentive stage, which is used to guide attention towards elements
that have top-down activation, that is, similarity to any visual features
requested by the model. In sum, the model presents a set of formulas
that are used to calculate bottom-up and top-down activations of an
element from its features that are visible in light of the current fixation,
and states that attention is deployed to the visual element with the
largest weighted sum of these two sources of activation. A similar de-
scription of vision is present in a model called active vision (Kieras and
Hornof, 2014). However, that model simplifies the attention deploy-
ment and does not utilise a combination of low-level bottom-up and
top-down saliency calculation. In the case of the visual search of lay-
outs, both element saliency and top-down guidance should be ac-
counted for.

2.1.2. Learning

There is a large body of work on the modelling of skill and skill
acquisition (e.g., Anderson, 1976; Anderson, 2007; Anderson, 2013;
Anderson et al., 1998; Janssen and Gray, 2012; Newell, 1990; Veksler
et al., 2014). Learning models can be grouped into descriptive (statis-
tical) and cognitive models. A classic example of a descriptive aggregated
model is the power law of learning, which predicts how repeated ex-
posure improves performance Newell and Rosenbloom (1981). Initially,
the performance improves rapidly, but the rate of performance im-
provement decreases quickly as the function of repetitions. This leads to
an asymptotic learning curve, where the expert performance settles
close to the asymptotic. The fitting of the three parameters of the power
function allows for the description of the learning curve and its
asymptotic. Although the function itself is simple, it has been shown to



J.P.P. Jokinen, et al.

approximate learning in different scenarios from simple perceptual-
motor skills to learning geometric proofs (Newell and
Rosenbloom, 1981).

The benefit of descriptive models, such as the power law of learning,
is their relatively simple composition, which results in clear predictions
and short computation times. However, these models do not make
hypotheses about the mechanisms of learning, and cannot be used to
predict learning outside the context in which they have been fitted.
Therefore, it is difficult to use them in counterfactual reasoning, and
they are not robust against changes in the task without parameter re-
fitting. For example, if we were to fit a power curve to observed
learning of a keyboard with 10 keys, the model has no way of predicting
the learning of a keyboard with 20 keys or judging what would happen
to learning and visual search if one of the keys were moved around after
learning, or its shape or colour were changed.

Cognitive models, in contrast, are grounded on psychological hy-
potheses on how agents make decisions. Often these models are im-
plemented within a larger theoretical structure, an architecture, which
are unified systems for integrating different components of thought and
behaviour into one coherent cognition. Popular cognitive architectures
include EPIC (Kieras and Meyer, 1997), ACT-R (Anderson, 2007), and
SOAR (Newell, 1990). They can all implement modules or components
that hypothesise, explain, and predict various cognitive abilities, such
as memory, vision, motor control, and decision making. The models
using these architectures are defined with if-then rules or production
rules, which map from the states of the task environment and the in-
ternal states of the cognitive architecture into actions, that modify these
internal states or manipulate the environment. The key idea in cogni-
tive architectures is that they can incorporate multiple resources, such
as motor and vision, to simulate task performance in arbitrary en-
vironments - as long as the interface between the environment and the
architecture is defined, and correct productions have been modelled.

For the purposes of modelling learning of visual layout, both ACT-R
(Nyamsuren and Taatgen, 2013; Salvucci, 2001) and EPIC (Kieras,
2011; Kieras and Hornof, 2014) have vision models. These can predict
how visual features, such as colour, shape, and size, affect visual search
patterns a the level of individual fixations. Although both architectures
are suitable for modelling visual search of layouts, EPIC typically con-
siders expert performance and does not simulate learning (Kieras and
Meyer, 1997). Conversely, ACT-R has its roots in the modelling of
learning (Anderson, 1976), which makes it suitable for modelling
learning with graphical Uls (Fleetwood and Byrne, 2006; Jokinen et al.,
2017). The model presented here is not directly implemented within the
ACT-R architecture. The vision and memory models are derived from it,
but with simplifications, that could be done due to the present model
being used only for a specific task.

2.2. Modelling goals

With the model presented here, our aim is to cover phenomena in
visual search and layout learning. As previously stated, the model
should predict the following: (1) visual search of layouts, accounting for
features of the layout elements; (2) learning of layouts; and (3) re-
learning of layouts. This will be accomplished by developing a model of
adaptive feature guidance, which integrates the models of vision and
memory reviewed above.

