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A B S T R A C T

The convoy movement problem (CMP) involves the routing and scheduling of a large number of
vehicles and personnel across a network. A convoy is a group of (typically, army) vehicles and
personnel that travel together as a group. Given the nature and context of these movements, it is
necessary to avoid convoys crossing each other at a node, overtaking, or crossing each other on a
road as they travel in the network from their individual origins to their destinations. The lengths
and travel speeds are also major factors that determine the optimal travel paths and schedules for
these convoys. In this paper, we review different variants of the CMP in the literature. We then
propose a generalised problem statement for the CMP that accommodates all common variants.
This generalised problem definition addresses several important side constraints that typically oc-
cur in real-world problems. We adapt and enhance existing formulations of the CMP in such a way
that the generalised version can also be modelled. Further, we propose new approaches for solving
large instances of the generalised CMP. Our computational experiments show that the techniques
introduced in this paper substantially outperform existing approaches in the literature. We also
generate a new dataset for the generalised CMP that provides a framework for the examination of
various approaches for the CMP with a wider set of side constraints.

1. Introduction

The convoy movement problem (CMP) is an interesting combinatorial optimisation problem in which groups of (typically army) ve-
hicles and personnel (a set of convoys) travel concurrently from their respective origins to their respective destinations in a network.
Given the size of convoys and the sensitivity of these movements, it is vital to avoid these convoys crossing each other at a node,
overtaking or crossing each other on a road while they are traversing the network between their individual origins and destinations.
Therefore, the lengths of each convoy (they vary) and the speed of travel of these convoys (they vary from convoy to convoy too)
play a role in their efficient movement in the network. The CMP also finds applications in the strategic planning of movement of
sensitive (e.g. hazardous or secret) commodities across a network (Ram Kumar and Narendran, 2009).

We consider a set of convoys whose origin-destination nodes and travel time windows are given. A travel time window for a con-
voy specifies the earliest time before which that convoy cannot depart from its origin and the latest time by which the convoy must
reach its destination. We are given a transportation network in which the traversal times of the different convoys on each link (arc
or road or path) are known in advance.
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The CMP is then to determine, for each convoy, a start time and a path in the network such that no two convoys conflict. In
general, a conflict arises when at any time: (a) any part of one convoy overlaps any part of another convoy on the same link or arc
or segment, (b) two convoys travel on an arc in opposite directions (or block an arc), or (c) one convoy overtakes another convoy on
an arc. All convoys must start and finish their movements within a known time window (for each convoy). Also, the general practice
is that once a convoy starts its movement, it must continue its movement during its journey without stopping at any intermediate
point. In practice, convoys traverse the network simultaneously/concurrently.

The problem is, therefore, to find conflict-free paths for all convoys in such a way that the earliest and latest time-window restric-
tions are satisfied for all convoys. The CMP can be thought of as a vehicle path determination and scheduling problem in which the
vehicle length cannot be ignored – this is because military convoys tend to be extremely lengthy (Sadeghnejad-Barkousaraie et al.,
2017).

The CMP finds many non-military applications, such as the movement of baggage trains in civilian airports (Bovet et al., 1991).
Baggage handling conveyor systems would prefer to maintain baggage containers of each flight as a collection or a group. That is
because the containers are pushed through a complex network of conveyor belts before they reach the airport carousels for collection
by passengers. We immediately see some similarities between the baggage handling problem and the CMP as described above. The
CMP may also be thought of as a train scheduling problem on single-track network where trains have to move across a network of
single and some double track segments, which may be used for passing/crossing or overtaking (Higgins et al., 1996). Another similar
problem is the movement of automated vehicles in flexible manufacturing systems (Krishnamurthy et al., 1993). The CMP also finds
application in the strategic routing of hazardous materials (Iakovou et al., 1999). There are several path selection and vehicle navi-
gation problems in the literature which involves the selection of a route for flows from a set of origin and destination pairs across a
network (for example, see (Hertz and de Werra, 1990; Krishnamurthy et al., 1993; Montana et al., 1999)).

1.1. Literature review

Network flow models that are developed for routing of military convoys are often referred to as military mobility models. The CMP
is an important problem in the broad class of military mobility models. Several literature reviews have studied strategic military
mobility models (see, for example, (McKinzie and Wesley Barnes, 2004; Schank et al., 1991)). It is observed that (i) sustained ef-
forts have been invested into military mobility models during the last a few years to improve their interconnectivity, (ii) the usage
of advanced computer models has become necessary due to increasingly complex military logistic scenarios, and (iii) the develop-
ment of more efficient models and/or solution methodologies has become essential since current models and exact algorithms (that
use commercial solvers) cannot be used for solving large practical-sized instances. There is, therefore, room for developing efficient
(preferably exact) methods for solving problems of realistic size and complexity. In particular, there is a need to develop models
which include a wide range of practical constraints and considerations.

Several variants of the CMP have been studied in the literature. They incorporate various sets of real-world constraints. Such con-
straints often occur for simultaneous movements of multiple convoys, including blocking of roads and nodes, limitations of journey
start times for convoys, non-uniform traversal times of roads, non-uniform lengths of convoys, and headway time between convoys.
Any subset of these constraints can make the problem quite complicated. However, some of the mentioned constraints have not been
addressed in the literature. In fact, many of proposed approaches in the literature only considered a small subset of these side con-
straints for their problems.

Bovet et al. (1991) introduced the problem of scheduling military convoys within pre-specified time windows for departures
when the convoys share the same road in a network. They proposed a mixed integer programming model and a heuristic proce-
dure, based on tabu search. Montana et al. (1999) investigated the problem of routing and scheduling military convoys between
a single origin-destination pair. They considered multiple objectives and developed an algorithm based on a genetic algorithm.
Lee et al. (1996) presented a few basic models for the CMP. They presented approaches, based on genetic algorithms and also
branch-and-bound techniques. They examined the efficacy of their approaches on a generated dataset and on some real-world in-
stances. They pointed out that incorporating start time delays for journeys provides a scope for improving the ‘quality’ of routes.
Chardaire et al. (2001),Thangarajoo et al. (2008), Ram Kumar and Narendran (2008) and Goldstein et al. (2010) adapted the de-
veloped framework of the CMP by Lee et al. (1996). Ram Kumar and Narendran (2009) and Gopalan and Narayanaswamy (2009)
further addressed several additional real-life considerations in the models.

