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ABSTRACT
Vertex connectivity a classic extensively-studied problem. Given

an integer k , its goal is to decide if an n-nodem-edge graph can

be disconnected by removing k vertices. Although a linear-time

algorithm was postulated since 1974 [Aho, Hopcroft and Ullman],

and despite its sibling problem of edge connectivity being resolved

over two decades ago [Karger STOC’96], so far no vertex connec-

tivity algorithms are faster than O (n2) time even for k = 4 and

m = O (n). In the simplest case where m = O (n) and k = O (1),
the O (n2) bound dates five decades back to [Kleitman IEEE Trans.

Circuit Theory’69]. For higherm, O (m) time is known for k ≤ 3

[Tarjan FOCS’71; Hopcroft, Tarjan SICOMP’73], the first O (n2)
time is from [Kanevsky, Ramachandran, FOCS’87] for k = 4 and

from [Nagamochi, Ibaraki, Algorithmica’92] for k = O (1). For gen-
eral k andm, the best bound is Õ (min(kn2,nω +nkω )) [Henzinger,
Rao, Gabow FOCS’96; Linial, Lovász, Wigderson FOCS’86] where

Õ hides polylogarithmic terms and ω < 2.38 is the matrix multipli-

cation exponent.

In this paper, we present a randomized Monte Carlo algorithm

with Õ (m + k7/3n4/3) time for any k = O (
√
n). This gives the first

subquadratic time bound for any 4 ≤ k ≤ o(n2/7) (subquadratic
time refers to O (m) + o(n2) time.) and improves all above clas-

sic bounds for all k ≤ n0.44. We also present a new randomized

Monte Carlo (1 + ϵ )-approximation algorithm that is strictly faster

than the previous Henzinger’s 2-approximation algorithm [J. Algo-

rithms’97] and all previous exact algorithms. The story is the same

for the directed case, where our exact Õ (min{km2/3n,km4/3})-time

for any k = O (
√
n) and (1 + ϵ )-approximation algorithms improve

all previous exact bounds. Additionally, our algorithm is the first

approximation algorithm on directed graphs.

The key to our results is to avoid computing single-source con-

nectivity, which was needed by all previous exact algorithms and

is not known to admit o(n2) time. Instead, we design the first local
algorithm for computing vertex connectivity; without reading the
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whole graph, our algorithm can find a separator of size at most k
or certify that there is no separator of size at most k “near” a given

seed node.
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1 INTRODUCTION
Vertex connectivity is a central concept in graph theory. The vertex

connectivity κG of a graph G is the minimum number of the nodes

needed to be removed to disconnect some remaining node from

another remaining node. (When G is directed, this means that

there is no directed path from some node u to some node v in the

remaining graph.)

Since 1969, there has been a long line of research on efficient

algorithms [5–8, 10–12, 14, 15, 21, 22, 28, 30–32, 36] for deciding
k-connectivity (i.e. deciding if κG ≥ k) or computing the connectivity
κG . For the undirected case, Aho, Hopcroft and Ullman [1, Problem

5.30] conjecture in 1974 that there exists an O (m)-time algorithm

for computing κG on a graph with n nodes andm edges. However,

no algorithms to date are faster than O (n2) time even for k = 4.

On undirected graphs, the first O (n2) bound for the simplest

case, where m = O (n) and k = O (1), dates back to five decades

ago: Kleitman [28] in 1969 presented an algorithm for deciding k-
connectivity with running timeO (kn ·VCk (n,m)) where VCk (n,m)
is the time needed for deciding if the minimum size s-t vertex-cut
is of size at least κ, for fixed s, t . Although the running time bound

was not explicitly stated, it was known that VCk (n,m) = O (mk )
by Ford-Fulkerson algorithm [13]. This gives O (k2nm) which is

O (n2) whenm = O (n) and k = O (1), when we plug in the 1992

result of Nagamochi and Ibaraki [32]. Subsequently, Tarjan [40] and

Hopcroft and Tarjan [24] presented O (m)-time algorithms when k
is 2 and 3 respectively.

https://arxiv.org/abs/1904.04453
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All subsequent works improved Kleitman’s bound for larger k
andm, but none could break beyondO (n2) time. For k = 4 and any

m, the firstO (n2) bound was by Kanevsky and Ramachandran [25].

The first O (n2) for any k = O (1) (and anym) was by Nagamochi

and Ibaraki [32]. For general k andm, the fastest running times are

Õ (nω + nkω ) by Linial, Lovász and Wigderson [30] and Õ (kn2) by
Henzinger, Rao and Gabow [22]. Here, Õ hides polylog(n) terms,

andω is the matrix multiplication exponent. Currently,ω < 2.37287

[16].

For directed graphs, an O (m)-time algorithm is known only for

k ≤ 2 by Georgiadis [17]. For general k andm, the fastest running

times are Õ (nω + nkω ) by Cheriyan and Reif [7] and Õ (mn) by
Henzinger et al. [22]. All mentioned state-of-the-art algorithms for

general k andm, for both directed and undirected cases [7, 22, 30],

are randomized and correct with high probability. The fastest deter-

ministic algorithm is by Gabow [14] and has slower running time.

Some approximation algorithms have also been developed. The

first is the deterministic 2-approximation O (min{
√
n,k }n2)-time

algorithm by Henzinger [21]. The second is the recent random-

izedO (logn)-approximation Õ (m)-time algorithm by Censor-Hillel,

Ghaffari, and Kuhn [6]. Both algorithms work only on undirected

graphs.

Besides a few O (m)-time algorithms for k ≤ 3, all previous

exact algorithms could not go beyond O (n2) for a common reason:

As a subroutine, they have to solve the following problem. For a

pair of nodes s and t , let κ (s, t ) denote the minimum number of

nodes (excluding s and t ) required to be removed so that there is no

path from s to t in the remaining graph. In all previous algorithms,

there is always some node s such that these algorithms decide

if κ (s, t ) ≥ k for all other nodes t (and some algorithms in fact

computes κ (s, t ) for all t ). We call this problem single-source k-
connectivity. Until now, there is no o(n2)-time algorithm for this

problem even when k = O (1) andm = O (n).

1.1 Our Results
In this paper, we present first algorithms that break theO (n2) bound
on both undirected and undirected graphs, when k is small. More

precisely:

Theorem 1.1. There are randomized (Monte Carlo) algorithms
that take as inputs an n-nodem-edge graph G = (V ,E) and an in-
teger k = O (

√
n), and can decide w.h.p.1 if κG ≥ k . If κG < k ,

then the algorithms also return corresponding separator S ⊂ V , i.e.
a set S where |S | = κG and G[V − S] is not connected if G is undi-
rected and not strongly connected ifG is directed. The algorithm takes
Õ (m + k7/3n4/3) and Õ (min(km2/3n,km4/3)) time on undirected
and directed graphs, respectively.

Our bounds are the first o(n2) for the range 4 ≤ k ≤ o(n2/7) on

undirected graphs and range 3 ≤ k ≤ o(n/m2/3) on directed graphs.

Our algorithms are combinatorial, meaning that they do not rely

on fast matrix multiplication. For all range of k that our algorithms

support, i.e. k = O (
√
n), our algorithms improve upon the previous

best combinatorial algorithms by Henzinger et al. [22], which take

time Õ (kn2) on undirected graphs and Õ (mn) on directed graphs
2
.

1
We say that an event holds with high probability (w.h.p.) if it holds with probability

at least 1 − 1/nc , where c is an arbitrarily large constant.

2
As k ≤

√
n andm ≥ nk , we have k ≤ m1/3

. So km2/3n ≤ mn.

Comparing with the Õ (nω + nkω ) bound based on algebraic tech-

niques by Linial et al. [30] and Cheriyan and Reif [7], our algorithms

are faster on undirected graphs when k ≤ n3ω/7−4/7 ≈ n0.44. For di-
rected graph, our algorithm is faster where the range k depends on

graph density. For example, consider the interesting case the graph

is sparse but can still be k-connected which is whenm = O (nk ).
Then ours is faster than [7] for any k ≤ n0.44 like the undirected
case. However, in the dense case whenm = Ω(n2), ours is faster
than [7] for any k ≤ nω−7/3 ≈ n0.039.

To conclude, our bounds are lower than all previous bounds

when 4 ≤ k ≤ n0.44 for undirected graphs and 3 ≤ k ≤ n0.44 for
directed sparse graphs (i.e. when m = O (nk )). All these bounds

[7, 22, 30] have not been broken for over 20 years. In the simplest

case wherem = O (n) and, hence k = O (1), we break the 50-year-

old O (n2) bound [28] down to Õ (n4/3) for both undirected and

directed graphs, respectively.