The model aims to optimise its search behaviour, minimising search
time given constraints and resources (Howes et al., 2009). EMMA
(Salvucci, 2001) and PAAV (Nyamsuren and Taatgen, 2013) will be
used to impose time constraints on the visual search of the model, while
providing the model with vision; a model of LTM (Anderson et al.,
1998) will provide the model with a resource for recalling location and
feature information, again with time constraints; and utility learning
(Anderson, 2007; Rescorla and Wagner, 1972; Veksler et al., 2014) will
be used to simulate how the model learns optimal behaviour, given its
resources and constraints.

International Journal of Human-Computer Studies 136 (2020) 102376

3. Modelling adaptive feature guidance

We model visual search as visual sampling problem: the visual
system must decide where to attend next to find a given target. To
support this decision, the system must be assumed to have access to a
representation of the visual elements (and features thereof) that make
up the interface. Representation of the visual world by the model is
incomplete on account of visual acuity limits, which we model by
giving thresholds to various visual features. If an element is beyond a
threshold from the model’s current position of the eyes (the fixation), its
visual properties are not considered in the bottom-up and top-down
calculations. Elements with distinctive features are salient, and this
guides attention towards them (bottom-up guidance). In addition, the
model can be requested to try to match certain visual features (top-
down guidance). Attention is then guided towards elements with fea-
tures matching this top-down request. The bottom-up saliency and top-
down match scores are combined, and the visual element scoring
highest is attended next. An attention request is followed by a rapid eye
movement (saccade) towards the target and a subsequent encoding,
unless the target is close enough to the current fixation to be encoded
without a saccade.

The model is adaptive in three ways. First, the model of associative
long-term learning stores the locations and visual features of layout
elements for future retrieval. The probability that the model will be able
to retrieve the details about the target, along with the probability that
the retrieval will be successful, depends on how often the model pre-
viously encountered the target and on how far in the past these en-
counters occurred. Repeated and recent exposure strengthens the as-
sociative connection and makes retrieving the location and visual
features of an element more probable and faster. Second, the model
uses short-term visual memory to inhibit revisitation of recently seen
graphical elements. Contrasted with between-task associative memory,
this memory spans only one task at a time, but has the benefit of being
immediate and not having to build up gradually. Thirdly, the model
tries to learn the optimal search policy, that is, it learns what types of
feature requests have worked in the past search tasks. This is also a type
of long-term memory, but instead of explicit associations, it implicitly
models the fine-tuning of the model’s search policy via reinforcement.
The described flow of information from the memory resources to the
controller, and of requests from the controller to vision, are depicted in
Fig. 1.

We first describe the model’s mechanism in detail below. Then, in
the following section, we use the model to work a set of simple ex-
amples in order to demonstrate how the model works. Finally, we use
the model to make predictions about real user interfaces, and use
human data to investigate how well the predictions fit to observations.

3.1. Attention and eye movements

3.1.1. Feature guidance

The goal for the model is to find the target element by encoding
visual elements of the environment. Encoding an element allows the
model to decide whether it is the target or a distractor. Before the model
can encode any elements, it needs to attend one. The feature guidance
component holds a visual representation of the environment, and at the
controller’s request it resolves the request to deploy attention to one of
the elements in it. The attended target is determined by the properties
of the visual elements. The presence of these properties in the visual
representation is based on their eccentricity, or angular distance from
the fixation. A feature is visually represented if its angular size is larger
than

ae? — be, (@)

where e is the eccentricity of the element (in the same units as the
angular size, i.e., in degrees) and a and b are free parameters that de-
pend on the visual feature in question. Their settings, from the



J.P.P. Jokinen, et al.

VSTM CONTROLLER

inhibit revisits with best expected utility

| | |

attend location feature
new request request

v
FEATURE GUIDANCE

solve visual sampling problem

attention request

ATTENTION & EYE
MOVEMENTS

deploy attention and encode objects

literature (Nyamsuren and Taatgen, 2013), are a = 0.104 and b = 0.85
for colour, 0.14 and 0.96 for shape, and 0.142 and 0.96 for size.

