Kervinen, Mikael; Ramírez-Muñoz, Jhon; Välimaa, Alpo; Sillanpää, Mika

Landau-Zener-Stückelberg Interference in a Multimode Electromechanical System in the Quantum Regime

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.123.240401

Published: 01/01/2019

Please cite the original version:
Landau-Zener-Stückelberg Interference in a Multimode Electromechanical System in the Quantum Regime

Mikael Kervinen,1 Jhon E. Ramírez-Muñoz,2 Alpo Välimaa,1 and Mika A. Sillanpää1,∗

1Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 AALTO, Finland
2Departamento de Física, Universidad Nacional de Colombia, 111321 Bogotá, Colombia

(Received 17 September 2019; published 12 December 2019)

The studies of mechanical resonators in the quantum regime not only provide insight into the fundamental nature of quantum mechanics of massive objects, but also introduce promising platforms for novel hybrid quantum technologies. Here we demonstrate a configurable interaction between a superconducting qubit and many acoustic modes in the quantum regime. Specifically, we show how consecutive Landau-Zener-Stückelberg (LZS) tunneling type of transitions, which take place when a system is tuned through an avoided crossing of the coupled energy levels, interfere in a multimode system. The work progresses experimental LZS interference to cover a new class of systems where the coupled levels are those of a quantum two-level system interacting with a multitude of mechanical oscillators. The work opens up applications in controlling multiple acoustic modes via parametric modulation.

DOI: 10.1103/PhysRevLett.123.240401

Advances in the control over mechanical degrees of freedom have taken a great leap forward allowing one to engineer experiments where the underlying nature of the quantized vibration energy is evident [1–7]. These works predominantly utilized superconducting quantum bits combined with a variety of different types of mechanical resonators that can be accessed resonantly through the qubit in the high gigahertz frequency range. The resonators can be made with surface acoustic waves (SAW) [5,7–12], phononic crystals [6], or high overtone bulk acoustic wave resonators (HBAR) [2,13,14], with piezoelectric materials allowing for strong coupling between electric and mechanical quantities. Mechanical modes are well isolated from the electromagnetic environment, can have longer coherence times than superconducting qubits, and can support multiple modes packed more densely than with microwave cavities [15,16]. Therefore, mechanical resonators are highly appealing in quantum computing that can utilize harmonic oscillators [17–19].

In a HBAR system, the modes mostly reside in the substrate chip and hence feature diluted strain and low acoustic losses. The system exhibits a dense spectrum of acoustic modes that interact near resonance with the qubit, suggesting a possibility to manipulate the many-mode system through the qubit. One way to do the latter is to combine slow adiabatic changes and abrupt rotations of the adiabatic basis. This type of control of qubits resembles a coherent version of Landau-Zener tunneling transitions, which have been studied extensively in various two-level systems. These include superconducting qubits [20–33], nanomechanical systems [34–39], Bose-Einstein condensates [35,40,41], optical lattices [42], and other systems [43–47].

In Landau-Zener-Stückelberg (LZS) interference, the system energy levels are modulated back and forth through an avoided crossing at a frequency ωd faster than the decay rates. Earlier work on LZS physics has strongly focused on two-level systems, aside from theoretical considerations [48–54]. In the current work, we create LZS conditions in a truly multimode quantum system that consists of a qubit coupled to many oscillators. Moreover, the oscillators are acoustic modes. As a result, we obtain a way to control a hybrid multimode quantum system using low-frequency fields.

In the case of a traditional LZS interference, we consider a quantum two-level system with the energy splitting ω0(Φ). The splitting depends on a control parameter Φ, which can be the flux through a SQUID loop as in this work. The levels are assumed to couple at the energy Ω, resulting in the energies ω(Φ) = ±√ω0(Φ) + Ω2 between the ground state and the excited state of the coupled system, and the avoided crossing equal to 2Ω at the degeneracy ω0 = 0.

When the flux is swept through the avoided crossing, Landau-Zener tunneling can nonadiabatically flip the qubit state, at the probability pLZ. Outside the avoided crossing, the ground and excited states acquire a dynamical phase θ = ±ωd t / 2 during the sweep. The phase is also contributed by the Stokes phase θS acquired during the LZ event, given as θS = 0 (or θS = π/4) in the slow pLZ ∼ 0 (or fast pLZ ≈ 1) limit. If the sweep is repeated back and forth across the avoided crossing, the system acquires the dynamical phases θ1,2 on either side. The phases can interfere constructively or destructively, resulting in oscillations of the qubit population as a function of the
sweep parameters. The conditions of constructive interference, leading to enhanced population of the excited state, are [25,33,55]

\[ \varphi_2 - \varphi_1 = l\pi, \]

\[ \varphi_2 + \varphi_3 = m\pi, \]

with integer \( l, m \). Notice the arbitrary assignment of either \( \varphi_1 \) or \( \varphi_2 \) in Eq. (1b).

