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INTRODUCTION 

Friedreich ataxia (FRDA) is the most common recessive ataxia in Caucasians. Over 95% of 

patients are homozygous for the hyperexpansion of a GAA triplet repeat in the first intron of 

the frataxin (FXN) gene, which represses FXN expression via an epigenetic mechanism. 

Most residual FXN expression comes from the chromosome with the shortest repeat (GAA1), 

whose length has been shown to correlate with age at symptom onset and with disease 

severity. Clinically, FRDA is dominated by a tabeto-cerebellar ataxic pattern, associated with 

pyramidal signs and various systemic manifestations. FRDA patients may present subtle 

signs of proprioceptive loss, such as loss of tendon reflexes and a Romberg sign, before they 

become frankly symptomatic. However, FRDA patients become overtly ataxic only when 

cerebellar symptoms appear. Most items in the scales for the assessment of neurological 

deficits in FRDA (e.g., Scale for the Assessment and Rating of Ataxia (SARA) or the 

Friedreich Ataxia Rating Scale) are performed under patients’ visual control and mainly 

reflect cerebellar dysfunction rather than afferent proprioceptive ataxia. Neuroimaging 

studies show progressive thinning of the cervical spinal cord, but to what extent this is due to 

shrinking of pyramidal tracts or the posterior columns is unclear (Koeppen et al. 2017; Dogan 

et al. 2019).  

Cortico-kinematic coherence (CKC) is the coupling between movement-related 

proprioceptive inputs and contralateral primary sensorimotor (SM1) cortex activity recorded 

by magnetoencephalography (MEG) or electroencephalography (Marty et al. 2019). It is an 

electrophysiological marker of spino-cortical proprioceptive function that has high test-retest 

reliability (Piitulainen et al. 2018). In a cohort of FRDA patients, we showed that CKC levels 

were reduced by about 70% and correlated with the size of GAA1 triplet expansion and the 

age of symptoms onset suggesting that proprioceptive impairment in FRDA was genetically 

determined and scarcely progressive after symptoms onset (Marty et al. 2019).
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Here, we re-tested the same FRDA patients after 1 year to assess whether CKC 

levels deteriorate over time or tend to remain stable, supporting an early developmental 

proprioceptive impairment. 

METHODS 

The methods used in the present study are described in (Marty et al. 2019). CKC was 

evaluated using whole-scalp-covering MEG (Vectorview & Triux, MEGIN, Helsinki, Finland) 

in 16 FRDA patients (10 females, one left-handed, mean ± SD age 27 ± 14 years, GAA1 698 

± 203) in two sessions performed at about one-year interval (13.3 ± 4 months). CKC was 

evaluated during active right forefinger–thumb opposition movements (Active, n = 15: one 

patient was too disabled to perform the task) and during passive right forefinger flexion–

extensions (Passive, n = 16) at about 3 Hz. Forefinger acceleration was monitored with an 

accelerometer. Movement frequency and regularity were determined in Active. Coherence 

maps at movement frequency (F0) and its first harmonic (F1) were computed at the group-

level. Their statistical differences between sessions were assessed with a nonparametric 

permutation test. Movement frequency and regularity parameters in Active as well as SARA 

scores between the two sessions were compared with a two-tailed paired Student's T-test. 

RESULTS (Table 1)

SARA score significantly deteriorated between the two sessions while movement frequency 

and regularity in Active remained stable. At the group level, no significant difference was 

found between CKC levels at contralateral SM1 cortex between the two sessions for both 

Active and Passive. Figure 1 illustrates sensor-level coherence spectra in Active and the 

corresponding group-level source reconstructions. 

Session 1 Session 2 p
SARA (mean±SD) / 42 
Lower limb items (mean±SD) / 18
Upper limb items (mean±SD) / 12

21.2± 8.7
11.8± 5.3
5.8± 2.1

22.9± 8.3
12.8± 4.6
5.9± 2.1

0.0063
0.016
0.48

9HPT (seconds, mean±SD) 79± 41 74± 32 0.31
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Movement frequency (Hz, 
mean±SD)

1.87 ± 0.61 1.92 ± 
0.63

0.78

Movement regularity (Hz, 
mean±SD)

0.44± 0.06 0.46± 0.08 0.58

CKC F0 in Active 0.08 0.07 0.40
CKC F1 in Active 0.04 0.05 0.69
CKC F0 in Passive 0.08 0.05 0.08
CKC F1 in Passive 0.05 0.03 0.39

Table 1. Longitudinal evolution of clinical scores, movement characteristics and CKC. SARA =scale for 
the assessment and rating of ataxia. “/ ” separates the clinical score from the maximal rating, higher 
scores corresponding to worse performance. SARA Lower limb items = gait /8, stance /6 & heel to 
shin /4. SARA Upper limb items = Finger chase /4, Nose to finger /4 & fast alternating movement /4. 
SD = standard deviation, 9HPT = nine holes peg test. CKC= corticokinematic coherence. F0 = 
movement frequency. F1 = first harmonics of movement frequency. 