Approximation algorithms. We can adjust the same techniques

to get (1+ ϵ )-approximate κG with faster running time. In addition,

we give another algorithm using a different technique that can

(1 + ϵ )-approximate κG in Õ (nω/ϵ2) time.

We define the function T
flow

(k,m,n) as

T
flow

(k,m,n) =




min(m4/3,nm2/3k1/2,

mn2/3+o (1)/k1/3,

n7/3+o (1)/k1/6) if k ≤ n4/5,

n3+o (1)/k if k > n4/5.

(1)

Theorem 1.2 (Approximation Algorithm). There is a random-
ized (Monte Carlo) algorithm that takes as input an n-nodem-edge
graph G = (V ,E) and w.h.p. outputs κ̃, where κG ≤ κ̃ ≤ (1 + ϵ )κG ,
in Õ (m + poly(1/ϵ )min(k4/3n4/3,k2/3n5/3+o (1) ,n3+o (1)/k,nω )) =
Õ (min{n2.2,nω }) time for undirected graph, and in Õ (poly(1/ϵ )
min(T

flow
(k,m,n),nω )) = Õ (min{n2.2,nω }) time for directed graph

where T
flow

(k,m,n) is defined in Equation (1). The algorithm also re-
turns a pair of nodes x andy whereκ (x ,y) = κ̃. Hence, with additional
O (mmin{

√
n, κ̃}) time, the algorithm can compute the corresponding

separator.

As noted earlier, previous algorithms achieve 2-approximation

inO (min{
√
n,k }n2)-time [21] andO (logn)-approximation in Õ (m)

time [6]. For all possible values of k , our algorithms are strictly

faster than the 2-approximation algorithm of [21].

Our approximation algorithms are also strictly faster than all

previous exact algorithms with current matrix multiplication time

(and are never slower even if ω < 2.2). In particular, even when

ϵ = 1/nγ for small constant γ > 0, our algorithms are always poly-

nomially faster than the exact algorithms by [22] with running time

Õ (mn) and Õ (kn2) on directed and undirected graphs, respectively.

Compared with the bound Õ (nω +nkω ) by [30] and [7], our bound
for undirected and directed graphs are Õ (min{n2.2,nω }) for any
density, which are less than current matrix multiplication time.

Finally, note that the previous approximation algorithms [6, 21]

only work on undirected graphs, while we also show algorithms

on directed graphs.

1.2 The Key Technique
At the heart of our main result in Theorem 1.1 is a new local algo-
rithm for finding minimum vertex cuts. In general, we say that an
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algorithm is local if its running time does not depend on the size of

the whole input.

More concretely, let G = (V ,E) be a directed graph where each

node u has out-degree deg
out (u). Let degout

min
= minu deg

out (u) be
the minimum out-degree. For any set S ⊂ V , the out-volume of S
is vol

out (S ) =
∑
u ∈S deg

out (u) and the set of out-neighbors of S is

N out (S ) = {v < S | (u,v ) ∈ E}. We show the following algorithm

(see Theorem 4.1 for a more details):

Theorem 1.3 (Local vertex connectivity (informal)). There
is a deterministic algorithm that takes as inputs a node x in a graphG
and parameters ν and k where ν ,k are not too large, and in Õ (ν1.5k )
time either

(1) returns a set S ∋ x where |N out (S ) | ≤ k , or
(2) certifies that there is no set S ∋ x such that volout (S ) ≤ ν and
|N out (S ) | ≤ k .

Our algorithm is the first local algorithm for finding small vertex

cuts (i.e. finding small separator N out (S )). The algorithm either

finds a separator of size at most k , or certifies that no separator of

size at most k exists “near” some node x . Our algorithm is exact in

the sense that there is no gap on the cut size k in the two cases.

Previously, there was a rich literature on local algorithms for

finding low conductance cuts3, which is a different problem from

ours. The study was initiated by Spielman and Teng [38] in 2004.

Since then, deep techniques have been further developed, such as

spectral-based techniques
4
(e.g. [2–4, 18, 39]) and newer flow-based

techniques [20, 35, 41, 42]). Applications of these techniques for

finding low conductance cuts are found in various contexts (e.g.

balanced cuts [37, 39]), edge connectivity [20, 27], and dynamically

maintaining expanders [33, 34, 37, 43]).

It is not clear a priori that these previous techniques can be

used for proving Theorem 1.3. First of all, they were invented to

solve a different problem, and there are several small differences

about technical input-output constraints. More importantly is the

following conceptual difference. In most previous algorithms, there

is a “gap” between the two cases of the guarantees. That is, if in

one case the algorithm can return a cut S ∋ x whose conductance

is at most ϕ ∈ (0, 1), then in the other case the algorithm can only

guarantees that there is no cut “near” x with conductance αϕ, for
some α = o(1) (e.g. α = O (ϕ) or O (1/ logn))5.

Because of these differences, not many existing techniques can be

adapted to design a local algorithm for vertex connectivity. In fact,

we are not aware of any spectral-based algorithms that can solve

this problem, even when we can read the whole graph. Fortunately,

it turns out that Theorem 1.3 can be proved by adapting some recent

flow-based techniques. In general, a challenge in designing flow-

based algorithms is to achieve the following goals simultaneously.

(1) Design some well-structured graph so that finding flows on

this graph is useful for our application (proving Theorem 1.3

in this case). We call such graph an augmented graph.
(2) At the same time, design a local flow-based algorithm which

is fast when running of the augmented graph.

3
The conductance of a cut (S, V − S ) is defined as Φ(S ) = |E (S,V−S ) |

min{vol(S ),vol(V−S )} .
4
They are algorithms based on some random-walk or diffusion process.

5
The algorithms from [20, 27] in fact do not guarantee non-existence of some low

conductance cuts in the second case, but the guarantee is about min-cuts.

For the first task, the design of the augmented graph require

some careful choices (see Section 2.2 for the high-level ideas and

Section 4.1 for details). For the second task, it turns out that previous

flow-based local algorithms [20, 35, 41, 42] can be adjusted to give

useful answers for our applications when run on our augmented

graph. However, these previous algorithms only give slower run-

ning time of at least Õ ((νk )1.5). To obtain the Õ (ν1.5k ) bound, we
first speed up Goldberg-Rao max flow algorithm [19] from running

time Õ (mmin{
√
m,n2/3}) to Õ (m

√
n) when running on a graph

with certain structure. Then, we “localize” this algorithm in a similar

manner as in [35], which completes our second task (see Section 2.2

for more discussion).

As a byproduct, our modification of Goldberg-Rao algorithm in

fact gives the fastest weakly-polynomial algorithm for computing

s-t vertex connectivity in node-weighted graphs:

Theorem 1.4 (Weighted s-t vertex connectivity). Let G =
(V ,E) be a directed graph with n nodes andm edges where each node
has integer weight from [1,U ]. For any s, t ∈ V , in time
O (m
√
n logn logU )), we can compute deterministically the minimum

weight s-t separator S ⊂ V , i.e., s, t < S and there is no path from s to
t in G[V − S].

The previous fastest algorithm is by using the general max flow

algorithm by Lee and Sidford [29], giving an O (m
√
npolylog(nU ))

running time. This algorithm is randomized. Our algorithm is de-

terministic and slightly faster.

Given the key local algorithm in Theorem 1.3, we obtain The-

orems 1.1 and 1.2 by combining our local algorithms with other

known techniques including random sampling, Ford-Fulkerson

algorithm, Nagamochi Irabaki’s connectivity certificate [32] and

convex embedding [7, 30]. We sketch how everything fits together

in Section 2.

2 OVERVIEW
2.1 Exact Algorithm
To illustrate the main idea, let us sketch our algorithm with running

time Õ (m + n4/3) only on an undirected graph withm = O (n) and
k = O (1). This regime is already very interesting, because the best

bound has been Õ (n2) for nearly 50 years [28]. Throughout this

section, N (C ) is a set of neighbors of nodes inC ⊆ V that are not in

C , and EG (S,T ) is the set of edges between (not necessarily disjoint)
vertex sets S and T in G (the subscript is omitted when the context

is clear). A vertex partition (A, S,B) is called a separation triple if
A,B , ∅ and there is no edge between A and B, i.e., N (A) = S =
N (B).

Given a graph G = (V ,E) and a parameter k , our goal is to
either return a set C ⊂ V where |N (C ) | < k or certify that κG ≥ k .
Our first step is to find a sparse subgraph H of G where κH =
min{κG ,k } using the algorithm by Nagamochi and Ibaraki [32].