On the basis of the visual features represented, each element is
given an activation as a weighted sum of bottom-up and top-down
activations (Nyamsuren and Taatgen, 2013). Bottom-up activation is
the saliency of an element, calculated as the dissimilarity of its features
to all other elements of the environment, weighted by the square root of
the linear distance between the elements:

elements features dissim (vik7 vjk)
;% Jdy @

Two elements i and j are dissimilar, that is, dissim(i, j) = 0 for a
feature if this feature is shared exactly between them (otherwise
dissim (i, j) = 1). For instance, two green elements are similar, but a red
element and a green element are dissimilar (on the colour feature).
Hence, bottom-up activation of an element increases if it is close to
elements that do not share its features. For instance, a unique red ele-
ment among a large number of green elements gives the red element a
large bottom-up activation, as it is dissimilar to all of the close ele-
ments. Conversely, the green elements have less bottom-up activation,
because while they are dissimilar to the red element, they are similar to
each other (on the colour feature).

If the controller does not include a set of features in the attention
deployment request, attention is guided towards the element with
highest bottom-up saliency (that is currently within the visual threshold
of the model). However, the controller can optionally include a feature
set to be matched in the attention deployment that results in a top-down
guidance of attention.

Top-down activation entails the similarity of the feature set of the
element to an optional controller-requested feature set (Nyamsuren and
Taatgen, 2013):

BAi =

features
>, sim(fy, f),
i 3

where similarity between the model-requested feature f; and the ele-
ment’s feature f; is 1 for a match, 0 for a mismatch, and 0.5 if the
property fi is not present in the model’s vision.

The total activation of an element is the sum of bottom-up and top-
down activations, weighted by constants (W4 = 1.1 for bottom-up and
Wsa = 0.45 for top-down), plus noise from a logistic distribution with
SD = ors = 0.376 (Nyamsuren and Taatgen, 2013). An attention de-
ployment request by the controller results in attending the element with
the highest total activation. This is a simplification of the Guided Search
Model, which models the guidance of visual search from bottom-up and
top-down information (Wolfe, 2007).

TAi =

International Journal of Human-Computer Studies 136 (2020) 102376

choose the visual sampling request il

Fig. 1. The model is based on the principles of fea-
ture guidance and utility learning. On the basis of
expected utility, the controller requests guided at-
tention deployment from the eye-movement system.
This directs attention to the most salient unattended

LT™M

store and retrieve
object location
and features

visible element within the visually represented en-
vironment, and results in its encoding. If locational
or feature information is accessible in the LTM, the
controller, learning the utilities of its actions, can
optionally also request these features to be con-
sidered in the attention deployment. Encoded ele-
ments are stored in VSTM, which inhibits revisits.
Location and visual features of the elements are
stored in LTM for future recall.

3.1.2. Eye movements

After an attention deployment has been resolved, the model needs
to attend and encode the element with the highest activation, as cal-
culated above. The eye-movement component constrains the model by
enforcing the encoding time as a function of the eccentricity of the
element. It also provides a resource for moving the eyes closer to the
target in order to minimise eccentricity. Aside from noise associated
with eye movements, the fastest possible encoding time for any given
element is guaranteed.

Our implementation follows the EMMA integrated model of eye
movements and visual encoding for calculating eye movement and
encoding time (Salvucci, 2001). What EMMA does not provide is the
attention request, which comes from the model described in the pre-
vious section. The time to encode an element is

T, = K-[~log(f)]-e", 4

where K and k are constants, and f is the frequency of the element, set to
0.1 if no frequency information is available, and in any case provided
by the modeller or computed from the set of all possible elements that
the model can encounter in its current task environment. € is the ec-
centricity — measured as the distance of the target from the current eye
fixation (in degrees). Because encoding time increases exponentially as
a function of eccentricity, the visual system may initiate a saccade to get
closer to the target. Saccade duration is

Iy = prep t Lexec + D-tyaces 5)

where tyrep, texe, and tg are constants related to the human visual
system and D is the distance to be covered by the saccade, in degrees.
The landing point of the saccade is the target location with noise added
from a normal distribution with a standard deviation of oy multiplied
by the distance between the saccade starting point and the intended
landing point (Salvucci, 2001). If the encoding time (Eq. (4)) is less than
torep, then the target is encoded without the eyes moving from the
current fixation location. If not, the saccade shifts the fixation location
close to the target and the remaining encoding is conducted after the
saccade. Where the feature guidance component of the model expresses
thresholds for the visibility of features, the EMMA model expresses the
threshold of foveated area. Only within this area can the model encode
detailed information about the visual elements, such as text or small
icons.