 
DISCUSSION 

This prospective study demonstrates that FRDA patients have stable CKC levels at one-year 

follow-up, while their SARA score significantly worsens. 

Anomalies in dorsal root ganglia (DRGs), dorsal roots and posterior columns of the spinal 

cord that underlie afferent ataxia are already pronounced early in the course of FRDA and 

may be, at least in part, developmental. By contrast, cerebellar pathology, mostly consisting 

in dentate nucleus atrophy, can only be detected after several years of disease progression 

(Koeppen et al. 2017). However, there also is evidence of active neurodegeneration with an 

inflammatory component in DRGs (Koeppen et al. 2017), suggesting that proprioceptive loss 

may progress over time. So, the contribution of proprioceptive loss to the worsening of ataxia 

in FRDA remains unsettled. 

Functionally, reduction in the amplitude of somatosensory evoked potentials (SEPs) and 

magnetic fields (SEFs) correlates with the size of GAA1 triplet expansion but not with 

disease duration (Naeije et al. 2019). Still, tactile perception is less impaired in FRDA, 

limiting the interpretation of these results (Naeije et al. 2019). Similarly, CKC levels are 

substantially reduced in FRDA patients and correlate with the size of GAA1 triplet expansion 

but not with disease duration nor SARA score (Marty et al. 2019). In this study, FRDA 

patients had stable CKC levels at one-year follow-up, while their SARA score significantly 
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deteriorated. This latter finding therefore corroborates previous SEP, SEF and CKC data 

supporting early, scarcely progressive proprioceptive defect in FRDA (Marty et al. 2019). 

In this study, clinical markers such as the 9HPT, finger movement frequency and regularity 

during Active did not show significant changes at one-year of follow-up. Thus, the SARA 

score had a higher sensitivity to progression than other clinical measures. However, these 

additional measures, such as CKC as used in this study, assessed upper limb function 

whereas the SARA score is largely driven by performance in gait and stance items until late 

in the course of FRDA. At that stage, upper limb items drive further the SARA score 

progression, but the overall sensitivity of the scale decreases. Importantly, a significant 

deterioration of lower limb items of the SARA score was observed at one-year interval, while 

upper limb items remained stable. In that context, our results could be interpreted either as 

the consequence of an insufficient sensitivity of the measures used to assess progression, 

as lack of progression of the measured function or as a too slow deterioration of upper limb 

proprioceptive function to be detected after only one year. Lower limb CKC studies would 

have been of great interest in that context but were infeasible due to the FRDA-induced feet 

deformations, amyotrophy, spasticity and the impossibility for most patients to perform toe or 

ankle repetitive movements.

In any case, this study provides an objective assessment of upper limb spino-cortical 

proprioceptive function in FRDA patients over time that is clearly abnormal but fails to show 

significant worsening over one year. This finding provides additional empirical evidence 

suggesting limited progressivity of an early established dorsal columns and DRG pathology.
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FIGURE LEGEND

Figure 1.  CKC results obtained in Active. Left. Individual sensor-level coherence spectra for 

each participant in Active for Session 1 (Top) and Session 2 (Bottom). Each gray trace 
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represents the coherence between magnetoencephalography (MEG) and accelerometer signals 

for each individual. For each frequency bin, the coherence value displayed is the maximum 

coherence across the MEG sensors covering the left rolandic MEG sensors. Black traces 

correspond to the group average. Frequencies are expressed in F0 units (i.e., 1 corresponds to 

the individual F0, 2 to its F1, etc.). Right. Group-level coherence maps in Active 

superimposed on left-hemisphere brain surface rendering. Group-level coherence maps for 

Session 1 (Top) and Session 2 (Bottom) at movement frequency (F0, Left) and its first 

harmonics (F1, Right).

F0 = movement frequency; F1 = first harmonics of movement frequency.
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