The nice property of H is that it is formed by a union of k disjoint

forests, i.e. H has arboricity k . In particular, for any set of nodes

C , we have |EH (C,C ) | ≤ k |C |. As the algorithm only takes linear

time, from now, we treat H as our input graph G.
The next step has three cases. First, suppose there is a separation

triple (A, S,B) where |S | < k and |A|, |B | ≥ n2/3. Here, we sample

Õ (n1/3) many pairs (x ,y) of nodes uniformly at random. With high
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probability, one of these pairs is such that x ∈ A and y ∈ B. In
this case, it is well known (e.g. [11]) that one can modify the graph

and run a max xy-flow algorithm. Thus, for each pair (x ,y), we
run Ford-Fulkerson max-flow algorithm in time O (km) = O (n) to
decide whether κ (x ,y) < k and if so, return the corresponding cut.

So w.h.p. the algorithm returns set C where |N (C ) | < k in total

time Õ (n1+1/3).
The next case is when all separation triples (A, S,B) where |S | <

k are such that either |A| < n2/3 or |B | < n2/3. Suppose w.l.o.g. that

|A| < n2/3. By a binary search trick, we can assume to know the

size |A| up to a factor of 2. Here, we sample Õ (n/|A|) many nodes

uniformly at random. For each node x , we run the local vertex

connectivity subroutine from Theorem 1.3 where the parameter k
in Theorem 1.3 is set to be k − 1. Note that the volume of A is

vol(A) = 2|E (A,A) | + |E (A, S ) | = O (k |A|) = O ( |A|)

where the second equality is becauseG has arboricity k and |S | < k
(also recall that we only considerm = O (n) and k = O (1) in this

subsection).We set the parameter ν = Θ( |A|). With high probability,

we have that one of the samples x must be inside A. Here, the local-
max-flow cannot be in the second case, and will return a set C
where |N (C ) | < k , which implies that κG < k . The total running

time is Õ (n/|A|) × Õ ( |A|1.5) = Õ (n1+1/3) because |A| < n2/3.
The last case is when κG ≥ k . Here, both of Ford-Fulkerson

algorithm and local max flow algorithm will never return any setC
where |N (C ) | < k . So we can correctly report that κG ≥ k . All of
our techniques generalize to the case when κG is not constant.

2.2 Local Vertex Connectivity
In this section, we give a high-level idea how to obtain our local

vertex connectivity algorithm in Theorem 1.3. Recall from the intro-

duction that there are two tasks which are to design an augmented
graph and to devise a local flow-based algorithm running on such

augmented graph. We have two goals: 1) the running time of our

algorithm is local; i.e., it does not depend on the size of the whole

graph and 2) the local flow-based algorithm’s output should be

useful for our application.

The local time principles.We first describe high-level principles

on how to design the augmented graph and the local flow-based

algorithm so that the running time is local
6
.

(1) Augmented graph is absorbing: Each nodeu of the augmented

graph is a sink that can “absorb” flow proportional to its

degree deg(u). More formally, each node u is connected to a

super-sink t with an edge (u, t ) of capacity α deg(u) for some

constant α . In our case, α = 1.

(2) Flow algorithm tries to absorb before forward: Suppose that
a node u does not fully absorb the flow yet, i.e. (u, t ) is not
saturated. When a flow is routed to u, the local flow-based
algorithm must first send a flow from u to t so that the sink

at u is fully absorbed, before forwarding to other neighbors

of u. Moreover, the absorbed flow at u will stay at u forever.

We give some intuition behind these principles. The second prin-

ciple resembles the following physical process. Imagine pouring

6
In fact, these are also principles behind all previous local flow-based algorithms. To

the best of our knowledge, these general principles have not been stated. We hope

that they explain previous seemingly ad-hoc results.

water on a compartment of an ice tray. There cannot be water flow-

ing out of an unsaturated compartment until that compartment is

saturated. So if the amount of initial water is small, the process will

stop way before the water reaches the whole ice tray. This explains

in principle why the algorithm needs not read the whole graph.

The first principle allows us to argue why the cost of the algo-

rithm is proportional to the part of the graph that is read. Very

roughly, the total cost for forwarding the flow from a node u to its

neighbors depends on deg(u), but at the same time we forward the

flow only after it is already fully absorbed at u. This allows us to
charge the total cost to the total amount of absorbed flow, which in

turn is small if the initial amount of flow is small.

Augmented graph. Let us show how to design the augmented

graph in the context of edge connectivity in undirected graphs first.

The construction is simpler than the case of vertex connectivity,

but already captures the main idea. We then sketch how to extend

this idea to vertex connectivity.

Let G = (V ,E) be an undirected graph withm edges and x ∈ V
be a node. Consider any numbers ν ,k > 0 such that

2νk + ν + 1 ≤ 2m. (2)

We construct an undirected graph G ′ as follows. The node set of
G ′ is V (G ′) = {s} ∪V ∪ {t } where s and t is a super-source and a

super-sink respectively. For each node u, add (u, t ) with capacity

degG (u). (So, this satisfied the first local time principle.) For each

edge (u,v ) ∈ E, set the capacity to be 2ν . Finally, add an edge (s,x )
with capacity 2νk + ν + 1.

Theorem 2.1. Let F ∗ be the value of the s-t max flow in G ′. We
have the following:

(1) If F ∗ = 2νk + ν + 1, then there is no vertex partition (S,T ) in
G where S ∋ x , vol(S ) ≤ ν and |E (S,V − S ) | ≤ k .

(2) If F ∗ ≤ 2νk + ν , then there is a vertex partition (S,T ) in G
where S ∋ x and |E (S,V − S ) | ≤ k .

Proof. To see (1), suppose for a contradiction that there is such

a partition (S,T ) where S ∋ x . Let (S ′,T ′) = ({s} ∪ S,T ∪ {t }). The
edges between S ′ and T ′ has total capacity

c (EG′ (S
′,T ′)) = 2ν |EG (S,V − S ) | + volG (S ) ≤ 2νk + ν .

So F ∗ ≤ 2νk + ν , a contradiction. To see (2), let (S ′,T ′) = ({s} ∪
S,T ∪ {t }) be a min st-cut in G ′ corresponding to the max flow, i.e.

by the min-cut max-flow theorem, the edges between S ′ andT ′ has
total capacity

c (EG′ (S
′,T ′)) ≤ 2νk + ν . (3)

Observe that S ′ , {s} and S ∋ x because the edge (s,x ) has capacity
strictly more than 2νk + ν . Also, T ′ , {t } because edges between
{s} ∪ V and {t } has total capacity vol(V ) = 2m > 2νk + ν (the

inequality is because of Equation (2)). So (S,T ) gives a cut in G
where S ∋ x . Suppose that |EG (S,T ) | ≥ k +1, then c (EG′ (S

′,T ′)) ≥
2ν (k + 1) = 2νk + 2ν > 2νk + ν which contradicts Equation (3). □

Observe that the above theorem is similar to Theorem 1.3 except

that it is about edge connectivity. To extend this idea to vertex

connectivity, we use a standard transformation as used in [12, 22]

by constructing a so-called split graph. In our split graph, for each
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node v , we create two nodes vin and vout. For each edge (u,v ), we
create an edge (uout,vin) with infinite capacity. There is an edge

(vin,vout) for each nodev as well. Observe that a cut set with finite

capacity in the split graph corresponds to a set of nodes in the

original graph. Then, we create the augmented graph of the split

graph in a similar manner as above, e.g. by adding nodes s and t and
an edge (s,x ) with 2νk + ν + 1. The important point is that we set

the capacity of each (vin,vout) to be 2ν . The proof of Theorem 1.3

(except the statement about the running time) is similar as above

(see Section 4.1 for details).

Local flow-based algorithm. As discussed in the introduction,

we can in fact adapt previous local flow-based algorithms to run

on our augmented graph and they can decide the two cases in

Theorem 1.3 (i.e. whether there is a small vertex cut “near” a seed

node x ). Theorem 2.1 in fact already allows us to achieve this with

slower running time than the desired Õ (ν1.5k ) by implementing

existing local flow-based algorithms. For example, the algorithm by

[35], which is a “localized” version of Goldberg-Rao algorithm [19],

can give a slower running time of Õ ((νk )1.5). Other previous local
flow-based algorithms that we are aware of (e.g. [20, 35, 41, 42])

give even slower running time (even after appropriate adaptations).

We can speed up the time to Õ (ν1.5k ) by exploiting the fact that

our augmented graph is created from a split graph sketched above.

To begin with, we first observe that, when running Goldberg-Rao

algorithm on split graphs (which are weighted), the running time

can be sped up from Õ (mmin{
√
m,n2/3}) to Õ (m

√
n). This already

gives us the new fastest algorithm for computing s-t weighted vertex
connectivity as stated in Theorem 1.4. This improvement resembles

the idea by Hopcroft and Karp [23] (see also [12, 26]) which yields

an O (m
√
n)-time algorithm for computing s-t unweighted vertex

connectivity. The idea is to show that Dinic’s algorithm with run-

ning time O (mmin{
√
m,n2/3}) on a general unit-capacity graph

can be sped up to Õ (m
√
n) when run on a special graph called “unit

network”. It turns out that unit networks share some structures

with our split graphs, allowing us to apply a similar idea. Although

our improvement is based on a similar idea, it is more complicated

to implement this idea on our split graph since it is weighted.