3.1.3. Visual short-term memory

VSTM holds a list of recently encoded elements, and inhibits the
model from attending them. The parameter r controls how long ele-
ments are held within the VSTM. Its value has often been set to 7 =4 s
(Jokinen et al., 2017; Kieras, 2011; Nyamsuren and Taatgen, 2013), but



J.P.P. Jokinen, et al.

for larger visual search tasks it has also been made practically infinite,
that is, large enough that the search task is finished before the first
elements start to decay (Kujala and Salvucci, 2015). Experiments with
large sets of images have indeed suggested that the VSTM is not limited
to a handful of items or decay times of a few seconds (Endress and
Potter, 2014). Below, we note that long VSTM decay time works better
for our model of layout learning, with the exception that an explicit =
value is necessary in simulating visual search of large layouts. Essen-
tially this will inhibit revisiting of already encoded elements. While
such revisits occur, they are rare and stochastic (Fleetwood and
Byrne, 2006); therefore, we simplify the model by inhibiting return,
unless the layout is very large. In reality, the human ability to seek a
visual target among a large number of distractors is possible via a
combination of bottom-up inhibition mechanisms and top-down search
strategies (Fleetwood and Byrne, 2006), which we will not model here.
However, below we will discuss how to empirically investigate and
computationally implement such strategies.

3.2. Learning

The model has two long-term learning components for adapting to
the task environment’s and its own information-processing constraints.

3.2.1. LTM Update

Whenever the model finds a target, the LTM component enters the
association of the target and its visual features and location in storage.
The association strength is a function of the number and timestamps of
storage entries: each time an entry is revisited, its activation gets
stronger (Anderson et al., 1998). In contrast, the further in the past the
entries are, the less they contribute to the activation, resulting in decay
of memory. The activation of an element i is

B =1n( )] 9,
=1 (6)

where ¢; is the time since the jth visitation of i and d is a decay para-
meter (Anderson et al., 1998).

In order to utilise information in the LTM to guide attention, the
controller sends a retrieval request to the LTM. If B; > 0, with added
noise from the logistic distribution with a standard deviation of oy, and
a base-level activation constant By, the information associated with the
current target is retrieved. In addition, source activation of the size of
B, can be added to any B; if entry i corresponds to a controller-

International Journal of Human-Computer Studies 136 (2020) 102376

requested feature (this is similar to the top-down guidance of atten-
tion). This can be used to spread activation to certain types of memory
entries, such as those that are from the newly learned layout (vs the old
layout). Time to retrieve information about an element i depends on its
activation in the LTM and is given by

T, = Fe 35, )

where F and f are individual scaling constants (Anderson et al., 1998). If
recall is successful, the controller can use the recalled feature in-
formation to request attention deployment, using the top-down feature
guidance described above. Alternatively, the model can request atten-
tion deployment to the recalled location of the element.

3.2.2. Utility learning

In order to decide whether to proceed with the search by using
VSTM inhibition or a retrieved feature or location information, the
controller uses utility learning. When a target has been found, the
model rewards all actions used to find it, discounted by time. The utility
y; of an action is updated via the delta learning rule (Anderson, 2007;
Rescorla and Wagner, 1972; Veksler et al., 2014):

Auy(t) = a[l — Ri(t) — w;(t — D], 8

where a is a parameter to be estimated, R(t) is a temporally discounted
reward (set to a unit value of 1), and u;(t — 1) is the utility at the
previous step. The action with the highest utility, after addition of noise
from a logistic distribution with standard deviation oy, will be taken.
The utilities dynamically adjust to the changes in the environment. For
instance, if the layout is changed by moving the elements around, ac-
tions that utilise retrieved location information might receive lower
utility values, because they do not work well anymore.

The Eq. (8) can be considered to implement temporal difference re-
inforcement learning (Sutton and Barto, 1998). However, it should be
noted that our model does not employ any traditional learning algo-
rithm within the reinforcement learning domain, such as Q-learning or
SARSA. Instead, we update the utility values of each action by updating
its utility using the delta learning rule on time discounted reward at the
end of each search task. This follows the usual practice of reinforcement
learning implemented in ACT-R models, which has the benefit of
matching learning observed with human participants (Anderson, 2007).
We summarise all parameters of the model and their values in Table 1.