Now, let us consider our system that consists of a two-level system coupled to multiple bosonic fields, and how it can be understood as an extension of the two-state LZ problem. The system is described by the multimode Jaynes-Cummings (MJC) model as (we set \( \hbar = 1 \))

\[ H_{\text{MJC}} = \frac{\omega_0}{2} \sigma_z + \sum_i \omega_m^{(i)} a_i^\dagger a_i + \sum_i \sum_{j} g_m^{(i)} (a_i \sigma_+ + a_i^\dagger \sigma_-), \]

(2)

where \( \sigma_z, \sigma_+ \), and \( \sigma_- \) represent the standard qubit operators, and \( a_i, (a_i^\dagger) \) is the annihilation (creation) phonon operator for mode \( i \) with frequency \( \omega_m^{(i)} \). Suppose that the qubit is driven with both transverse (excitation) and longitudinal (frequency modulation) classical fields: \( H_\text{x}(t) = \Omega \cos(\omega_{\text{ext}} t) \sigma_z \) and \( H_\text{z}(t) = (A/2) \cos(\omega_{\text{rf}} t) \sigma_z \), respectively. Here \( \Omega \) is the excitation amplitude and \( \omega_{\text{ext}} \approx \omega_0 \) is the excitation frequency. The full Hamiltonian is then \( H(t) = H_{\text{MJC}} + H_\text{x}(t) + H_\text{z}(t) \).

In the rotating frame defined by the excitation frequency, the Hamiltonian becomes

\[ H = \frac{\Delta(t)}{2} \sigma_z + \frac{\Omega}{2} \sigma_x + \sum_i \Delta_i a_i^\dagger a_i + \sum_i g_m^{(i)} (a_i \sigma_+ + a_i^\dagger \sigma_-), \]

(3)

with the detunings \( \Delta(t) = \Delta_0 + A \cos(\omega_{\text{rf}} t), \) \( \Delta_0 = \omega_0 - \omega_{\text{ext}} \), and \( \Delta_i = \omega_m^{(i)} - \omega_{\text{ext}} \). The first two terms in Eq. (3) describe the regular LZS interference problem. One also uses the term photon assisted LZS interference [29,31,52], since the qubit extracts a photon from the excitation field such that its energy is redefined as \( \omega_0 - \omega_{\text{ext}} \).

In our current case, we are concerned of the effect of the last two terms in Eq. (3) on the LZS problem. Taking \( \Omega \) to be much smaller than the other energy scales, the situation becomes that pictured in Fig. 1. It describes modulated coupled energy levels, but they are those of a qubit and an oscillator, for a given oscillator \( i \). Moreover, the qubit exhibits a similar coupling to many nondegenerate oscillators. In a recent experimental work [15], a system consisting of a qubit coupled to many electromagnetic cavities was used showing stimulated vacuum Rabi oscillations, but the LZS limit was not treated.

![FIG. 1.](image)

On top of the picture of LZS modulation, the system allows for an interpretation in terms of multiphoton transitions [56], which manifest themselves as the appearance of sidebands in the spectrum [57]. One obtains a time-independent effective Hamiltonian:

\[ H_{\text{eff}}^{(n,k)} = \frac{\Delta_0 + n\omega_{\text{rf}}}{2} \sigma_z + \sum_i \left( \Delta_i + k\omega_{\text{rf}} \right) a_i^\dagger a_i + \sum_i g_m^{(i)} J_{n-k} \left( \frac{A}{\omega_{\text{rf}}} \right) (\sigma_+ a_i + \sigma_- a_i^\dagger) + \frac{\Omega}{2} J_n \left( \frac{A}{\omega_{\text{rf}}} \right) \sigma_x. \]

(4)

\( H_{\text{eff}}^{(n,k)} \) describes the interaction between the \( n \)-th order sideband of the qubit and \( k \)-th order sideband of all the mechanical modes. The \( n \)-th order sideband of the qubit interacts with the \( k \)-th order sideband of a mechanical mode \( i \) with coupling strength \( g_{\text{eff}}^{n-k} = g_m^{(i)} J_{n-k} (A/\omega_{\text{rf}}) \), where \( J_j \) are the Bessel functions of the first kind and order \( j \). In other words, the qubit and one of the detuned mechanical modes take photons from the longitudinal field such that they become resonant and thus interact with each other at a rate \( g_{\text{eff}}^{n-k} \).