Finally, we “localize” our improved algorithm by enforcing the

second local time principle. Our way to localize the algorithm goes

hand in hand with the way Orecchia and Zhu [35] did to the stan-

dard Goldberg-Rao algorithm (see Section 4.3 for details).

3 PRELIMINARIES
3.1 Directed Graph
Let G = (V ,E) be a directed graph where |V | = n and |E | = m.

For any edge (u,v ), we denote eR = (v,u). For any directed graph

G = (V ,E), the reverse graph GR
is GR = (V ,ER ) where ER =

{eR : e ∈ E}.

Definition 3.1 (δ , deg, vol, N ). Definitions below are defined for

any vertex v on graph G and subset of vertexU ⊆ V .

• vol
out

G (U ) =
∑
v ∈U deg

out

G (v ) and volinG (U ) =
∑
v ∈U deg

in

G (v ).

• N in

G (v ) = {u : (u,v ) ∈ E} and N out

G (v ) = {u : (v,u) ∈ E}.

• N in

G (U ) =
⋃
v ∈U N in

G (v )\U andN out

G (U ) =
⋃
v ∈U N out

G (v )\
U .

Definition 3.2 (Paths). For s, t ∈ V , we say a path P is an (s, t )-
path if P is a directed path starting from s and ending at t . For any
S,T ⊆ V , we say P is an (S,T )-path if P starts with some vertex in

S and ends at some vertex in T .

Definition 3.3 (Edge- and Vertex-cuts). Let s and t be any distinct
vertices. Let S,T ⊂ V be any disjoint non-empty subsets of vertices.

We call any subset of edges C ⊆ E (respectively any subset of

verticesU ⊆ V ):

• an (S,T )-edge-cut (respectively an (S,T )-vertex-cut ) if there
is no (S,T )-path in G \C (respectively if there is no (S,T )-
path in G \U and S ∩U = ∅,T ∩U = ∅),
• an (s, t )-edge-cut (respectively an (s, t )-vertex-cut ) if there is
no (s, t )-path in G \C (respectively if there is no (s, t )-path
in G \U and s, t < U ),

• an edge-cut (respectively vertex-cut) if it is an (s, t )-edge-
cut (respectively (s, t )-vertex-cut) for some distinct vertices

s and t . In other words, G \ C (respectively G \ U ) is not

strongly connected.

If the graph has capacity function c : E → R≥0 on edges, then

c (C ) =
∑
e ∈C ce is the total capacity of the cut C .

Definition 3.4 (Edge set). We define E (S,T ) as the set of edges
{(u,v ) : u ∈ S,v ∈ T }.

Definition 3.5 (Vertex partition). Let S,T ⊂ V . We say that (S,T )
is a vertex partition if S and T are not empty, and S ⊔ T = V . In
particular, E (S,T ) is an (x ,y)-edge-cut for some x ∈ S,y ∈ T .

Definition 3.6 (Separation triple). We call (L, S,R) a separation
triple if L, S, and R partition the vertex V in G where L and R are

non-empty, and there is no edge from L to R.

Note that, from the above definition, S is an (x ,y)-vertex-cut for
any x ∈ L and y ∈ R.

Definition 3.7 (Shore). We call a set of vertices S ⊆ V an out-
vertex shore (respectively in-vertex shore) if N out

G (S ) (respectively

N in

G (S )) is a vertex-cut.

Definition 3.8 (Vertex connectivity κ). We define vertex connec-

tivity κG as the minimum cardinality vertex-cut or n−1 if no vertex
cut exists. More precisely, for distinct x ,y ∈ V , define κG (x ,y) as
the smallest cardinality of (x ,y)-vertex-cut if exists. Otherwise, we
define κG (x ,y) = n−1. Then, κG = min{κG (x ,y) | x ,y ∈ V ,x , y}.
We drop the subscript when G is clear from the context.

3.2 Undirected Graph
LetG = (V ,E) be an undirected graph. We assume thatG is simple,

and connected.

Theorem 3.9 ([32]). There exists an algorithm that takes as in-
put undirected graph G = (V ,E), and in O (m) time outputs a se-
quence of forests F1, F2, . . . , Fn such that each forest subgraph Hk =

(V ,
⋃k
i=1 Fi ) is k-connected if G is k-connected. Hk has aboricity k .

For any set of vertices S , we have EHk (S, S ) ≤ k |S |. In particular, the
number of edges in Hk is at most kn.

To compute vertex connectivity in an undirected graph, we turn

it into a directed graph by adding edges in forward and backward

directions and run the directed vertex connectivity algorithm.
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4 LOCAL VERTEX CONNECTIVITY
Recall that a directed graphG = (V ,E) is strongly connected where
|V | = n and |E | =m.

Theorem 4.1. There is an algorithm that takes as input a pointer
to any vertex x ∈ V in an adjacency list representing a strongly-
connected directed graphG = (V ,E), positive integer ν (“target vol-
ume”), positive integer k (“target x-vertex-cut size”), and positive real
ϵ satisfying

ν/ϵ + ν < m, (1 + ϵ ) (
2ν

ϵk
+ k ) < n and deg

out

min
≥ k (4)

or,

ν/ϵ + (1 + ϵ )nk < m, and deg
out

min
≥ k (5)

and in Õ ( ν 3/2

ϵ 3/2k1/2 ) time outputs either
• a vertex-cut S corresponding to the separation triple (L, S,R),x ∈
L such that

|S | ≤ (1 + ϵ )k and vol
out
G (L) ≤ ν/ϵ + ν + 1, or (6)

• the “⊥” symbol indicating that there is no separation triple
(L, S,R),x ∈ L such that

|S | ≤ k and vol
out
G (L) ≤ ν . (7)

By setting ϵ = 1/(2k ), we get the exact version for the size

of vertex-cut. Observe that Equation (6) is changed to |S | ≤ (1 +
1/(2k ))k = k + 1/2. So |S | ≤ k since |S | and k are integers.

Corollary 4.2. There is an algorithm that takes as input a pointer
to any vertex x ∈ V in an adjacency list representing a strongly-
connected directed graphG = (V ,E), positive integer ν (“target vol-
ume”), and positive integer k(“target x-vertex-cut size”) satisfying
Equation (4), or Equation (5) where ϵ = 1/(2k ), and in Õ (ν3/2k ) time
outputs either
• a vertex cut S corresponding to the separation triple (L, S,R),x ∈
L such that

|S | ≤ k and vol
out
G (L) ≤ 2νk + ν + 1, or (8)

• the “⊥” symbol indicating that there is no separation triple
(L, S,R),x ∈ L such that

|S | ≤ k and vol
out
G (L) ≤ ν . (9)

The rest of this section is devoted to proving the above theorem.

For the rest of this section, fix x , ν , k and ϵ as in the theorem

statement.

4.1 Augmented Graph and Properties
Definition 4.3 (Augmented Graph G ′). Given a directed uncapac-

itated graph G = (V ,E), we define a directed capacitated graph

(G ′, cG′ ) = ((V ′,E ′), cG′ ) where

V ′ = Vin ⊔Vout ⊔ {s, t } and E ′ = Eν ⊔ E∞ ⊔ E
deg
⊔ {(s,xout)},

(10)

where⊔ denotes disjoint union of sets, s and t are additional vertices
not in G, and sets in Equation (10) are defined as follows.

• For each vertex v ∈ V \ {x }, we create vertex vin in set Vin
and vout in set Vout. For the vertex x , we add only xout to
Vout.
• Eν = {(vin,vout) : v ∈ V \ {x }}.
• E∞ = {(vout,win) : (v,w ) ∈ E}.
• E

deg
= {(vout, t ) : v ∈ Vout}.

Finally, we define the capacity function cG′ : E
′ → R≥0 ∪ {∞}

as:

cG′ (e ) =




ν/(ϵk ) if e = (vin,vout) ∈ Eν

deg
out

G (v ) if e = (vout, t ) ∈ Edeg

ν/ϵ + ν + 1 if e = (s,xout)

∞ otherwise

Lemma 4.4. Let C∗ be the minimum-capacity (s, t )-cut in G ′. Re-
call that cG′ (C∗) is its capacity and ν and k satisfy Equation (4) or
Equation (5) .

(I) If there exists a separation triple (L, S,R),x ∈ L in G
satisfying Equation (7), then cG′ (C∗) ≤ ν/ϵ + ν .

(II) If cG′ (C∗) ≤ ν/ϵ + ν , then there exists a separation triple
(L, S,R),x ∈ L in G satisfying Equation (6).

We prove Lemma 4.4 in the rest of this subsection.