Chardaire et al. (2005) proved that the convoy movement ‘feasibility’ problem is NP-complete. They considered a simplified ver-
sion of the CMP by ignoring the blocking and no-overtaking conflict constraint. They modelled the simplified version of the prob-
lem using a time-space network. They, then, developed a path-enumeration formulation for the problem. In their approach, they
assumed that all permissible paths for convoys can be precomputed easily. However, this assumption only holds for very small and/
or very sparse networks. Tuson and Harrison (2005) efficiently solved the CMP for a set of instances using a tailored evolutionary
algorithm. Their approach cannot be generalised since they made an assumption that most convoys will not cause any conflict as
they are supposed to be sufficiently far apart in time. Gopalan and Narayanaswamy (2009) proposed approximation algorithms for
an online version of the CMP where movement demands arise dynamically over time. Ram Kumar and Narendran (2008) and Ram
Kumar and Narendran (2010) proposed an integer programming model for the CMP that explicitly handles blocking and minimum
headway constraints. They obtained some lower bounds using Lagrangian relaxation to assess the quality of a few heuristics for the
CMP. Goldstein et al. (2010) studied the complexity of the CMP and developed a genetic algorithm for solution of the CMP. Gopalan
and Narayanaswamy (2009) characterised the computational complexity of several restricted classes of the CMP with the aim of
identifying a set of problem features that makes the CMP intractable.
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Lee et al. (1996) included permissible time windows for the movement of individual convoys in their CMP model. Chardaire et
al. (2005) incorporated constraints for the earliest permissible start time, maximum allowable waiting time, latest permissible arrival
time, and also the maximum permissible travel time. Ram Kumar et al. (2009) considered the availability of multiple different modes
of travel (road/rail) for convoys. Ram Kumar and Narendran (2009) considered non-uniform travel speed for convoys depending on
prevalent conditions. Gopalan and Narayanaswamy (2009) extended the problem for online (or, dynamic) routing requests. Sadegh-
nejad-Barkousaraie et al. (2017) studied and modelled a variant of the CMP in a peacetime setting to minimise disruptions to civilian
traffic. In their approach, a set of k-shortest paths with minimum average traffic volume for every convoy is computed. They were
able to solve moderately large CMP instances with sparse networks. Note that the computational effort to obtain k-shortest paths
in a network increases exponentially with the size and network density. So, this technique is mostly appropriate for small or sparse
networks.

From the above narrative, it is clear that there has been some effort to develop mathematical models and solution approaches
that are based on either classical optimisation techniques or heuristics for solving the CMP. Some of these methods are able to solve
specific real-world CMP instances. Lee et al. (1996),Chardaire et al. (2005) and Ram Kumar and Narendran (2010) had a significant
contribution to the CMP literature for non-peacetime versions. However, the existing results have considered (what we refer to as)
classical versions of the CMP. To the best of our knowledge, no research on the CMP has considered a combination of (a) practi-
cal-sized instances, (b) a full set of diverse side constraints, and (c) dense networks. Classical formulations for the CMP have been
found to be computationally intractable for instances beyond (approximately) 50 nodes and 10 convoys (except for extremely sparse
networks).

1.2. Contributions

In this paper, we review different variants of the CMP in the literature and propose a generalised problem statement for the
CMP that accommodates all common variants. This generalised problem definition addresses several important side constraints that
typically occur in real-world problems. We adapt and enhance existing formulations of the CMP in such a way that the generalised
version can also be modelled. Further, we propose new approaches for solving large instances of the generalised CMP. Our computa-
tional experiments show that the techniques introduced in this paper substantially outperform existing approaches in the literature.

The paper is organised as follows. In Section 2, we summarise variants of CMP in the literature. We also differentiate the gen-
eralised CMP (GCMP) from classical CMP versions and present side constraints which are addressed in the GCMP. In Section 3 we
formally present a definition of the CMP. We further adapt existing formulations for the CMP and generalise the formulations for the
GCMP. In addition, we improve the existing formulations. We develop a strong and tight mathematical formulation that can solve the
generic problem. We believe that our techniques are also applicable for many other restrictions and variants of the CMP discussed in
the literature. We discuss the nuances of our formulations and improvements in more details. In Section 4, we describe the process of
generation and specification of our new dataset for the GCMP. We also explain the rationale for the effectiveness of our approaches.
In Section 5, we report the results of our computational experiments on our generated dataset for all approaches that we present. We
also discuss the efficacy of our techniques. Finally in Section 6, we summarise our contributions and discuss future research opportu-
nities.

2. Problem background

There are very many versions of the CMP in the literature, each of which considers a specific side constraint. There is, in our view,
no unified model of the CMP that includes all the goals and specifications, which would allow an effective benchmarking and com-
parison of formulations and approaches. With that in mind, we first enunciate the features that ought to be admitted in a generalised
version of the CMP (GCMP). The GCMP provides a framework for a generalised problem that incorporates a wide range of practical
considerations arising in real-world scenarios for the CMP. We summarise the side constraints that we address in our definition of
the GCMP and compare these with the kinds of constraints that have been considered by previous seminal attempts in the literature.
This summary is provided in Table 1.

As we can see, if the GCMP is defined by all the unifying considerations/features that are presented in Table 1, there is no work
in the literature that specifically solves such a GCMP. Our contribution fulfils a specific need in the literature.