To simulate the experimental results, we use Eq. (4) and determine the qubit population at the steady state by solving the Lindblad master equation including qubit losses, and limit the Hamiltonian to the first excitation manifold where only the zero and the one-phonon Fock states are considered [58]. This is well justified because the mechanical resonator is already in the ground state and the...
The qubit spectrum is shown in Figs. 2(e)–2(f). The qubit experiences avoided crossings spaced by the free Rabi splitting in Fig. 2(e). With the total phase of one overtone acoustic mode. (e) Two-tone spectroscopy showing the vacuum Rabi splitting in the qubit on resonance with a mechanical mode number $i = 319$ at $\omega_0/2\pi \approx 5.554$ GHz and flux $V_\Phi = 0.37$ V. (f) Spectroscopy as a function of flux bias, and a sketch of the slow bias modulation.

qubit excitation amplitude is small in comparison with its linewidth.

In the experiment, our device consists of a flux-tunable transmon qubit coupled to an acoustic resonator (HBAR) whose piezoelectric effect enables a strong interaction between the electric fields of the qubit and the acoustic waves of the resonator. In contrast to other work using AlN between the electric fields of the qubit and the acoustic waves of the resonator, the piezoelectric GaN is effectively sandwiched between the capacitor plates of the transmon. As seen in Figs. 2(b)–2(c), our transmon qubit has an asymmetric “pentagon” geometry with no parallel sides to greatly suppress lateral spurious modes of the acoustic resonator. The device is measured at the base temperature of a dilution refrigerator, where both the qubit and the high GHz frequency mechanical modes reside naturally in their quantum ground state.

The qubit has on-chip flux bias line that is connected to a bias $T$, enabling to set the qubit frequency (control voltage $V_\Phi$), as well as to apply the excitation and modulation fields through the rf port [Fig. 2(d)]. The qubit-HBAR hybrid is coupled to a quarter-wavelength coplanar waveguide resonator that allows us to measure it using standard circuit QED protocols [59]. The phase of the reflected probe field signals the qubit excited state population $n$. The qubit spectrum is shown in Figs. 2(e)–2(f). The qubit experiences avoided crossings spaced by the free spectral range $\omega_{FSR}/2\pi = (v/2T) \approx 17.4$ MHz of the acoustic modes. The latter is determined by the thickness $T \approx 270 \mu m$ and the acoustic velocity $v \approx 9400$ m/s. The interaction strength between the qubit and a single acoustic mode is $g_{\text{int}}/2\pi \approx 5.5$ MHz interpreted from the vacuum Rabi splitting in Fig. 2(e). With the total qubit linewidth $\gamma/2\pi \approx 8$ MHz, the system is close to the strong coupling limit. The linewidth of the acoustic modes is estimated $\kappa/2\pi < 50$ kHz [56].

Next, we park the static dc flux at one spot on the qubit energy curve where the slope of the curve is close to linear. We apply the longitudinal modulation given by $H_{z}(t)$ on top of the static field to modulate the qubit energy around $\omega_0$. In Fig. 3(a), we display the behavior of the qubit population when the longitudinal modulation amplitude is varied at a fixed modulation frequency. This measurement also serves as a calibration of $A$, since the attenuation inside the refrigerator at finite frequencies is not well known. The qubit population is maximized around parameter regions satisfying both the interference conditions, Eqs. (1a) and (1b). The latter is clearly illustrated in Fig. 3(b), which is a simulation on a single qubit alone and hence describes the regular LZS situation. In the experimental data, however, the regions of constructive interference exhibit additional fine structure on top of the LZS interference pattern. We attribute the observed bending of the experimental data to the left in Fig. 3(a) to a combination of curvature in the qubit frequency-flux relation and a flux drift during the measurement.