Table 1
Parameters of the model and their descriptions. Literature-based values are cited.
Parameter Component Definition Value Ref.
k VISION scaling factor for encoding speed 0.4 Salvucci (2001)
K VISION scaling factor for encoding speed 0.006 Salvucci (2001)
torep VISION visual pre-processing time 0.135 Salvucci (2001)
toxec VISION saccade execution time (baseline) 0.070 Salvucci (2001)
tsace VISION scaling factor for saccade duration 0.002 Salvucci (2001)
oy VISION saccade landing point noise 0.1 Salvucci (2001)
a, b VISION thresholds for feature vision see (1) Nyamsuren and Taatgen (2013)
Wha VISION Weight for bottom-up activation 1.1 Nyamsuren and Taatgen (2013)
Wi VISION Weight for top-down activation 0.45 Nyamsuren and Taatgen (2013)
O7a VISION Noise for total visual activation 0.376 Nyamsuren and Taatgen (2013)
T VSTM decay (forgetting) 45 -
d LTM decay (forgetting) 0.5 Anderson et al. (1998)
F LTM scaling factor for overall retrieval times 1.06 Jokinen et al. (2017)
f LT™M scaling the effect of activation on retrieval time 1.53 Jokinen et al. (2017)
By LTM base-level activation 6.0 -
Bsq LTM source activation for top-down control of retrieval 3.0 -
Om LTM noise for retrieval activation 0.6 Jokinen et al. (2017)
a CONTROL scaling factor for utility learning 0.1 -
oy CONTROL noise in utility calculations 0.3 -




J.P.P. Jokinen, et al.

4. Model walkthrough
4.1. Feature guidance

4.1.1. Bottom-up activation

In order to demonstrate the basic guidance principles of the model,
we walk through its simulation of a simple visual task. Fig. 2 shows a
layout with four elements. The fixation of the model is at the left border
of the layout (marked X in the figure). This fixation point is purpose-
fully selected to illustrate the visual thresholds of the model. To the
right of it, there are rectangles A-C aligned in a single column, and
further to the right of them is a single rectangle D. One of the three
closer rectangles is green (C), and all other rectangles are blue, in-
cluding the one that is farthest on the right. The distance of the fixation
(X) from the centre of D is set to 10 cm, and the distance of the model
from the screen is set to 60 cm such that the visual angle between X and
D is approximately 9.5°. The angular size of each rectangle is 1.5".

Assuming that the model has no top-down feature requests avail-
able, that is, it does not prefer any features, its attention deployment is
based on bottom-up activation of the elements in a winner-take all
fashion: highest activation dictates the element that is attended to next
(Itti and Koch, 2000; Nyamsuren and Taatgen, 2013). Before calcu-
lating these activations, Eq. (1) is used to update which of the features
are visible to the model, given its current fixation point (Kieras and
Hornof, 2014). As an example, we calculate here the features of the
farthest rectangle (D) that are available to the visual system of the
model. The requires the visual angle between the eyes and the element,
the angular size of the element, and the feature-specific parameters a
and b. For the colour feature, Eq. (€D) gives
0.104-9. 52 — 0.85-9.5 = 1.311 < 1.5, which means that the visual system
of the model is able to perceive the colour of the element. However,
shape is beyond the threshold, 0.14-9. 5 — 0.96-9.5 = 3.515 > 1.5. Si-
milarly, the relative size of D is too far to be perceived by the visual
system. For the closer rectangles A-C, the same equations produce
perceivable colour, shape, and size. Features within their corresponding
thresholds are added to the visual representation of the model.

After the model’s visual representation of the layout has been up-
dated, the bottom-up activation of each element is calculated by com-
paring its visible features to the visible features of all elements using
Eq. (2). Because element C has a dissimilar colour to the other elements,
its activation is highest at 0.71. Element A has the lowest activation,
0.51, because it is similar to B, and although it is dissimilar to C, its
distance to C is larger than B’s distance to C, whereas B gets a bottom-
up activation of 0.59. The activation of D is 0.62, which is larger than
for A and B, because its shape and size are not visible, which contributes

b

Fig. 2. Example layout for the model. The letter X shows where eyes are fix-
ated. Element C has the largest bottom-up activation due to its distinct colour.
The model can encode elements A-C without a saccade, but D requires a sac-
cadic movement to bring fixation (X) closer to it.