In the classical CMP, once a convoy starts its travel on its path, it is not allowed to pause or stop on any intermediate arc or
node till it reaches its destination. In practice, certain nodes may have special facilities that are able to accommodate convoys that
halt there. In this case, a convoy can wait at such intermediate nodes as long as its movement time remains within its overall time
window. The travel time of a convoy is calculated by its travel time plus waiting times at these special nodes along its path from
origin to destination. A convoy u cannot use a path which takes a total time more than a corresponding maximum permissible route
duration . Also, no convoy may overtake another convoy in an arc or a node on its path.

Furthermore, any two convoys may not ‘criss-cross’ each other, or block each other on a road. A convoy on a road is blocked
if a part of the convoy travels in the opposite direction to another convoy on that road at the same time. Any road is mod-
elled by two directed arcs with the same endpoints but with opposite directions. Therefore, only one of these two such arcs can
be used/occupied at any point in time. Similarly, any two convoys may not block any node. A node is blocked when a con-
voy arrives there between the arrival and departure of another convoy at the node. Also, there must be a headway time gap be-
tween travels of every pair of convoys which use the same arc or node. That is, a convoy u may use an arc no earlier than the
headway after the usage time of the arc by convoy v if convoy v first uses that arc. The travel time of the whole length
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Table 1
Variants of the CMP in the literature and current work.

consideration/feature
Lee et al.
(1996)

Chardaire et al.
(2005)

Ram Kumar and
Narendran (2009)

Sadeghnejad-Barkousaraie et
al. (2017)

this
paper

dense network – – yes – yes
blocking at nodes – yes – yes yes
blocking at arcs yes yes yes yes yes
overtake at nodes – – – yes yes
overtake at arcs yes yes yes yes yes
starting, waiting and finishing time-window for

each convoy
– yes – yes yes

maximum travel time – yes – – yes
non-uniform traversal time – – – yes yes
directed arcs – – – yes yes
non-uniform headway time – – yes – yes
non-deterministic waiting at nodes – – – – yes

of a convoy may be included in the headway time between two convoys. Every pair of convoys must also maintain this headway time
gap at all nodes. We summarise the above notations in Table 2 for a convenient reference.

Various objective functions can be considered for the CMP. In this paper, we consider the minimisation of the total arrival times
of convoys at their destinations. However, the formulations presented in this paper are flexible enough to cater to several different
objective functions. Alternately, it is possible to minimise the arrival time of the last convoy at its destination (a min-max problem).
Another option is to minimise the total travel time of all convoys. This is especially important when convoys contain hazardous or
sensitive materials. Another reason to use this objective function is to minimise total blockage of road traffic by convoys in the net-
work. Another option occurs when the number of convoys is large or the time windows are too tight so that it may not be feasible
to schedule all convoys. In this case, the objective may be to maximise the number of routed convoys within their time windows. In
this paper, we minimise the total arrival time of all convoys at their destinations.

2.1. Considerations for the generalised convoy movement problem

The CMP, as described above, incorporates the basic requirements. However, there are more considerations in practice. In this
section, we discuss a few additional considerations for the CMP. We call the convoy movement problem with these considerations
the generalised convoy movement problem (GCMP). We then modify existing formulations in the literature to formulate the GCMP.
1. Permissible waiting at intermediate nodes: Some intermediate nodes may be facilitated such that waiting for a certain and discrete

amount of time at those nodes is permissible. This option may only be permissible for a subset of convoys. Chardaire et al. (2005)
modelled this option by adding ‘loop’ arcs to such a subset of nodes. The waiting time for a convoy is accommodated by routing
the convoy on such a loop arc whose length is the permissible waiting time. Here, we address this generalisation differently. In our
approach, a node i whose permissible waiting time is , is substituted with two new nodes and . Any incoming arc to node i is
now an incoming arc for node , and any outgoing arc from node i is now an outgoing arc from . In addition, two parallel arcs
from to are added, one with traversal time , and the other with traversal time 0. These two arcs accommodate two options
(1) waiting unit of time at node i, and (2) passing through node i without stopping. When some convoy is not permitted to stop
at such a node, the corresponding travel time of the ‘waiting-related’ arc is set to infinity.

2. Permissible non-discrete waiting intermediate nodes: In addition to the above option, some intermediate nodes may allow waiting
for a non-deterministic amount of time for some convoys. In this case, the waiting time at such nodes is not restricted to a fixed
amount of time. In practice, this option is typically used when some nodes provide a safe intermediate location (for example, a
town) where the safety of convoys and other key factors are assured.

Table 2
Notations and parameters in formulations of the CMP.

notation description notation description
N set of n nodes origin of convoy u
A set of arcs destination of convoy u
U set of m convoys earliest start time for travel of convoy u

subset of nodes where waiting is permitted latest finish time for travel of convoy u
travel time of convoy u on arc maximum allowed delay for convoy u to start travel after
headway time of convoy u after convoy v maximum allowed time for travel of convoy u
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3. Permissible criss-cross (blocking): While it is necessary to prevent blocking at nodes and arcs, we may make exceptions for certain
pairs of convoys at a specific node or arc. This is particularly applicable for decoy convoys. Decoy convoys are meant to mislead
the enemy by distracting them with extra movements along a particular arc.

4. Inaccessible nodes or arcs for some convoys: In practice, it is possible that certain roads or nodes are not usable for certain convoys
due to weight limit of bridges in roads, maximum clearance of bridges for tall convoys, or unsafe areas for relatively unprotected
military convoy due to threat of enemy actions. Therefore, we may incorporate such a restriction for a subset of convoys for a
subset of nodes or arcs.

5. Non-uniform convoy lengths: The lengths of convoys are important in modelling of blocking of nodes and arcs. In the literature, it
is assumed that all convoys have the same length. However, this assumption may not be valid in practice. We may include the
length of convoys in the headway times. On the other hand, an additional term can be included for blocking of opposite direction
arcs.

