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The studies of mechanical resonators in the quantum regime not only provide insight into the fundamental
nature of quantum mechanics of massive objects, but also introduce promising platforms for novel hybrid
quantum technologies. Here we demonstrate a configurable interaction between a superconducting qubit
and many acoustic modes in the quantum regime. Specifically, we show how consecutive Landau-Zener-
Stückelberg (LZS) tunneling type of transitions, which take place when a system is tuned through an avoided
crossing of the coupled energy levels, interfere in a multimode system. The work progresses experimental
LZS interference to cover a new class of systems where the coupled levels are those of a quantum two-level
system interacting with a multitude of mechanical oscillators. The work opens up applications in controlling
multiple acoustic modes via parametric modulation.
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Advances in the control over mechanical degrees of
freedom have taken a great leap forward allowing one to
engineer experiments where the underlying nature of the
quantized vibration energy is evident [1–7]. These works
predominantly utilized superconducting quantum bits
combined with a variety of different types of mechanical
resonators that can be accessed resonantly through the
qubit in the high gigahertz frequency range. The resonators
can be made with surface acoustic waves (SAW) [5,7–12],
phononic crystals [6], or high overtone bulk acoustic wave
resonators (HBAR) [2,13,14], with piezoelectric materials
allowing for strong coupling between electric and mechani-
cal quantities. Mechanical modes are well isolated from the
electromagnetic environment, can have longer coherence
times than superconducting qubits, and can support multi-
ple modes packed more densely than with microwave
cavities [15,16]. Therefore, mechanical resonators are
highly appealing in quantum computing that can utilize
harmonic oscillators [17–19].
In a HBAR system, the modes mostly reside in the

substrate chip and hence feature diluted strain and low
acoustic losses. The system exhibits a dense spectrum of
acoustic modes that interact near resonance with the qubit,
suggesting a possibility to manipulate the many-mode
system through the qubit. One way to do the latter is to
combine slow adiabatic changes and abrupt rotations
of the adiabatic basis. This type of control of qubits
resembles a coherent version of Landau-Zener tunneling
transitions, which have been studied extensively in various
two-level systems. These include superconducting qubits
[20–33], nanomechanical systems [34–39], Bose-Einstein
condensates [35,40,41], optical lattices [42], and other
systems [43–47].

In Landau-Zener-Stückelberg (LZS) interference, the
system energy levels are modulated back and forth through
an avoided crossing at a frequency ωrf faster than the decay
rates. Earlier work on LZS physics has strongly focused on
two-level systems, aside from theoretical considerations
[48–54]. In the current work, we create LZS conditions in a
truly multimode quantum system that consists of a qubit
coupled to many oscillators. Moreover, the oscillators are
acoustic modes. As a result, we obtain a way to control a
hybrid multimode quantum system using low-frequency
fields.
In the case of a traditional LZS interference, we consider

a quantum two-level system with the energy splitting
ω0ðΦÞ. The splitting depends on a control parameter Φ,
which can be the flux through a SQUID loop as in this
work. The levels are assumed to couple at the energy Ω,
resulting in the energies ωðΦÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0ðΦÞ þΩ2

p
between

the ground state and the excited state of the coupled system,
and the avoided crossing equal to 2Ω at the degeneracy
ω0 ¼ 0.
When the flux is swept through the avoided crossing,

Landau-Zener tunneling can nonadiabatically flip the qubit
state, at the probability pLZ. Outside the avoided crossing,
the ground and excited states acquire a dynamical phase
φ ¼ � 1

2

R
ωðtÞdt during the sweep. The phase is also

contributed by the Stokes phase φS acquired during the
LZ event, given as φS¼0 (or φS¼π=4) in the slow pLZ ≈ 0
(or fast pLZ ≈ 1) limit. If the sweep is repeated back and
forth across the avoided crossing, the system acquires
the dynamical phases φ1;2 on either side. The phases
can interfere constructively or destructively, resulting in
oscillations of the qubit population as a function of the
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sweep parameters. The conditions of constructive interfer-
ence, leading to enhanced population of the excited state,
are [25,33,55]