International Journal of Human-Computer Studies 136 (2020) 102376

toward D being dissimilar to the other elements (features not present
contribute towards dissimilarity). It should be noted that although D is
not differently shaped and coloured than A and B, this does not matter
here because the model does not currently see these features. Were the
model to refixate in the middle of the layout so that all features of all
four elements are visible to it, D would receive the lowest amount of
activation, with C again having the highest, then B, and finally A. With
no top-down requests, the weighted sum of bottom-up and top-down
activation of an element is simply Wg4 times the activation calculated
above, with added noise from a logistic distribution. As the noise is the
same for all elements, the most probable target of the model’s attention
deployment is C. This is because C is the most salient visible element,
having a dissimilar colour to all other close elements.

After the target for attention deployment has been selected, the
model encodes the target element, which is 3.35deg away from the
current fixation. The encoding time in seconds is given by Eq. (4):
0.006-[—10g(0.1)]-e%4335 = 0.05. Because this is smaller than the visual
pre-processing constant t,.,, the model does not need to execute a
saccade towards the element, but instead is able to encode its contents
from the current fixation and decide whether it is the visual element
that is being searched. This demonstrates the relative costliness of eye
movements compared to encoding elements without a refixation. For
comparison, if the model were to encode the element D, the encoding
time would be 0.23s. due to the fact that in order to quickly encode the
target, the model needs to prepare (t,,,, = 0.135) and execute a saccade
close to it (t.. = 0.07, plus each travelled degree has an additional cost
of g = 0.002). In other words, it is possible to encode the element C
while fixating on X, but a saccadic movement is required for encoding
element D. After the encoding of C, due to inhibition of return it would
not be considered again as a valid target for a duration (governed by 1),
whilst the search progresses. It would, however, still be used normally
in the bottom-up calculation of other yet unvisited targets.

4.1.2. Top-down activation

The previous example assumed that the model has no prior
knowledge of the layout, which forces it to treat all elements as equally
probable targets. However, if the model is given additional cues, such as
information that the element it is looking for is a blue rectangle, it can
use this information for its attention deployment request. This adds top-
down activation to all elements sharing these features - assuming of
course that these features are visible to the model. Top down activation
of each element visible to the model is calculated from Eq. (3). For
elements A and B in Fig. 2, both colour (blue) and shape (rectangle) are a
match, and thus both get 1 + 1 = 2 as their top-down activation. Ele-
ment C has a feature match for shape but not colour, and thus gets a
top-down activation of 1. Element D matches for colour, but this feature
is below the visibility threshold, and thus missing in the visual re-
presentation of the model. A missing feature contributes 0.5 to the top-
down activation of element D, giving it a total top-down activation of
1.5. In order to decide where the attention is deployed, total activation
of each element is calculated by multiplying bottom-up activation by
W, and top-down activation by Wz, and summing them. This gives the
following activations: A = 1.46, B = 1.55, C = 1.23, D = 1.36. As-
suming no noise, the model deploys attention to the element with the
highest total activation, which in this case is B. This is because B
matches both feature requests and, in comparison to A, is more salient
due to proximity to the differently coloured C.

4.1.3. Model input

The model described here deals with the visual world symbolically.
This means that each visual element is given to it as an object, which
has slots for location, size, and features. In other words, the model itself
does not deal with the problem of extracting visual elements from a
scene, such as a screenshot of a layout. Instead, the modeller needs to
specify — automatically or manually - the visual elements along their
specifications (this is similar to how the cognitive architecture ACT-R



J.P.P. Jokinen, et al.

deals with its visual world, see Fleetwood and Byrne, 2006). All features
of the elements are qualitative in that the model makes absolute com-
parisons between them. For example, colours green and light green are as
distant from each other as from blue. It is up to the modeller to define
the features such that the model’s visual world corresponds to the ac-
tual layout. Further, as will be shown below, the model does not learn
to use icons or other semantic visual aids to guide its search.

4.1.4. Feature search

The model searches for a given target by requesting attention de-
ployment, which selects the visual element with the highest total acti-
vation as calculated above. This results in an attention deployment
request and the subsequent encoding of the element, potentially via a
saccade if the target is sufficiently far from the current eye location.
Although the model does have feature information concerning the
element, we assume here that each potential visual target contains some
detailed information, such as text or an icon, which can only be en-
coded within the foveated area. Based on the encoding of this detailed
information, the model decides if the encoded element matches the
target it is looking for. Assuming it does not, the search continues: the
model flags the currently attended element into its VSTM to prevent it
from being attended to again in the near future, and calculates a new
highest active visual element.