In the following section, we give a formal definition of the convoy movement problem and review existing formulations for the
CMP, and generalise them for the GCMP. We improve the existing formulations by introducing several pre-processing stages that
reduce the size of the MIP models (without affecting feasibility). We propose a novel state-of-the-art formulation for the GCMP. We
show that our formulation is efficient. We also develop more efficient methods for solving large-scale GCMP instances. According to
our computational experiments, optimal solutions for the tested instances can be obtained by solving the relaxed model. Furthermore,
we generate a dataset for the GCMP that may be used by researchers in future research.

3. Model formulations

In this paper, we use directed graphs to model more general networks. In this model, each edge/road is replaced with two arcs
with opposite directions between the corresponding end-points. Consider a directed graph , where N contains n distinct
nodes, and A is a set of arcs in the graph; . We are given a set U of m mutually independent convoys. For each , nodes

, and non-negative real parameters , and respectively determine the source and destination nodes, the earliest
possible start time, maximum delay, latest permissible arrival time, and maximum permissible duration of travel for convoy u. For
any convoy u, we must design a path in G that commences at node and concludes at node . In addition, any convoy u must
initiate and complete its travel within the time window without delaying its travel initiation by more than units of time
after . Since the travel time of a convoy along a road depends on the convoy type, the condition and the gradient of the road, the
travel durations can vary for different convoys on various roads/arcs. Thus, we assume that a convoy u requires a certain amount of
time to traverse arc .

3.1. Mathematical formulations

We consider an integer programming formulation for the CMP which has been extensively utilised in the literature. This formula-
tion was proposed and used by Ram Kumar and Narendran (2009), Ram Kumar et al. (2009) and Ram Kumar and Narendran (2010).
We adapt this formulation and slightly modify it to cater to the GCMP. In this formulation, three sets of binary variables are used to
design paths for convoys and resolve their conflicts. Two sets of real variables are used to control time windows of paths. We define
binary decision variables as follows. For and , define

In order to enforce restrictions on blocking two arcs with opposite directions by two convoys, and also using an arc at most by one
convoy at any time, we use two sets of variables to determine which of the two convoys reach arcs earlier. For and ,
define

For , and define

Define non-negative real variables and to be, respectively, the arrival and departure times of convoy at node if
convoy u reaches i at all. Otherwise and do not mean anything. Therefore, the start time of the journey by convoy u is and
the completion of the journey can be represented by for any . Note that the arrival and departure times of a convoy at a
subset of nodes can be different, where is the set of nodes that allow waiting for an (indeterministic) period of time. We present
a formulation for the GCMP. In Sections 3.3 and 3.4, we present our improved formulations/approaches based on this formulation.
We will also explain how certain features of this formulation can be improved or generalised.
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(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

In the above formulation, is a sufficiently large constant. We have not observed any investigation in the literature to reduce the
usage of this parameter in the formulation, or estimate a suitable range for M in order to avoid any numerical instability in the solu-
tions. In the subsequent sections, we consider it with a view to improving the formulation.

The objective function (1) represents the total arrival times of convoys at their respective destinations. The constraints (2)–(4)
represent the flow constraints for every convoy. The constraints (5)–(7) guarantee that the travel of convoy oc
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curs within the time window , whereby travel is initiated no later than . The maximum duration of each path in the
problem is restricted to its known allowed time by the constraints (8). The constraints (9) and (10) ensure that the respective arrival
and departure times for each convoy at each node occurs according to the convoy movement. Note that the constraints (10) ensure
that there is no waiting of convoys on arcs of paths. The arrival time of each convoy to its destination is correctly calculated by
the set of constraints (11). In fact, this set of constraints is redundant when the constraints (9) and (10) are satisfied as long as the
underlying network is simple (it does not have any loop or parallel arcs). Inclusion of the constraints (11) also provides a stronger
formulation for the problem (Ram Kumar and Narendran, 2010). The constraints (12) and (13) ensure that any convoy departs a
node once it reaches the node unless there exist facilities where convoys can wait for a while (in accordance with Item 2 in the GCMP
– see Section 2.1 for a full list of all GCMP considerations). Note that only one of any two of convoys can traverse an arc at any time
when both convoys use the arc. Using the constraints (14)–(17), we make sure that at most one of the two corresponding variables
takes value 1. Similarly, using the constraints (18)–(21), we make sure at most one of the two corresponding variables that mark
the first usage of two opposite-directed arcs between any pair of convoys takes value 1. The constraints (22) guarantee the required
headway time gap between travels of any two convoys which use the same arc (no arc is used by two convoys at the same time).
The constraints (23) guarantee that any two arcs with opposite directions are not blocked by any pair of convoys. This formulation
consists of binary variables and real variables. It has at most constraints.

We can cater to Item 2 of the GCMP in CMP-I by modifying the constraints (10) to the following:

where denotes the maximum waiting time at node j. Item 3 can be applied by omitting corresponding constraints for pairs of con-
voys or arcs in the constraints (22) and (23). Catering this item is not dependent on whether waiting at a node is permitted or not.
Note that if blocking is permitted for a node which is substituted with two nodes and two arcs (see Item 1), then this exception must
be inherited to the substituting elements. We can cater to Item 4 of the GCMP in CMP-I by setting to zero if either of convoys u
cannot traverse arc .

In order to accommodate Item 5 of the GCMP, we modify the constraints (23) to the following:

where incorporates the length of convoy v.

3.2. A path selection formulation

In path-enumeration approaches, the set of all paths for each origin-destination pair is computed in advance. Then a set of feasible
and optimal paths is determined which contains exactly one path for each origin-destination pair. Chardaire et al. (2005) developed
a time-space network model which uses this approach for the CMP. For this model, all possible paths in the digraph are enumerated
and these are combined with all permissible start-times. Each node in this time-space network represents a potential conflict for a
pair of convoys.