φ2 − φ1 ¼ lπ; ð1aÞ

φ2 þ φS ¼ mπ; ð1bÞ

with integer l, m. Notice the arbitrary assignment of either
φ1 or φ2 in Eq. (1b).
Now, let us consider our system that consists of a two-

level system coupled to multiple bosonic fields, and how
it can be understood as an extension of the two-state LZ
problem. The system is described by the multimode Jaynes-
Cummings (MJC) model as (we set ℏ ¼ 1)

HMJC ¼ ω0

2
σz þ

X
i

ωðiÞ
m a†i ai þ

X
i

gðiÞm ðaiσþ þ a†i σ−Þ;

ð2Þ

where σz, σþ, and σ− represent the standard qubit operators,
and ai (a

†
i ) is the annihilation (creation) phonon operator

for mode i with frequency ωðiÞ
m . Suppose that the qubit is

driven with both transverse (excitation) and longitudinal
(frequency modulation) classical fields: HxðtÞ ¼
Ω cos ðωexttÞσx and HzðtÞ ¼ ðA=2Þ cos ðωrftÞσz, respec-
tively. Here Ω is the excitation amplitude and ωext ≈ ω0

is the excitation frequency. The full Hamiltonian is then
HðtÞ ¼ HMJC þHxðtÞ þHzðtÞ.
In the rotating frame defined by the excitation frequency,

the Hamiltonian becomes

H ¼ ΔðtÞ
2

σz þ
Ω
2
σx þ

X
i

Δia
†
i ai

þ
X
i

gðiÞm ðaiσþ þ a†i σ−Þ; ð3Þ

with the detunings ΔðtÞ¼Δ0þAcosðωrftÞ, Δ0¼ω0−ωext,

andΔi ¼ ωðiÞ
m − ωext. The first two terms in Eq. (3) describe

the regular LZS interference problem. One also uses the
term photon assisted LZS interference [29,31,52], since the
qubit extracts a photon from the excitation field such that
its energy is redefined as ω0 − ωext.
In our current case, we are concerned of the effect of the

last two terms in Eq. (3) on the LZS problem. Taking Ω to
be much smaller than the other energy scales, the situation
becomes that pictured in Fig. 1. It describes modulated
coupled energy levels, but they are those of a qubit and an
oscillator, for a given oscillator i. Moreover, the qubit
exhibits a similar coupling to many nondegenerate oscil-
lators. In a recent experimental work [15], a system
consisting of a qubit coupled to many electromagnetic
cavities was used showing stimulated vacuum Rabi oscil-
lations, but the LZS limit was not treated.

On top of the picture of LZS modulation, the system
allows for an interpretation in terms of multiphoton
transitions [56], which manifest themselves as the appear-
ance of sidebands in the spectrum [57]. One obtains a time-
independent effective Hamiltonian:

Hðn;kÞ
eff ¼ Δ0 þ nωrf

2
σz þ

X
i

ðΔi þ kωrfÞa†i ai

þ
X
i

gðiÞm Jn−k

�
A
ωrf

�
ðσþai þ σ−a

†
i Þ

þ Ω
2
Jn

�
A
ωrf

�
σx: ð4Þ

Hðn;kÞ
eff describes the interaction between the nth-order

sideband of the qubit and kth-order sidebands of all the
mechanical modes. The nth-order sideband of the qubit
interacts with the kth-order sideband of a mechanical mode

i with coupling strength gn−keff ¼ gðiÞm Jn−kðA=ωrfÞ, where Jj
are the Bessel functions of the first kind and order j. In
other words, the qubit and one of the detuned mechanical
modes take photons from the longitudinal field such that
they become resonant and thus interact with each other at a
rate gn−keff .
To simulate the experimental results, we use Eq. (4)

and determine the qubit population at the steady state by
solving the Lindblad master equation including qubit
losses, and limit the Hamiltonian to the first excitation
manifold where only the zero and the one-phonon Fock
states are considered [58]. This is well justified because the
mechanical resonator is already in the ground state and the