We define useful notations. For U ⊆ V in G, define Vout (U ) =
{vout | v ∈ U } ⊆ Vout inG

′
. Similarly, we defineVin (U ) = {vin | v ∈

U } ⊆ Vin in G ′ .
We first introduce a standard split graph SG from G ′.

Definition 4.5 (Split graph SG). Given G ′, a split graph SG is an

induced graph SG = G ′[W ] where

W = Vin ⊔Vout ⊔ {x },

with capacity function c ′G (e ) restricted to edges in G ′[W ] where

the edge set of G ′[W ] is Eν ⊔ E∞.

Proof of Lemma 4.4(I). We fix a separation triple (L, S,R) given
in the statement. Since x ∈ L, S is an (x ,y)-vertex-cut for some

y ∈ R by Definition 3.6.

Let C = {(uinn,uout) : u ∈ S }. It is easy to see that C is an

(xout,yin)-edge-cut in the split graph SG . In G ′, we define an edge-

set C ′ = C ⊔ {(v, t ) | v ∈ Vout (L)}. It is easy to see that C ′ is an
(s, t )-edge-cut in G ′.

We now compute the capacity of the cut C ′.

cG′ (C
′) = cG′ (C ⊔ {(v, t ) : v ∈ Vout (L)})

= cG′ (C ) + cG′ ({(v, t ) : v ∈ Vout (L)})

= ν |S |/(ϵk ) +
∑
v ∈S

deg
out

G (v )

= ν |S |/(ϵk ) + voloutG (S )

≤ ν/ϵ + ν

The last inequality follows from |S | ≤ k and vol
out

G (S ) ≤ ν .
Hence, the capacity of the minimum (s, t )-cut C∗ is cG′ (C

∗) ≤
cG′ (C

′) ≤ ν/ϵ + ν . □

Before proving Lemma 4.4(II), we observe structural properties

of an (s, t )-edge-cut in G ′.

Definition 4.6. Let C be the set of (s, t )-cuts of finite capacities
in G ′. We define three subsets of C as,
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• C1 = {C : C ∈ C, and one side of vertices in G ′ \C contains

s or t as a singleton }.
• C2 = {C : C ∈ C \ C1, and C is an ({s} ⊔Vin, {t })-edge-cut}.
• C3 = {C : C ∈ C \ C1, and C is an ({s}, {vin, t })-edge-cut for

some vin ∈ Vin}.

Observe that three partitions in Definition 4.6 formed a com-

plete set C and are pairwise disjoint by Definition 3.3, and by the

construction of G ′.

Observation 4.7.
C = C1 ⊔ C2 ⊔ C3

Proposition 4.8. We have the following lower bounds on cut capac-
ity for cuts in C1 ⊔ C2.
• For all C ∈ C1, cG′ (C ) ≥ min(ν/ϵ + ν + 1,m)
• For all C ∈ C2, cG′ (C ) ≥ min(ν/ϵ + ν + 1,max((n − (1 +
ϵ )k )k,m − (1 + ϵ )nk ))

Corollary 4.9. For all C ∈ C, if cG′ (C ) ≤ ν/ϵ + ν , then C ∈ C3

We now ready to prove Lemma 4.4(II).

Proof of Lemma 4.4(II). In G, we show the existence of a sepa-

ration triple (L, S,R) where x ∈ L, |S | ≤ (1 + ϵ )k .
The minimum (s, t )-cut in G ′, C∗, is an (s, {vin, t })-edge-cut

(with finite capacity) for some vin ∈ Vin. Since cG′ (C
∗) ≤ ν/ϵ + ν ,

by Corollary 4.9, C∗ ∈ C3.
We can write C∗ = E∗

deg
⊔ E∗ν where ∅ , E∗

deg
⊊ E

deg
and

∅ , E∗ν ⊊ Eν inG ′. To see that E∗ν , ∅, suppose otherwise, thenC
∗

must be in C1, a contradiction.

It is easy to see that E∗ν is an (xout,vin)-edge-cut in SG.
To show a separation triple (L, S,R), it is enough to define S , and

show that S is an (x ,y)-vertex-cut where x ∈ L and y ∈ R. This is
because L and R can be found trivially when we remove S from G.

Let S = {u ∈ V : (uin,uout) ∈ E∗ν }. It is easy to see that S is an

(x ,y)-vertex-cut in G for some y ∈ V .

Next, |S | ≤ (1+ϵ )k since otherwise cG′ (C
∗) > (1+ϵ )k (ν/(ϵk )) =

ν/ϵ + ν , a contradiction to the capacity of C∗.
It is easy to see that vol

out

G (L) ≤ ν/ϵ + ν + 1. This follows from
the in-flow is at most ν/ϵ + ν + 1.

□

4.2 Preliminaries for Flow Network and Binary
Blocking Flow

We define notations related flows on a capacitated directed graph

G = (V ,E, c ). We fix vertices s as source and t as sink.

Definition 4.10 (Blocking flow). Given a capacitated graph G =
(V ,E, c ), a blocking flow is a flow that saturates at least one edge

on every (s, t )-path in G.

We will use Definition 4.10 mostly on the residual graph Gf .

Given a binary length function ℓ on (G, c, f ), we define a natural
distance function to each vertex in (G, c, f ) under ℓ. d (v ) is the
length of the shortest (s,v )-path in Gf under the binary length

function ℓ.

For any (v,w ) ∈ Ef ,dℓ (v )+ℓ(v,w ) ≥ dℓ (w ). Ifdℓ (v )+ℓ(v,w ) =
dℓ (w ), then we call (v,w ) admissible edge under length function ℓ.

We denote Ea to be the set of admissible edges of Ef in (G, c, f )
under length function ℓ.

Definition 4.11 (Admissible graph). Given a residual graph (G, c, f ),
and a length function function ℓ, we define an admissible graph
A(G, c, f , ℓ) = (G[Ea], c, f ) to be an induced subgraph of (G, c, f )
that contains only admissible edges under length function ℓ.

Definition 4.12 (∆′-or-blocking flow). For any ∆′ > 0, a flow is

called a ∆′-or-blocking flow if it is a flow of value exactly ∆′, or a
blocking flow.

Definition 4.13 (Binary length function
˜ℓ). Given ∆ > 0, a capac-

itated graph (G, c ) and a flow f , we define binary length functions

ˆℓ and ˜ℓ for any edge (u,v ) in a residual graph (G, c, f ) as follows.

ˆℓ(u,v ) =

{
0 if residual capacity c (u,v ) − f (u,v ) ≥ ∆
1 otherwise

Let
ˆd (v ) be the shortest path distance between s and v under

the length function
ˆℓ. We define special edge (u,v ) to be an edge

(u,v ) such that
ˆd (u) = ˆd (v ),∆/2 ≤ c (u,v ) − f (u,v ) < ∆, and

c (v,u) − f (v,u) ≥ ∆. We define the next length function
˜ℓ.

˜ℓ(u,v ) =

{
0 if (u,v ) is special

ˆℓ(u,v ) otherwise

Lemma 4.14 ([19]). Let A(G, c, f , ℓ) be an admissible graph and
mA be its number of edges. Then, there exists an algorithm that takes
as inputA and ∆ > 0, and inO (mA log(mA )) time, outputs a ∆/4-or-
blocking flow. We refer the algorithm as
BinaryBlockingFlow(A(G, c, f , ℓ),∆).

We now define the notion of shortest-path flow. Intuitively, it is
a union of shortest paths on admissible graphs. This is the flow

resulting from, e.g., the Binary Blocking Flow algorithm [19].

Definition 4.15 (Shortest-path flow). Given a graph (G, c ) with a

flow f , and length function ℓ, and let Gf be the residual graph. A

flow f ∗ inGf is called shortest-path flow if it can be decomposed into

a set of shortest paths under length function ℓ, i.e., f ∗ =
∑b
i=1 f

∗
i

for some integer b > 0 where support( f ∗i ) is a shortest-path in Gf
under length function ℓ.

Observe that BinaryBlockingFlow(A(G, c, f , ℓ),∆) always pro-
duces a shortest-path flow.

From the rest of this section, we fix an augmented graph (G ′, cG′ )
(Definition 4.3), and also a flow f .

Given residual graph G ′f , and dℓ , we can use

BinaryBlockingFlow(A(G ′, cG′ , f , ˜ℓ),∆) to compute a∆/4-or-binary
blocking flow in (G ′, cG′ , f ) in Õ (m) time.

[35] provide a slightly different binary length function such that

the algorithm in [19] has local running time.

Our goal in next section is to output the same ∆/4-or-binary
blocking flow in G ′f in Õ (νk ) time using a slight adjustment from

[35].