For a given sets of all possible paths for convoys, this approach reduces the problem to finding paths and resolving conflicting
paths for all sets of convoys. In this approach, the modelling of convoy routing is independent of arcs. So, the formulation is com-
paratively easily adaptable for the GCMP. In our computational experiments for this model, we adapt a classic path enumeration
approach to generate a set of paths. We also generalise an existing path selection formulation for the CMP (see (Chardaire et al.,
2005)) which can address a wider range of practical conditions and side-constraints. In Section 3.5, we compare this formulation
with other approaches that we develop.

In the following, we denote the set of all paths from to in the network G by , for all . The sets of paths for all convoys
are computed in advance. Any path can be represented by an ordered series of nodes from its origin to its destination. Furthermore,
we say node i is in path p, denoted by , if p passes through node i. Similarly, we say arc , if node j appears exactly after
node i in path p. By for any arc and paths p and q, we mean and . For any path , and
any node , the subpath of path p is the segment of p that consists consecutive nodes in p from to ; that is ,
for any . For any convoy and path , the travel time of u on p, denoted by , is the total travel time of convoy
u on arcs of p, that is

Similarly, the travel time of any convoy u on a subpath of path , for any , is defined by . For any two distinct
convoys with the same source and the same destination, their sets of paths is the same. However, two paths and their travel schedules
must be selected without any conflict.

Let binary decision variable to be 1if and only if path is chosen for convoy . We use another set of binary vari-
ables for any pair of paths of two convoys to control the order of their usage of a common node.
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Let to be 1if path reaches node before path reaches i for every pair of distinct convoys , other-
wise . We use the real decision variable for the start time of travel by convoy u.

We present a path selection formulation for the GCMP in the following. The objective function in this formulation is to minimise
the total arrival times of convoys at their corresponding destinations.

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

The objective function (25) represents the total travel times plus the start time of the travels for all convoys. Using constraints (26),
we ensure that exactly one path is chosen for each convoy (from its corresponding set of paths). Through (28), we ensure that if two
chosen paths pass through the same node, they do not block that node. Note that this set of constraints together with (27) guarantee
that when two paths and pass through a node , at most one of them use that node first; the corresponding binary
variables take the right values such that . Also, the constraints (29) ensure that any two paths using the same node
maintain the required headway time at that node. The generalisations of CMP to GCMP can be accommodated for this formulation
in the preprocessing stage. It can be achieved by realising the set of mutual paths and nodes where conflicts may arise. Then we
consider corresponding limitations in constraints (28) and (29).

While the above formulation is easier and more straightforward when compared to CMP-I, the number of binary variables can
be exponentially large. The number of constraints depends on the number of paths and the lengths of paths. Therefore, based on the
sizes of the path sets for convoys, both the search space for optimal set of paths, and the size of the MIP model can be very large.
In Section 5, we discuss the computational efforts for delivering solutions from this formulation in more detail. We show that this
formulation is mostly efficient only for small and sparse networks.

3.3. Improvements to CMP-I

In this section, we adapt existing MIP formulations for the CMP for the GCMP. We improve it to formulate and solve the GCMP.
In addition, we develop a new mathematical formulation for the GCMP. In Section 3.1 we showed how the formulations CMP-I and
CMP-Path can be used to model the GCMP. In this section, we modify and improve CMP-I by using fewer variables and tighter con-
straints. In this modification, we use different constraints to model the problem. We will discuss how our modifications could poten-
tially improve the computational performance of CMP-I (this is discussed in detail in Section 3.5). We first introduce a few notations
before presenting our new models.

Let denote the subset of nodes which are reachable within the maximum allowed travel time from a node by a con-
voy . Also, let for and . In fact, there are arcs in the network which are either not navigable by
some convoys – because of some restrictions (see Item 4 in the GCMP definition) – or too lengthy to be included in a path for some
convoys (in other words, for some arc and convoy u). Interestingly, for all instances used by Chardaire et al. (2005), Lee
et al. (1996) and Ram Kumar and Narendran (2008), the average size of is less than a quarter of the total size of N. Using this
definition, we exclude unnecessary variables and constraints in the model. This means that the number of variables and constraints
in CMP-I can be significantly reduced.

To further reduce the effective size of the problem being solved, we only consider a subset of the headway constraints, overtaking
constraints, or node-blocking or arc-blocking constraints for pairs of convoys which may have such conflicts. Let be the
set of all ordered pairs of convoys taken away all pairs such that either , or .
In any of the mentioned cases (except the first one), the journey of convoy u will be completed before the journey of convoy v starts.
Hence, we can safely omit the conflict constraints for any pair of convoys which is not in W.
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We use to denote the smallest travel time to reach i from by convoy u, for all . This is equivalent to the shortest
path when the arc traversal times are considered as the weights of arcs. This set of parameters can be pre-calculated using the Dijkstra
single pair shortest path algorithm.

In computational experiments for CMP-I, we observed some instability in determining the values of some decision variables. A
reason for this instability is the inappropriate choice of the constant M in the formulation (see Section 3.5). In order to address this
issue, and produce tighter constraints. We calculate an upper bound for the difference of arrival times at endpoints of each arc by
any convoy. For a given arc and convoy, we use the maximum difference between the latest possible arrival time of the convoy at
the tail-node of the arc, and the earliest possible arrival time of the convoy at the head-node of the arc. Define

In the above definition, is the latest possible arrival time of convoy u at node for any feasible path. Clearly,
the earliest arrival time of convoy u at node j is . Therefore, is a trivial upper bound for the difference of arrival times of
convoy u at endpoints of arc . For the same reason, we define an upper bound for the time difference between two convoys at
every node. Define

Note that when there is no blocking or time conflict between paths of two convoys, the respective constraints and variables can be
omitted from the model. Thus, is a trivial upper bound for the arrival time difference of convoys u and v at node i. By using
and , the instability of using the constant M is improved.

All of the sets and parameters , and can be computed in advance with computational effort. We reuse
the same decision variables for CMP-I, with smaller ranges for indices: for and such that and for

and such that for and . Note that the decision variables are not needed here since the
CMP and GCMP prohibit convoys from waiting anywhere en-route (neglecting rare exceptions). So, the arrival times and departure
times are mostly equal. We will later make some special provisions in the mathematical models for the rare cases where certain nodes
allow waiting time.