If the model has no feature information to guide its search, average
search time increases as the number of elements increase (assuming
that the target is not especially salient, i.e., it does not have bottom-up
advantage). However, if the model has information about the features
of its target, it can use this to shorten the visual search. Fig. 3a illus-
trates one of the four example search conditions, modelled after a
classic search task (Treisman and Gelade, 1980). The target (marked
with *) is surrounded by a number of other elements. The conditions
differ dependent on the set size (small = 8 or large = 16 elements) and
whether half of the elements share the colour of the target (conjunc-
tion) or the target is the only element of its colour (disjunction). Based
on the description of the model, it is easy to predict that in the con-
junctive task, set size impacts search times, whereas in the disjunctive
task, adding more elements should not increase average search times
considerably. The results of model simulations are shown in Fig. 3b.

4.2. Layout learning

The feature guidance part of the model treats every visual search
task in isolation. The memory component, in contrast, stores informa-
tion between tasks and provides this information to be used top-down
in individual search tasks. In the above example, Fig. 3, the attention

1.00 Distra(lztorsl
Conjunction
Disjunction
. 0.75

O

Q

E

= 050

o

]

Q

(]

. 0.00
(a) Example task (small and disjunc-
tive)

Small

International Journal of Human-Computer Studies 136 (2020) 102376

was deployed using the top-down information that the target is red.
Where did this information come from? As in the original experiments
demonstrating the effect with people (Treisman and Gelade, 1980), the
information was explicitly given to the model before the task began.
When people use graphical interfaces, instead of being provided the
top-down information, they learn the relevant information so as to
make their upcoming use more efficient. Although our model is not an
instance of the original Feature Integration Theory by Treisman and
Gelade (1980), it should still be able to replicate these results. Please
see Wolfe (2007) and Nyamsuren and Taatgen (2013) for discussion on
the differences between that theory and the guided search theory, that
is adapted in our model.

After the model has found the target it is currently searching, it
stores the features of the element as well as its location into its asso-
ciative memory for future retrieval. Whenever it starts a new search
task, it sends a retrieval request to this associative storage. Because the
retrieval always takes some time, the model starts the normal bottom-
up driven visual search, as described above. If the retrieval is successful,
the model adds the retrieved feature information to the top-down fea-
ture requests, also as described above. In addition to this, it can directly
attend to the element that is close to the recalled location.

An example simulation of the model’s feature and position learning
is shown in Fig. 4. The model starts its search tasks as a complete no-
vice. It is randomly given a target to search for, and the search time is
recorded. In the beginning, as a novice, the model takes about 1.4 s to
find non-salient elements, such as the Messenger and settings elements
(shown in the bargraphs in Fig. 4). Conversely, the green Excel element
is salient due to its distinct colour, so search times for it are already fast
in the novice phase, that is, even without any top-down guidance. This
is the same result as demonstrated above in Fig. 2, except now the
search times are longer due to a larger number of searchable elements.
After 10 simulated minutes of constantly searching for random ele-
ments on the layout, the model can be considered to hold expert
knowledge of it. It now takes less than 0.8 s to find any of the three
elements used in the example. This is because it remembers their po-
sitions well, and can use this positional knowledge to guide attention
toward the right area. Due to the noise in the various resources of the
model, such as attention, eye-movements, and memory, the most
salient element remains on average the fastest to find.

After the model has reached expert level, two of the three target
elements are moved around. The model still first attends to the old
location, because this positional knowledge has proven to be an effi-
cient way to guide attention. In other words, the utility of the location
request is high, and thus so is the probability that it is used because this
request has usually resulted in fast search times. After the model

Fig. 3. The model searched for the red target
(*) in four conditions (size X conjunction).
The number of elements was 8 or 16. In con-
junctive layouts, half of the elements were red
(the same as the target), and in disjunctive,
only the target element was red. The results
show that increasing set size does not have a
notable effect on search times in the dis-
junctive condition, but in the conjunctive
condition it increases the search times. (For
interpretation of the references to colour in this
figure legend, the reader is referred to the web
version of this article.)

Large
Set size

(b) Results of feature search



J.P.P. Jokinen, et al.