4.3 Local Augmented Graph and Binary
Blocking Flow in Local Time

The goal in this section is to compute binary blocking flow on the

residual graph of the augmented graph (G ′, cG′ ) with a flow f in

“local” time. To ensure local running time, we cannot construct

the augmented graph G ′ explicitly. Instead, we compute binary

blocking flow from a subgraph of G ′ based on “absorbed” vertices.
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Definition 4.16 (Split-node-saturated set). Given a residual graph

(G ′, cG′ , f ), let Bout be the set of vertices v ∈ Vout ⊔ {x } in the

residual graph (G ′, cG′ , f ) whose edge to t is saturated. The split-
node-saturated set B is defined as:

B = Bout ⊔ N out

G′ (Bout) \ {t }

Note that x is a fixed vertex as in Definition 4.3.

Definition 4.17 (Local binary length function). Fix a parameter

∆ > 0 to be selected, let
˜ℓ be the length function in Definition 4.13

for the residual graph (G ′, cG′ , f ). For vertex u,v in the residual

graph, if u,v ∈ B, we call residual edge (u,v ) modern. Otherwise,
we call residual edge (u,v ) classical.

We define local binary length function ℓ:

ℓ(u,v ) =

{
1 if (u,v ) is classical

˜ℓ(u,v ) otherwise

Definition 4.18 (Distance under local binary length ℓ). Define

distance function d (v ) as the shortest path distance between the

source vertex s and vertexv in the residual graph (G ′, cG′ , f ) under
the local length function ℓ.

The following obsevations about structural properties of the

residual graphG ′f follows immediately from the definition of local

length function ℓ.

Observation 4.19. For a given residual graph (G ′, cG′ , f ),
• for any residual edge (u,v ) ∈ E∞,f that is modern, ℓ(u,v ) = 0.
• for any residual edge (u,v ) ∈ E

deg,f ⊔ (s,x ), (u,v ) is classical.
• any residual edge with length zero is modern.

Definition 4.20 (Layers). Given distance function d on residual

graph (G ′, cG′ , f ), define Lj = {v ∈ G ′ : d (v ) = j} to be the set

of jth−layer with respect to distance d . Define dmax = d (t ) to be

distance between s and t in (G ′, cG′ , f ).

The proof of the following Lemma is similar to that from [35],

but we focus on the augmented graph (G ′, cG′ , f ). Recall split-node-
saturated set B from Definition 4.16. The proof is in the full version.

Lemma 4.21. If dmax < ∞ and (x , t ) is saturated, then we have:
(I) dmax ≥ 3.
(II) L0 = {s}.
(III) Lj ⊆ B for 1 ≤ j ≤ dmax − 2.
(IV) Lj ⊆ B ∪ N out

G′ (B) for j = dmax − 1.

Definition 4.22 (Local graph, LG). Given the augmented graph

G ′ = (V ′,E ′) and split-node-saturated set B, we define the local
graph LG (G ′,B) = G ′[V ′′] = (V ′′,E ′′) as an induced subgraph of

G ′ where

V ′′ = B ⊔ N out

G′ (B) ⊔ {s, t } and E ′′ = E ′′ν ⊔ E ′′∞ ⊔ E ′′
deg
⊔ {(s,x )}

(11)

where the sets in Equation (11) are defined as follows.

• E ′′ν = {(vin,vout) : vout ∈ Bout ⊔ N out

G′ (B), (vin,vout) ∈ Eν }.

• E ′′∞ = {(vout,win) : vout ∈ Bout,win ∈ V
′, (vout,win) ∈ E∞}.

• E ′′
deg
= {(vout, t ) : vout ∈ Bout ⊔ N out

G′ (B)}.

Using the same capacity and flow as in G ′, the residual local
graph is (LG (G ′,B), cLG , fLG ) where cLG and fLG are the same

as cG′ and fG′ , but restricted to the edges in LG (G ′,B). The local
length function ℓ also applies to LG (G ′,B).

Lemma 4.23. Let m′ be the number of edges in LG (G ′,B), and
n′ = |V ′′ | be the number of vertices in LG (G ′,B). We have

m′ ≤ 4ν/ϵ and n′ ≤ 8ν/(ϵk ).

The proof of the following Lemma is a straightforward modifi-

cation from [35].

Lemma 4.24. Given the local length function ℓ on both residual aug-
mented graph (G ′, cG′ , f ) and residual local graph (LG, cLG , fLG ) =
(V ′′,E ′′f , cLG,f ) (Recall fLG from Definition 4.22). Let f1 be the out-
put of BinaryBlockingFlow(A(G ′, cG′ , f , ℓ),∆). Let f2 be the output
of
BinaryBlockingFlow(A(LG, cLG , fLG , ℓ),∆). Then,
• f1 = z ( f2) where

z ( f2) (e ) =



0 if e < E ′′f .
f2 (e ) otherwise

i.e., f1 and f2 coincide.
• BinaryBlockingFlow(A(LG, cLG , fLG , ℓ),∆) takes Õ (ν/ϵ ) time.

4.4 Local Goldberg-Rao’s Algorithm for
Augmented Graph

Theorem 4.25. Given graphG , we can compute the (s, t )max-flow
in G ′ in Õ (ν3/2/(ϵ3/2

√
k )) time.

Algorithm 1: LocalFlow(G,x ,ν ,k )

Input: x ∈ V ,ν ,k
Output: maximum (s, t )-flow and its corresponding minimum

(s, t )-edge-cut in G ′

1 Let G ′ be an implicit augmented graph on G. // No need to

construct explicitly.

2 Λ←
√
8ν/(ϵk )

3 F ← 2νk + ν + 1 − degoutG (x ) // F is an upper bound on

(s, t )-flow value in G′.
4 if F ≤ 0 then the minimum (s, t )-edge-cut is (s,x ), and

return.

5 f ← a flow of value deg
out

G (x ) through s − x − t path.

6 B ← {x } ⊔ N out

G′ (x ) // a set of saturated vertices and

out-neighbors.

7 while F ≥ 1 do
8 ∆← F/(2Λ)

9 for i ← 1 to 5Λ do
10 LG ← local subgraph of G ′ given B. // see

Definition 4.22

11 ℓ ← local length function on current flow f .

12 f ← f + BinaryBlockingFlow(A(LG, cLG , f , ℓ),∆).

13 C ← vertices in N out

G′ (B) whose edges to sink are

saturated in the new flow.

14 B ← B ⊔C ⊔ N out

G′ (C )

15 F ← F/2

16 return maximum (s, t )-flow f and its corresponding minimum
(s, t )-edge-cut A in G ′.
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Correctness. We show that F is the upper bound on the max-

imum flow value in G ′f . We use induction on inner loop. Before

entering the inner loop for the first time, F is set to be the value of

(s, t ) edge minus deg
out

G (x ). Since F is positive, then Gf has valid

maximum flow upper bound F . Now, we consider the inner loop.
After 5Λ times, either

• we find a flow of value ∆/4 at least 4Λ times, or

• we find a blocking flow at least Λ times.

If the first case holds, then we increase the flow by at least ≥

(∆/4) (4Λ) = F/2. Hence, the flow F/2 is the valid upper bound.

For the second case, we need the following Lemma whose proof

is essentially the same as the original proof of Goldberg-Rao’s

algorithm [19]:

Lemma 4.26. A flow augmentation does not decrease the distance
d (t ). On the other hand, a blocking flow augmentation strictly in-
creases d (t ).

If the second case holds, we claim:

Claim 4.27. If we find a blocking flow at least Λ times, then there
exists an (s, t )-edge cut of capacity at most ∆Λ = F/2, which is an
upper bound of the remaining flow to be augmented.

The correctness follows since at the end of the loop we have

F < 1.

Running Time. By Lemma 4.24, we can compute ∆-blocking
flow in LG with local binary length function ℓ in Õ (ν/ϵ ) time. The

time already includes the time to read LG . The number of such com-

putations isO (Λ log(ν/ϵ )) = O (
√
ν/(ϵk ) log(m)) = Õ (

√
ν/(ϵk )). So

the total running time is Õ (ν3/2/(ϵ3/2k1/2)). This completes the

proof of Theorem 4.25.

4.5 Proof of Theorem 4.1
Proof of Theorem 4.1. GivenG,x ,ν ,k, ϵ , by Theorem 4.25, we

compute theminimum (s, t )-edge-cutC∗ inG ′ in Õ (ν3/2/(ϵ3/2k1/2)
time. If the edge-cutC∗ has capacity > ν/ϵ+ν , then by Lemma 4.4(I),

we can output ⊥. Otherwise, C∗ has capacity at most ν/ϵ + ν , by
Lemma 4.4(II), we can output the separation triple (L, S,R) with the

properties in Lemma 4.4(II). □

5 VERTEX CONNECTIVITY VIA LOCAL
VERTEX CONNECTIVITY

Theorem 5.1 (Exact vertex connectivity). There exist ran-
domized (Monte Carlo) algorithms that take as inputs a graph G,
integer 0 < k < O (

√
n), and in Õ (m + k7/3n4/3) time for undirected

graph (and in Õ (min(km2/3n,km4/3)) time for directed graph) can
decide w.h.p. if κG ≥ k . If κG < k , then the algorithms also return
the corresponding vertex-cut.