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

9
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(45)

(46)

(47)

(48)

(49)

In the above formulation, the number of binary variables is , and the number of constraints is roughly
, where is the average size of sets. The objective function and constraints (34)–(39) are

similar to (1)–(4) in CMP-I with smaller ranges for indices. The constraints (40) provide lower bounds for feasible paths of convoys
using the shortest time to the destination nodes. The constraints (41) ensure that the headway time between arrival times of any two
convoys are considered. In comparison with (22), the upper bounds for the scheduling variables are chosen more judiciously. This
helps in the construction of (what we believe is) a more ‘stable’ formulation. This is also true for (42)–(44). The constraints (42)
ensure that no two arcs with opposite directions are blocked at any time. The constraints (43)–(45) make sure that arrival times at
nodes are calculated based on the travel times on arcs in the paths. The constraints (46)–(48) determine the values of binary variables
according to routing variables.

The above is a more generalised formulation for the GCMP. In fact, CMP-II can be slightly modified in order to customise the for-
mulation for any combination of generalisations required for the GCMP (see Section 2.1). We can include non-deterministic waiting
times at certain nodes by altering the constraints (44) in the following way:

where denotes the maximum waiting time at node j. Furthermore, we can allow two specific convoys to criss-cross two arcs with
opposite directions at the same time by altering the constraints (41) and (42). Finally, altering (41) can be used to incorporate
non-uniform lengths of convoys.

3.4. Node flow formulation

We note that CMP-I and CMP-II formulate the problem by realising the optimal path for each convoy through choosing a series
of arcs in the network. In this section, we develop a new formulation for the CMP in which flows through intermediate nodes of
paths also contribute to establishing the feasible region. We observe that it is a more compact and is therefore, likely to be a more
efficient formulation when compared to the previous formulations. In this section, we reuse notations and definitions used in CMP-II.
In addition, we introduce the following notations. Note that if either or , then node i is not on any feasible path for
convoy u. We define to be the subset of nodes for which neither of these two conditions is applicable. Therefore, consists of
nodes on some feasible path for convoy u, for any . Note that and , as defined in Section 3.3 can be computed in advance.
We reuse the notations for decision variables in CMP-I: and . We further define binary variable to be 1if the optimal path
of convoy u visits node i, otherwise 0, for . We also define binary decision variables if convoy u reaches node i before
convoy v reaches node i when both convoys pass through node i, otherwise for and . We notice that the ranges
for indices of variables in the following model is substantially smaller than those of CMP-I, specially when the underlying network is
dense.

(50)

(51)

(52)

(53)

(54)

10
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(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

In the above formulation, the number of binary variables is , and the number of constraints is roughly
, where and are respectively the average sizes of the sets and . The constraints

(51)–(54) are another form of the flow conservation constraints, in which the variables are incorporated. In this representation,
the flow variables and the choice of nodes on the optimal paths are interrelated. The constraint (55) requires the source and destina-
tion pairs to be on the optimal paths. Alternatively, one can set the individual corresponding variables for sources and destinations to
be 1. The constraints (56) guarantee that nodes on the optimal path of each convoy to be neighbours. This together with constraints
(51)–(55) give a set of paths for all convoys. The constraints (57) and (58) provide strong lower bounds for arrival and travel times,
respectively. The constraints (59) and (60) determine the order of visiting a node by any two convoys which visit the node. The rest
of constraints make sure that headway times and blocking rules are met by using arrival times of pairs of convoys at nodes.

An important feature of CMP-Node is that it is a very tight formulation. So, it requires a smaller tree in any branch and bound
method for its solution, in comparison with the previous formulations. In computational experiments with a branch and bound
method, we set the integrality of the node traversal decision variables , and the convoy sequencing decision variables to be,
respectively, the first and second priorities in branching. Finally, we set the arc traversal variables to be the lowest branching
priority in the branch-and-bound tree. By employing these settings, we expect to see a significant impact on computational perfor-
mance. Intuitively, much fewer variables for branching results a smaller branching tree, while paths are being designed.

A generalisation of CMP-Node to the GCMP can be obtained by slight modifications to some of the constraints. For instance,
non-deterministic waiting times at nodes can be addressed in the same way as discussed for CMP-II. Permission of criss-crossing for
some pairs of convoys can be accommodated through omitting a subset of constraints (62)–(64) which are those constraints for the
corresponding pairs of convoys in W. As before, when there is non-uniform length of convoys, it can be incorporated into the head-
way times.

3.5. Discussion on improvements

We now analyse and compare the efficiency of the mathematical formulations for the CMP that we have presented. We show that
our approaches reduce the size of the integer program that is being solved. Based on this, we analyse the formulations, and provide
insights on the computational efficacy of the models.

We first compare the formulations CMP-I and CMP-II. The size of the integer program induced by CMP-II (the number of
variables and constraints) is reduced by restricting the permissible ranges of variables indices. Since the average size of is a
quarter of the size of N, the number of constraints and variables are significantly reduced. Hence, CMP-II is a much more com-
pact model as compared to CMP-I. As a result, we expect the number of branching nodes in the branch and bound method
for CMP-II to reduce. Note that the computation of the sets for takes negligible amount of time, particularly

11



H. Mokhtar et al. Transportation Research Part E xxx (xxxx) xxx

when compared to the time taken by the increased number of branching nodes. Furthermore, a number of constraints are dropped in
CMP-II by only examining the conflicts between pairs of convoys in W.

A major preprocessing step in CMP-II is the computation of shortest paths , which is used in (40), for . This im-
proves the lower bound for , which has a direct relationship with the objective function (45). Therefore, a stronger
lower bound on the objective function is provided in the early stages of the branch and bound. This should ultimately improve the
computational performance.