In order to describe the additional resonances in Fig. 3(b), we adopt the multiphoton picture in Eq. (4). The multiphoton transitions involve both the qubit and each mechanical mode. For example, when the transverse driving field satisfies the condition $\Delta_s + k_i\omega_{m} = \Delta_j + k_j\omega_{m}$, two mechanical modes $i$ and $j$ become resonant [60]. The case is extended to any number of modes. Moreover, if the effective qubit splitting $\frac{1}{2} (\Delta_0 + n\omega_{m})$ also satisfies the equality, the qubit is also on resonance with them. In Fig. 4(a) we display the latter situation. Three
modes $i = 307$ ($\omega_{i}^{(1)} / 2\pi = 5.345$), $j = 323$ ($\omega_{j}^{(1)} / 2\pi = 5.623$), and $h = 315$ ($\omega_{h}^{(1)} / 2\pi = 5.484$ GHz) form a tripartite resonance when $\omega_{\text{ext}} / 2\pi = 139$ MHz $= 8 \times \omega_{\text{PSR}} / 2\pi$ with $k_{i} = 1$, $k_{j} = -1$, $k_{h} = 0$, and with the qubit at $\Delta_{0} \approx 0$ and $n = 0$. The effective vacuum Rabi splitting $\approx 11$ MHz is nearly as large as seen in the nonmodulated case shown in Fig. 2(e), although the simplest expectation yields $2g_{\text{eff}}^{(1)} \approx 2\pi \times 6$ MHz. Instead, the vacuum Rabi splitting is that of a coresonant four parite ($N = 4$ below) system formed by three oscillators and a qubit. In the present case, the couplings $g_{\text{eff}}^{1}$ and $g_{\text{eff}}^{0}$ are nearly equal, and the total coupling is $2g_{\text{eff}} \approx \sqrt{N - 1} \times 2g_{\text{eff}}^{(1)} \approx 2\pi \times 10.6$ MHz, in a good agreement with the measurement.

When the subsystems are brought off-resonant by detuning the modulation frequency as shown in Fig. 4(b), the system is understood as several detuning resonators that do not exhibit appreciable energy exchange.

The resonance conditions can be illustrated by plotting the qubit population as a function of two control parameters. In Fig. 5(a) we can observe the resolved sidebands in the spectrum at frequencies $\omega_{\text{ext}} = \omega_{0} \pm n\omega_{\text{ext}}$ ($n = 0, 1, 2, \ldots$), see Eq. (4). The interaction is mediated to multiple acoustic modes that exhibit sidebands as well. Each mechanical mode represents a starting point for a set of sideband transitions ($\omega \approx \omega_{m}^{(i)} \pm k\omega_{\text{ext}}$, $k = 0, 1, 2, \ldots$). They are easily identified in the measurement [Fig. 5(a)] and in the corresponding simulation [Fig. 5(b)]. At the lowest frequencies below the bias-$T$ cutoff, the modulation does not reach the qubit, and the measurement in this region is hence equivalent to a nonmodulated system. In the central band we see diagonal anticrossings separated by the free spectral range $\omega_{\text{PSR}} / 2\pi = 17.4$ MHz. For example, when the modulation frequency is 130–170 MHz we see the interaction of mechanical modes $\omega_{m}^{(i)}$, $i = 315 \pm 8, \pm 9, \pm 10$ with the qubit, see Ref. [56]. Therefore by selecting the frequency of the modulation to match $\omega_{0} - \omega_{m}^{(i)}$, different acoustic modes can be brought into resonance with the qubit allowing addressing and hybridizing of different modes.

We have shown that a quantum electromechanical system under frequency modulation can be understood starting from Landau-Zener-Stückelberg interference. The work enables us to selectively configure mechanical modes at mismatched frequencies to interact with the qubit. Through improvements on the qubit coherence,
and adjustments of the coupling [56] the approach can be useful in quantum information.

This work was supported by the Academy of Finland (Contracts No. 307757, No. 312057), by the European Research Council (Contract No. 615755), by the Centre for Quantum Engineering at Aalto University, by The Finnish Foundation for Technology Promotion, and by the Jenny and Antti Wihuri Foundation. We acknowledge funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 732894 (FETPRO HOT). J. E. R. M. acknowledges support from UN-DIEB project HERMES 41611, and from COLCIENCIAS under project HERMES 31361 (code COLCIENCIAS 727). We acknowledge the facilities and technical support of Otaniemi research infrastructure for Micro and Nanotechnologies (OtaNano). We would like to thank Herbert Vinck Posada for helpful discussions on the theoretical calculations.

"Mika.Sillanpaa@aalto.fi


[60] The excitation and modulation frequencies are incommensurate except in vanishingly small regions in the parameter space, and hence a physical phase difference between the tones does not exist.