We define the function T (k,m,n) as

T (k,m,n) =




min(m4/3,nm2/3k1/2,

mn2/3+o (1)/k1/3,

n7/3+o (1)/k1/6) if k ≤ n4/5,

n3+o (1)/k if k > n4/5.

(12)

Theorem 5.2 (Approximate vertex connectivity). There exist
randomized (Monte Carlo) algorithms that take as inputs a graph

G, an positive integer k , and positive real ϵ < 1, and in Õ (m +

poly(1/ϵ )min(k4/3n4/3,k2/3n5/3+o (1) ,n3+o (1)/k )) time for
undirected graph (and in Õ (poly(1/ϵ )T (k,m,n)) time for directed
graph where T (k,m,n) is defined 7 as in Equation (12)) w.h.p. return
a vertex-cut with size at most (1 +O (ϵ ))κG or cerify that κG ≥ k .

This section is devoted to proving Theorem 5.1. and Theorem 5.2.

5.1 Vertex Connectivity Algorithms
We describe the algorithm in the generic form as in Algorithm 2.

5.2 Correctness
We can compute approximate vertex connectivity by standard bi-

nary search onk with the decision problem.We focus on correctness

of Algorithm 2 for approximate version. For exact version, the same

proof goes through when we use ϵ = 1/(2k ), and κG ≤
√
n/2. Let

∆ = min(n/(1 + ϵ ), (m/(1 + ϵ ))1/2)). For the purpose of analysis of
the decision problem, we assume the followings.

Assumption 5.3. If k is specified in Algorithm 2, then
(I) deg

out

min
≥ k .

(II) k ≤ ∆. We use k ≤
√
n/2 for exact vertex connectivity.

(III) Local conditions in Theorem 4.1 are satisfied. We use exact
version of local conditions for exact vertex connectivity.

5.2.1 High Vertex Connectivity.

Proposition 5.4. If κG ≥ ∆, then | degout
min
| ≤ (1 + ϵ )κG .

5.2.2 Edge-Sampling with LocalVC.

Lemma 5.5. Algorithm 2 with edge-sampling, and LocalVC outputs
correctly w.h.p. a vertex-cut of size ≤ (1+ϵ )k if κG ≤ k , and a symbol
⊥ if κG > k .

We describe notations regarding edge-sets from a separation

triple (L, S,R) in G. Let E∗ (L, S ) = E (L,L) ⊔ E (L, S ) ⊔ E (S,L), and
E∗ (S,R) = E (R,R) ⊔ E (S,R) ⊔ E (R, S ).

Definition 5.6 (L-volume, and R-volume of the separation triple).
For a separation triple (L, S,R), we denote vol∗G (L) =∑
v ∈L deg

out

G (v )+|E (S,L) | and vol∗G (R) =
∑
v ∈R deg

out

G (v )+|E (S,R) |.

It is easy to see that vol
∗
G (L) = |E∗ (L, S ) | and vol∗G (R) = |E∗ (S,R) |.

The following observations follow immediately from the defini-

tion of E∗ (L, S ) and E∗ (S,R), and a separation triple (L, S,R).

Observation 5.7. We can partition edges inG according to (L, S,R)
separation triple as

E = E∗ (L, S ) ⊔ E (S, S ) ⊔ E∗ (S,R)

And,
• For any edge (x ,y) ∈ E∗ (L, S ),x ∈ L or y ∈ L.
• For any edge (x ,y) ∈ E∗ (S,R),x ∈ R or y ∈ R.

Furthermore,

m = vol
∗
G (L) + |E (S, S ) | + vol∗G (R)

We proceed the proof. There are three cases for the set of all

separation triples in G. The first case is there exists a separation
triple (L, S,R) such that |S | ≤ k, vol∗G (L) ≥ a, vol∗G (R) ≥ a We

show that w.h.p. Algorithm 2 outputs a vertex-cut of size at most

(1 + ϵ )k .

7
The termm4/3

appears whenm ≥ k3
.
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Algorithm2:VC(Sampling method, LocalVC,κ (x ,y);G,k,a, ϵ )

Input: Sampling method, LocalVC, G = (V,E), k, a, ϵ
Output: a vertex-cutU such that |U | ≤ k or a symbol ⊥.

1 If undirected, replace E = {(u,v ), (v,u) : (u,v ) ∈ E (Hk+1)}

where Hk+1 as in Theorem 3.9.

2 if Sampling method = vertex then
3 for i ← 1 to n/(ϵa) (use n/a for exact version) do
4 Sample a random pair of vertices x ,y ∈ V .

5 if k is not specified then compute approximate

κG (x ,y).

6 if κG (x ,y) ≤ (1 + ϵ )k then
7 return the corresponding (x ,y)-vertex-cutU .

8 if Sampling method = edge then
9 for i ← 1 tom/(ϵa) (usem/a for exact version) do

10 Sample a random pair of edges (x1,y1), (x2,y2) ∈ E.

11 if k is not specified then
12 compute approximate

κG (x1,y2),κG (x1,x2),κG (y1,x2),κG (y1,y2).

13 if
min(κG (x1,y2),κG (x1,x2),κG (y1,x2),κG (y1,y2)) ≤
(1 + ϵ )k then

14 return the corresponding (x ,y)-vertex-cutU .

15 if LocalVC is not specified then
16 Let x∗,y∗ be vertices with minimum κG (x∗,y∗) computed

so far.

17 LetW be the vertex-cut corresponding to κG (x∗,y∗)

18 Let vmin,umin be the vertex with the minimum out-degree

in G and GR
respectively.

19 return The smallest set among

{W ,N out

G (vmin),N
out

GR (umin)}.

20 Let L = {2ℓ : 1 ≤ ℓ ≤ ⌈log
2
a⌉, and ℓ ∈ Z}.

21 if Sampling method = vertex then
22 for s ∈ L do
23 for i ← 1 to n/s do
24 Sample a random vertex x ∈ V .

25 Let ν ← O (s (s + k )).

26 if LocalVC(G,x ,ν ,k, ϵ ) or LocalVC(GR ,x ,ν ,k, ϵ )

outputs a vertex-cutU then
27 returnU .

28 if Sampling method = edge then
29 for s ∈ L do
30 for i ← 1 tom/s do
31 Sample a random edge (x ,y) ∈ E.

32 Let ν ← O (s ), and G = {G,GR }.

33 for H ∈ G, z ∈ {x ,y} do
34 if LocalVC(H , z,ν ,k, ϵ ) outputs a vertex-cutU .

then
35 returnU .

36 return ⊥.

Lemma 5.8. If G has a separation triple (L, S,R) such that |S | ≤
k, vol∗G (L) ≥ a, vol∗G (R) ≥ a, then w.h.p. Algorithm 2 outputs a
vertex-cut of size at most (1 + ϵ )k .

The second case is there exists a separation triple (L, S,R) such
that |S | ≤ k and vol

∗
G (L) < a or vol

∗
G (R) < a. We show that w.h.p.

Algorithm 2 outputs a vertex-cut of size at most (1 + ϵ )k .

Lemma 5.9. If G has a separation triple (L, S,R) such that |S | ≤ k
and vol∗G (L) < a or vol∗G (R) < a, then w.h.p. Algorithm 2 outputs a
vertex-cut of size at most (1 + ϵ )k .

The final case is when every separation triple (L, S,R) inG , |S | >
k . In other words, κG > k . If Algorithm 2 outputs a vertex-cut,

then it is a (1 + ϵ )-approximate vertex-cut. Otherwise, Algorithm 2

outputs ⊥ correctly.

5.2.3 Vertex-Sampling with LocalVC.

Lemma 5.10. Algorithm 2 with vertex-sampling, and LocalVC out-
puts correctly w.h.p. a vertex-cut of size ≤ (1 + ϵ )k if κG ≤ k , and a
symbol ⊥ if κG > k .

5.3 Running Time
Let T1 (m,n,k, ϵ ) be the time for deciding if κ (x ,y) ≤ (1 + ϵ ),
T2 (ν ,k, ϵ ) be the running time for approximate LocalVC, and

T3 (m,n, ϵ ) be the time for computing approximate κ (x ,y). If G is

undirected, we can replacem with nk with additionalO (m) prepro-
cessing time. The running time for exact version is similar.

5.3.1 Edge-Sampling with LocalVC.

Lemma 5.11. Algorithm 2 with edge-sampling, and LocalVC ter-
minates in time

Õ ((m/(ϵa)) (T1 (m,n,k, ϵ ) +T2 (a,k, ϵ ))).