The constraints (22) and (23) and (43) and (44) are used to resolve conflicts in blocking and headway in CMP-I and CMP-II, re-
spectively. In CMP-I (frequently used in the literature), an arbitrarily large constant M is used (see, for example, (9), and 22,23). In a
feasible solution of relaxed CMP-I, if for some (hence, or is for some ), and some small
, it can be inferred that arc is traversed by convoy u. However, for a sufficiently large value of M, the right hand sides of (9) and
22,23, will be sufficiently large so that the corresponding constraints are trivially valid. So, there is no guarantee that for fractional
values of , the constraints (22) and (23) correctly hold. So, these sets of constraints in CMP-I can be poor from the point of view of
computational experiments (and performance). However, the corresponding constraints in CMP-II use more appropriate values and
this is likely to result in tighter constraints and a more stable formulation for fractional values of decision variables.

As explained above, the integer programming problem induced by CMP-II is substantially compact because of the exclusion of
extraneous constraints and unnecessary decision variables. It is also a tighter formulation because of tighter bounds for variables
and introduction of tighter constraints. As a result, we expect the computational performance of CMP-II to be far better than that
of CMP-I. However, since both formulations are based on the same arc-traversal approach, the expected improvement may not be
hugely significant.

Since CMP-Node already contains improvements of CMP-I in CMP-II, we only compare CMP-Node with CMP-II. First note that the
introduction of the new set of variables does not increase the dimensions of the polyhedron of CMP-II. The main reason is that
the number of linear independent constraints in CMP-II is not increased in CMP-Node. That is because the facets defined by (39) in
CMP-II are the same facets specified by (51) and (52) in CMP-Node. Furthermore, the constraints (51)–(53) together with the con-
straints (54) may reduce the dimension of polyhedron and provide a tighter formulation for the problem. Also, the sets of constraints
(55), (57), (59) and (60) bring about a tighter formulation overall. The sets of constraints (54), (55), and (57) ensure strong bounds
for variables , and the constraints (57) provide a strong lower bound for arrival times at nodes. The blocking and headway con-
straints are included in CMP-Node by considering the convoy arrivals at nodes. The sets of constraints (59)–(64) provide a stronger
and more compact formulation for this purpose as compared to CMP-II.

In addition, CMP-Node has fewer binary variables. Also, it has fewer
constraints. Clearly, is an indication of the number of conflicts between convoys across the network, where . There-
fore, when either (a) the number of convoys is large, (b) the graph is dense, or (c) is large, CMP-Node is a much more compact
formulation. As a result, the solution of the relaxed CMP-Node can be quite fast, specially for larger instances. Thus, any branch and
bound method for CMP-Node can be expected to handle much larger instances in general.

Overall, we deduce that CMP-Node is a more compact and stronger formulation as compared to CMP-II. Thus, the computation at
each node in branch and bound tree search is likely to be easier. Also, it is expected that the initial lower bounds for the objective
value will be (substantially) stronger, and hence, the number of required branching nodes is likely to reduce significantly. Also, the
smaller dimensions of CMP-Node for larger instances, either for larger number of convoys or nodes, or for more complex instances,
brings about a more efficient formulation for large and hard instances. Based on these arguments, we expect CMP-Node to strongly
outperform CMP-I and CMP-II.

The path-enumeration formulation CMP-Path, in contrast to all other formulations in this paper, requires the generation of sets of
paths for each convoy. While the formulation of CMP-Path is quite simple, computational experiments may not be that favourable.
The most important assumption of this formulation is that the sets of paths for convoys are available, or can be obtained with a
reasonably small amount of computational effort. However, the computation of sets of paths is a challenging task, especially for
large and dense networks. In a fully connected network on n nodes, there are simple paths of length k for any integer

. Therefore, an upper bound for the number of paths for a convoy can be approximately up to , where .
The underlying networks of more practical and non-trivial instances of the CMP are generally dense. Therefore, the number of paths
for each convoy grows exponentially with the order of the network in practical CMP instances. So, we expect that using CMP-Path
to be an inefficient approach for practical instances unless we are faced with a combination of small and sparse networks. The com-
putational efforts of using CMP-Path reported in the literature increases exponentially with the density and/or the number of nodes
in the network. Having said that, an implementation of the column generation method may lead to an improved experiment for this
formulation as paths can be enumerated during the solution of the formulation. While the column generation may be a good idea to
explore for this problem, we leave it for future researches on this problem. Not surprisingly, the usage of CMP-Path in the literature
is mostly restricted to instances with very sparse networks (that is, the density between and ), or small number of nodes.

4. A new dataset for the GCMP

The GCMP involves a range of practical considerations which is more general than previous works in the literature. On
the other hand, there are not many benchmark datasets publicly available for the CMP due to sensitivity of data in this re
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search area. In fact, we are not aware of any real-world publishable set of instances. Therefore, we generate a new dataset for the
GCMP. We further make this dataset available online to be used as a benchmark dataset for future research/researchers in this area
(see (OR Dataset Library, 2018)). In this section, we explain our method for generating this dataset.

Suppose we are given two positive integers n and m. We randomly choose n points in a two-dimensional rectangle with dimen-
sions 2000and 2000. Then, we randomly select a fixed number of ordered pairs of nodes, and add them to the set of arcs. In order
to ensure there exists a path between each pair of nodes, we first add a Hamiltonian cycle in the network. We allocate the Euclid-
ean distance between the endpoints of every arc as its length. We choose random coefficients for m different convoys as speeds of
convoys. Using the Euclidean distances, we calculate the arc traversal times for all convoys. The number of arcs in the set of arcs
A determines the density of arcs in the network. The (arc) density of a directed graph on n nodes is the ratio of its number of
arcs to the maximum possible number of arcs (Wasserman and Faust, 1994). Note that the average degree of nodes is di-
rectly related to . Among n nodes, we randomly choose nodes as the origin and the destination nodes for m convoys such that
the origin and destination nodes for each convoy are distinct and there exists at least one path from the origin to destination in
the constructed network for every convoy. We construct instances with and

.
We also generate parameters for the earliest start times, and the latest arrival times for convoys. The set of convoys are parti-

tioned into k subsets for some integer . We also determine k non-overlapping time intervals. Any subset of convoy partitioning
is uniquely assigned to one of the k intervals. Then the start time of convoy u is randomly chosen in its assigned interval. The
allowed waiting time is randomly chosen between 0 to 100. Then, for every convoy, we generate a suitable finish time using travel
times. We heuristically estimate the approximate shortest path travel time between the origin and destination nodes of every convoy.
Then we allow the finish time for each convoy to be sufficiently large, that is an upper bound for travel time plus . We fix
a value of headway for each convoy. We determine convoy movement times in the range of 2500 to 25000.