FIG. 1. Photon-assisted Landau-Zener-Stückelberg interference
in a multimode qubit-oscillator system. The solid lines represent
eigenvalues from Eq. (3). We restrict for simplicity to the lowest
excitation manifold; for example, jg; 1ð3Þi means that the qubit is
in the ground state, and the harmonic mode number 3 has one
photon, and the rest of the oscillators are in the ground state. The
arrow sketches a slow modulation of the bare qubit energy
splitting represented by the blue and red lines. The dashed lines
are the energies of three harmonic modes.
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qubit excitation amplitude is small in comparison with
its linewidth.
In the experiment, our device consists of a flux-tunable

transmon qubit coupled to an acoustic resonator (HBAR)
whose piezoelectric effect enables a strong interaction
between the electric fields of the qubit and the acoustic
waves of the resonator. In contrast to other work using AlN
[2,13], our sample is fabricated on an epitaxial gallium
nitride (GaN) coated Si substrate. The piezoelectric GaN
film has been etched away everywhere else except directly
under the qubit [Fig. 2(a)]. As seen in Figs. 2(b)–2(c), our
transmon qubit has an asymmetric “pentamon” geometry
with no parallel sides to greatly suppress lateral spurious
modes of the acoustic resonator. The device is measured at
the base temperature of a dilution refrigerator, where both
the qubit and the high GHz frequency mechanical modes
reside naturally in their quantum ground state.
The qubit has on-chip flux bias line that is connected to a

bias T, enabling to set the qubit frequency (control voltage
VΦ), as well as to apply the excitation and modulation
fields through the rf port [Fig. 2(d)]. The qubit-HBAR
hybrid is coupled to a quarter-wavelength coplanar wave-
guide resonator that allows us to measure it using standard
circuit QED protocols [59]. The phase of the reflected
probe field signals the qubit excited state population pe.
The qubit spectrum is shown in Figs. 2(e)–2(f). The
qubit experiences avoided crossings spaced by the free
spectral range ωFSR=2π ¼ ðv=2TÞ ≃ 17.4 MHz of the
acoustic modes. The latter is determined by the thickness
of the substrate T ≃ 270 μm and the acoustic velocity
v ≃ 9400 m=s. The interaction strength between the qubit
and a single acoustic mode is gm=2π ≈ 5.5 MHz interpreted
from the vacuum Rabi splitting in Fig. 2(e). With the total

qubit linewidth γ=2π ≈ 8 MHz, the system is close to the
strong coupling limit. The linewidth of the acoustic modes
is estimated κ=2π < 50 kHz [56].
Next, we park the static dc flux at one spot on the qubit

energy curve where the slope of the curve is close to linear.
We apply the longitudinal modulation given by HzðtÞ
on top of the static field to modulate the qubit energy
around ω0. In Fig. 3(a), we display the behavior of the qubit
population when the longitudinal modulation amplitude is
varied at a fixed modulation frequency. This measurement
also serves as a calibration of A, since the attenuation inside
the refrigerator at finite frequencies is not well known. The
qubit population is maximized around parameter regions
satisfying both the interference conditions, Eqs. (1a)
and (1b). The latter is clearly illustrated in Fig. 3(b), which
is a simulation on a single qubit alone and hence describes
the regular LZS situation. In the experimental data, how-
ever, the regions of constructive interference exhibit addi-
tional fine structure on top of the LZS interference pattern.
We attribute the observed bending of the experimental data
to the left in Fig. 3(a) to a combination of curvature in the
qubit frequency-flux relation and a flux drift during the
measurement.
In order to describe the additional resonances in

Fig. 3(b), we adopt the multiphoton picture in Eq. (4).
The multiphoton transitions involve both the qubit and
each mechanical mode. For example, when the trans-
verse driving field satisfies the condition Δi þ kiωrf ¼
Δj þ kjωrf , two mechanical modes i and j become resonant
[60]. The case is extended to any number of modes.
Moreover, if the effective qubit splitting 1

2
ðΔ0 þ nωrfÞ also

satisfies the equality, the qubit is also on resonance with
them. In Fig. 4(a) we display the latter situation. Three

GaN

junctions

re
ad

ou
t

electrode 1

(d)

Silicon

HBAR

qubit

electrode 2

100

(b)

(a)

(c)

transmonreadout resonator

HBAR

flux

(e)

(f)