5.3.2 Vertex-Sampling with LocalVC.

Lemma 5.12. Algorithm 2 with vertex-sampling, and LocalVC ter-
minates in time

Õ ((n/(ϵa)) (T1 (m,n,k, ϵ ) +T2 (a
2 + ak,k, ϵ ))).

5.3.3 Vertex-Sampling without LocalVC.

Lemma 5.13. Algorithm 2 with vertex-sampling without LocalVC
terminates in time

Õ (n/(ϵ2k )T3 (m,n, ϵ )).

Proof. The running time follows from the first loop where we

set a such that the number of sample is n/(ϵ2k ), and computing

approximate κ (x ,y) can be done in T3 (m,n, ϵ ) time. □

5.4 Proof of Theorems 5.1 and 5.2
For exact vertex connectivity, LocalVC runs in ν1.5k time by Corol-

lary 4.2. We can decide κ (x ,y) ≤ k in O (mk ) time.

For undirected exact vertex connectivity where k < O (
√
n), we

first sparsifiy the graph in O (m) time. Then, we use edge-sampling

with LocalVC algorithmwhere we set a =m′2/3, wherem′ = O (nk )
is the number of edges of sparsified graph.

For directed exact vertex connectivity where k < O (
√
n), we

use edge-sampling with LocalVC algorithm where we set a =m2/3
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if m < n3/2. If m > n3/2, we use vertex-sampling with LocalVC

algorithm where we set a =m1/3
.

For approximate vertex connectivity, approximate LocalVC runs

in poly(1/ϵ )ν1.5/
√
k by Theorem 4.1. Also, we can decide κ (x ,y) ≤

(1 +O (ϵ ))k or cerify that κ ≥ k in time

Õ (poly(1/ϵ )min(mk,n2+o (1) )). The running time poly(1/ϵ )n2+o (1)

is due to [9].

For undirected approximate vertex connectivity, we first sparsify

the graph in O (m) time. Letm′ be the number of edges of the spar-

sified graph. For k < n0.8, we use edge-sampling with approximate

LocalVC algorithm where we set a =mâ
, where â =

min(5 ˆk+2, ˆk+4)
3
ˆk+3

,

and
ˆk = logn k . For k > n0.8, we use vertex-sampling without

LocalVC.

6 (1 + ϵ )-APPROXIMATE VERTEX
CONNECTIVITY VIA CONVEX EMBEDDING

Theorem 6.1. There exists an algorithm that takes G and ϵ > 0,
and in O (nω/ϵ2 +min(κG ,

√
n)m) time outputs a vertex-cutU such

that |U | ≤ (1 + ϵ )κ.

6.1 Preliminaries
Definition 6.2 (Pointset in Fk ). Let F be any field. For k ≥ 0,

Fk is k-dimensional linear space over F. Denote X = {x1, . . . ,xn }

as a finite set of points in Fk . The affline hull of X is aff(X ) =

{
∑k
i=1 cixi | xi ∈ X and

∑k
i=1 ci = 1}. The rank of X denoted as

rank(X ) is one plus dimension of aff(X ). In particular, if F = R,
then we will consider the convex hull of X , denoted as conv(X ).

For any sets V ,W , any funtion f : V → W , and any subset

U ⊆ V , we denote f (U ) = { f (u) : u ∈ U }.

Definition 6.3 (Convex directed X -embedding). For any X ⊂

V , a convex directed X -embedding of a graph G = (V ,E) is a

function f : V → R |X |−1 such that for each v ∈ V \ X , f (v ) ∈
conv( f (N out

G (v ))).

Definition 6.4. For X ,Y ⊆ V , p (X ,Y ) is the maximum number

of vertex-disjoint paths from X to Y where different paths have

different end points.

Lemma 6.5. For any non-empty subset U ⊆ V \ X , w.h.p. a ran-
dom modular directed X -embedding f : V → Z |X |−1p satisfies
rank( f (U )) = p (U ,X ).

Definition 6.6 (Fixed k-neighbors). For v ∈ V , let N out

G,k (v ) be a

fixed, but arbitrarily selected subset of N out

G (v ) of size k . Similarly,

For v ∈ V , let N in

G,k (v ) be a fixed, but arbitrarily selected subset of

N in

G (v ) of size k .

Lemma 6.7. Letω be the exponent of the running time of the optimal
matrix multiplication algorithm. Note it is known that ω ≤ 2.372.

• For y ∈ V , a random modular directed N out

G,k (y)-embedding f

can be constructed in O (nω ) time.
• Given such f , for U ⊆ V with |U | = k , rank( f (U )) can be
computed in O (kω ) time.

6.2 Algorithm
We present an approximation algorithm using convex embedding

in Algorithm 3.

Algorithm 3: ApproxConvexEmbedding(G, ϵ )

Input: G = (V ,E), and ϵ > 0

Output: A vertex-cutU such that w.h.p. |U | ≤ (1 + ϵ )κG .

1 Let k ← max(dout
min
,d in

min
).

2 Let k ′ ← min(dout
min
,d in

min
).

3 repeat
4 Sample two random vertices x2,y1 ∈ V .

5 Let f be a random modular directed N in

G,k (y1)-embedding.

Let f R be a random modular directed

N in

GR,k
(x2)-embedding.

6 repeat
7 Sample two random vertices y2,x1 ∈ V .

8 rank(x1,y1) ← rank( f (N out

G,k (x1))) // O (kω ) time.

9 rank(x2,y2) ← rank( f R (N out

GR,k
(y2)))

10 until Θ(n/(ϵk ′)) times

11 until Θ(1/ϵ ) times

12 Let x∗,y∗ be the pair of vertices with minimum rank(x ,y) for

all x ,y computed so far.

13 LetW ← min(κG (x∗,y∗),κGR (x∗,y∗))

14 Let vmin,umin be the vertex with the minimum out-degree in

G and GR
respectively.

15 return min(W , |N out

G (vmin) |, |N
out

GR (umin) |)

6.3 Analysis
Lemma 6.8. Algorithm 3 outputs w.h.p. a vertex-cut U such that
|U | ≤ (1 + ϵ )κG .

Proof. Let κ̃ denote the answer of our algorithm. Clearly κ̃ ≤
dout
min

and κ̃ ≤ d in
min

by design. Observe also that κ̃ ≥ κ because the

answer corresponds to some vertex cut. Let (A, S,B) be the optimal

separation triple where A is a out-vertex shore and |S | = κ. W.l.o.g.

we assume that |A| ≤ |B |, another case is symmetric.

Suppose that |A| ≤ ϵdout
min

. Then κ = |S | ≥ dout
min
− ϵdout

min
≥

κ̃ (1−ϵ ) ≥ κ (1−ϵ ). That is, κ̃ is indeed an (1+O (ϵ ))-approximation

of κ in this case.

Suppose now that |A| ≥ ϵdout
min

. We claim that |B | ≥ ϵn/4. Indeed,

if dout
min
≥ n/2, then |B | ≥ ϵn/2. Else if, dout

min
≤ n/2, then we know

|S | = κ ≤ n/2. But 2|B | ≥ |A| + |B | = n − |S | ≥ n/2. In either case,

|B | ≥ ϵn/4.
Now, as |B | ≥ ϵn/4 and we sample Õ (1/ϵ ) many y1. There is

one sample y1 ∈ B w.h.p. and now we assume that y1 ∈ B. In the

iteration when y1 is sampled. As |A| ≥ ϵdout
min

and we sample at

least Õ (n/dout
min

ϵ ) many x1. There is one sample x1 ∈ A w.h.p.

By Lemma 6.5, w.h.p.,

rank(x1,y1) = rank( f (N out

G,k (x1)))

= p (N out

G,k (x1),N
in

G,k (y1)) = κ (x1,y1) = κ .

So our answer κ̃ = κ in this case. □
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Lemma 6.9. Algorithm 3 terminates inO (nω/ϵ2 +min(κG ,
√
n)m)

time.

7 OPEN PROBLEMS
(1) Is there an O (νk )-time LocalVC algorithm?

(2) Can we break the O (n3) time bound when k = Ω(n)? This
would still be hard to break even if we had an O (νk )-time

LocalVC algorithm.

(3) Is there an o(n2)-time algorithm for vertex-weighted graphs

whenm = O (n)? Our LocalVC algorithm does not generalize

to the weighted case.

(4) Is there an o(n2)-time algorithm for the single-source max-

flow problem whenm = O (n)?
(5) Is there a near-linear-timeo(logn)-approximation algorithm?

(6) How fast can we solve the vertex connectivity problem in

the dynamic setting (under edge insertions and deletions)

and the distributed setting (e.g. in the CONGEST model)?
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