1.5- 1.5-
z z
Q s @ -
£ 1.0 £ 1.0
E [
= &
& g
3 0.5- é 0.5

xH
0.0-

Novice

International Journal of Human-Computer Studies 136 (2020) 102376

Search Time (s)
5

o
o

Expert

After layout change

Fig. 4. The visual search model predicts visual search times for new and changed layouts. For a novice user without any prior exposure to the layout, the model
predicts that of the three elements chosen for this comparison, the salient green element is the fastest to find. After learning the locations of the elements, the expert
model finds all fairly quickly. At this point, one blue element and the green element change place. Search times for the moved blue element are longer than for the
green element, because the model remembers the distinctive features of the latter. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

observes that the target is not at the location it expected, it gives ne-
gative reinforcement to the location-based attention guidance. This
results in a shift in search strategy, and the model starts to use the
recalled feature information, such as colour, to guide attention in a top-
down fashion. As a result, the immediate search times for the moved
elements increase, especially for Messenger. For this element, the fea-
ture-based top-down guidance of the model does not result in a faster
visual search since the element shares its features with many other
elements.

In comparison to Messenger, the green Excel is still relatively easy to
find even after the layout change. This is because the top-down feature
guidance for green colour matches only this element, which results in it
receiving higher total activation than other elements. Using reinforce-
ment learning, the model shifts its future strategy so that it relies less on
the unreliable positional knowledge of the moved elements. For Excel, it
learns to rely on feature knowledge. After some time, the model has
learnt the new locations of the moved elements, and accordingly it
starts to shift back to the more exact position-based search. It can do
this, because the strategy it follows is updated constantly, via the delta
learning rule (Eq. (8)), based on how quickly the use of different in-
formation sources result in finding the target. The settings element
serves as a control. The search time for it does not change, except for
small variations due to changes in the layout, which results in subtle
changes in its bottom-up activation. Here, as its green neighbour is
replaced with a blue element, its bottom-up saliency decreases slightly,
which results in slightly longer average search times.

5. Validation with human data

To test the model under realistic conditions with multiple different
layouts, and to fit the free parameters of the model, we conducted an
experiment. As the model predicts visual search on layouts, the ex-
periment was designed to have human participants visually search for
cued elements in realistic graphical Uls. The model also predicts

learning of locations and features of visual elements as the function of
repeated visual search, so the participants repeated the search tasks
multiple times. Finally, as the model predicts how a partial layout
change impacts visual search and relearning, the participants were also
given tasks with modified layouts after they had first learned the ori-
ginal layout. The main dependent variables produced in the experiment
are search time and eye movements over the layout. Independent
variables are layout, target with its features and locations, and the
number of repetitions. To confirm the representativeness of the model,
that is, its applicability to different interface types, we chose layouts
from separate domains: a consumer interface (ticket-vending machine),
a website (New York Times front page), and a computer OS interface
(Windows 10 menu); see Fig. 5.

Most of the parameters of the model were adapted straight from
existing literature. However, certain parameters, especially those re-
lated to the activation calculations in the LTM component of the model,
are context-dependent and thus were fitted to the human data. Hence
the data from the experiment were first used to acquire the parameters
which provided the best fit. After that, quantitative and qualitative
comparisons of the model predictions and human observations were
used to assess the model’s validity.

5.1. Method

In total, we recruited N = 20 university students, aged between 19
and 33 years, M = 24, SD = 4.56. All were regular computer users and
familiar with using the internet. The experiment applied a within-sub-
jects design wherein each participant performed a task of visually
searching for visual elements in graphical Uls. The tasks were modelled
after visual search experiments in which the participants were asked to
visually locate the cued target as quickly as possible and then to press a
reaction time (RT) button in front of them to indicate that the target
had been found (Jokinen et al., 2017; Sears et al., 2001).



J.P.P. Jokinen, et al.

000 products /000000 Ft

Ehe New JJork Eimes

2 —

International Journal of Human-Computer Studies 136 (2020) 102376

[~ B

Please select:

®
Block of 10 tickets N vt i
(for pensioners)
24-hour Budape Monthly Budapest.pass,
travelcard (for pupils)

Trump Warns
North Korea of
“Fireand Fury’

Monthly Budapest-pass if Threatened

(for natural persons)

North Kored st Not Make
Any More Threats”

Monthly Budapest. pass

(for students)

_—— N re—
=l el

Fig. 5. The three layouts used in the experiment. Left: a ticket wending machine (BP); centre: a news 