FIG. 2. (a) Schematic cross section of the high-overtone bulk acoustic modes that are located inside the massive substrate.
(b) Photograph of the device shows a transmon qubit that has an irregular pentagon shape. (c) Simulation of the mode displacement
profile of one overtone acoustic mode. (d) Circuit diagram of the hybrid system. The piezoelectric GaN is effectively sandwiched
between the capacitor plates of the transmon. (e) Two-tone spectroscopy showing the vacuum Rabi splitting in the qubit on resonance
with a mechanical mode number i ¼ 319 at ω0=2π ≃ 5.554 GHz and flux VΦ ¼ 0.37 V. (f) Spectroscopy as a function of flux bias, and
a sketch of the slow bias modulation.
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modes i¼307 (ωðiÞ
m =2π¼5.345), j¼323 (ωðjÞ

m =2π ¼
5.623), and h ¼ 315 (ωðhÞ

m =2π¼5.484GHz) form a tripar-
tite resonance when ωrf=2π ¼ 139 MHz ¼ 8 × ωFSR=2π
with ki ¼ 1, kj ¼ −1, kh ¼ 0, and with the qubit at Δ0 ≃ 0

and n ¼ 0. The effective vacuum Rabi splitting ≈11 MHz
is nearly as large as seen in the nonmodulated case shown
in Fig. 2(e), although the simplest expectation yields
2g�1

eff ≃ 2π × 6 MHz. Instead, the vacuum Rabi splitting
is that of a coresonant four partite (N ¼ 4 below) system
formed by three oscillators and a qubit. In the present case,
the couplings g�1

eff and g0eff are nearly equal, and the total
coupling is 2g0eff ≈

ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p
× 2g�1

eff ≃ 2π × 10.6 MHz, in a
good agreement with the measurement.
When the subsystems are brought off-resonant by detun-

ing the modulation frequency as shown in Fig. 4(b), the
system is understood as several detuned resonators that do
not exhibit appreciable energy exchange.
The resonance conditions can be illustrated by plotting

the qubit population as a function of two control param-
eters. In Fig. 5(a) we can observe the resolved sidebands
in the spectrum at frequencies ωext ¼ ω0 � nωrf ðn ¼
0; 1; 2;…Þ, see Eq. (4). The interaction is mediated to

multiple acoustic modes that exhibit sidebands as well.
Each mechanical mode represents a starting point for a set

of sideband transitions (ω ≈ ωðiÞ
m � kωrf , k ¼ 0; 1; 2;…).

They are easily identified in the measurement [Fig. 5(a)]
and in the corresponding simulation [Fig. 5(b)]. At the
lowest frequencies below the bias-T cutoff, the modulation
does not reach the qubit, and the measurement in this region
is hence equivalent to a nonmodulated system. In the
central band we see diagonal anticrossings separated by the
free spectral range ωFSR=2π ¼ 17.4 MHz. For example,
when the modulation frequency is 130–170 MHz we see

the interaction of mechanical modes ωðiÞ
m ; i ¼ 315� 8, �9,

�10 with the qubit, see Ref. [56]. Therefore by selecting

the frequency of the modulation to match ω0 − ωðiÞ
m ,

different acoustic modes can be brought into resonance
with the qubit allowing addressing and hybridizing of
different modes.
We have shown that a quantum electromechanical

system under frequency modulation can be understood
starting from Landau-Zener-Stückelberg interference.
The work enables us to selectively configure mechanical
modes at mismatched frequencies to interact with the
qubit. Through improvements on the qubit coherence,

(a)

(b)

FIG. 4. Resonances in the rotating frame. (a) Excited state
probability of the qubit under low-frequency modulation with
ωrf=2π ¼ 139; (b) with ωrf=2π ¼ 145 MHz. In both (a),(b), the
qubit frequency ω0=2π ≃ 5.484 GHz, flux VΦ ¼ 0.343 V,
A=2π ¼ 210 MHz, and Ω=2π ¼ 3 MHz. The black solid lines
are numerical simulation with γ=2π ¼ 8, gm=2π ¼ 5.5 MHz. The
vertical axis scaling from the measured phase into pe is used as an
adjustable parameter. We can infer that in (b), the sideband
acoustic modes exhibit entanglement characterized by logarith-
mic negativity on the order 0.07.

(a)

(b)

FIG. 3. LZS dynamics in the multimode electromechanical
system. (a) Experimental data depicting the qubit population
when the slow modulation amplitude is varied. (b) Simulation
of the qubit population without presence of the acoustic modes in
an otherwise similar situation. In both (a) and (b), the dashed
black (black-white) lines display the respective LZS resonance
conditions [Eq. (1a), Eq. (1b)]. The modulation frequency is
ωrf=2π ¼ 60 MHz.
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and adjustments of the coupling [56] the approach can be
useful in quantum information.
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