4.1. Features of the GCMP dataset

Tuson and Harrison (2005) showed that the CMP instances in which convoys have non-overlapping schedule times are easy to
solve, especially on sparse graphs. Such instances can be efficiently solved using random search techniques. Also, it is observed in
many cases that a set of shortest paths for convoys is normally a feasible solution (in other words, compatible with restrictions),
which imply that such instances are quite easy to solve. However, our generated GCMP instances (which we talk about, in greater
detail, a bit later) have overlapping time intervals for convoys which makes the dataset non-trivial. In the generation of our GCMP
instances, we set start times in such a way that permissible time intervals of at least one third of convoys overlap. So, the optimal
paths of convoys typically have common nodes and arcs. In addition, versatile side constraints addressed in our GCMP (as compared
to the CMP) often make the approaches based on shortest paths incompatible.

Also, we include a wide range of arc densities in the underlying networks that we generate. Thus, there are instances with a wide
range of search space sizes, and hence require more computational effort. Therefore, finding optimal solutions for our new/generated
GCMP instances make the GCMP non-trivial to solve. For each tuple , we generated three families of instances, denoted by A,
B, and C.

4.1.1. A more complex family of GCMP instances
To generate even harder instances for the GCMP, we generate two other families of instances. In the new families of instances,

we use only one time interval for start times of convoys. This means that all convoys may be in motion in the same time interval.
As a result of this modification, the chance of conflict between two paths is considerably higher which makes the competition even
tougher. We set the waiting time , for every to be sufficiently large so as to avoid infeasibility of instances.

Due to a similar time interval for choosing start times of all convoys, and longer waiting times, there is a much higher scope for
convoy interferences. It is expected that these families of instances will be comparatively harder to solve. We denote these families
of tight and hard instances by ‘T’ and ‘H’, respectively.

5. Computational results

In this section, we present computational results of the formulations for the convoy movement problem that we developed in this
paper. The computational experiments were carried out on the dataset that we generated (Section 4). We analyse and compare all the
approaches. We will show that our CMP-Node formulation is an efficient method for solving large instances of GCMP. All methods
were coded in the programming languages Java or Python using the commercial solver CPLEX 12.7. All computations were per-
formed on a computer with 6 cores of 2.7GHz processors and 64GB memory, running a 64-bit Linux operating system.

Due to the confidentiality of data in this research area, there are very few available datasets in the literature. Sadeghne-
jad-Barkousaraie et al. (2017) has provided a dataset with 6 instances which only contains information on the network structures.
The networks in this dataset are very sparse (the network densities of four of them are less than 0.006). The origin-destination
pairs and travel time intervals for convoys in this dataset are not specifically provided. Considering that the goal and the objec-
tive function of our work is to develop approaches for a generalised version of the CMP and dense networks, we do not bench
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mark the results obtained by Sadeghnejad-Barkousaraie et al. (2017) against other methods or indeed, our own methods. The ap-
proach of Sadeghnejad-Barkousaraie et al. (2017), which can solve large instances, is (in our view) limited to extremely sparse net-
works. Their decomposition approach cannot be generalised for the CMP with classical objective functions and side constraints. In
the previous studies, the average out-degree of nodes is between 1 and 3 (Chardaire et al., 2005; Sadeghnejad-Barkousaraie et al.,
2017). In large cities or densely populated countries, the average out-degree of networks can be larger than 2. In fact, in a military
movement planning in a region, the cities with higher out-degree are normally selected to form the underlying network. The block-
age of roads by enemy actions in such networks is less likely to leave convoys stranded before reaching their destinations. So, the
average out-degree of larger than 2 is very common. Therefore, a small average out-degree or a very small network density is not
very realistic. Thus, most of the developed approaches in the literature cannot be scaled for more realistic instances. Therefore, in
contrast to the tested instances in the literature with a very low density, as small as 0.02, we use our generated dataset (Section 4)
with instances of density from 0.3 to 0.6 as benchmark in order to test the efficiency of methods and also future studies on solution
algorithms.

In Tables 3–8, parameters and respectively represent the number of nodes, the number of convoys, the network
density, the family of instances (note that we generated multiple distinct instances for the same ), and the optimal values of
instances. The maximum permissible travel time is denoted by which we set to be uniform for all convoys. The presented com-
putational times are CPU times for the best obtained solutions for the corresponding approaches. The time limit of computations,
including preprocessing and solutions, was set to 90min. If within the time limit a method finds a feasible optimal solution, the cor-
responding CPU time is presented in CPU seconds (sec).

Table 3 presents the computational results for small GCMP instances using all approaches discussed in this paper. In these
experiments, we choose , and for all convoys. CMP-I, CMP-II and
CMP-Node were able to solve all instances very quickly. We observed that in computational experiments for CMP-Path, when the
number of paths is large, the required memory for the program exceeds our computational limits and the program halts (indicated by
‘t’ in the tables). Although CMP-Path was able to solve a few instances (with small n and ) in a short period of time, it was unable
to solve larger or denser instances. As shown in Fig. 1, the computational time of CMP-Path increases exponentially with the number
of paths, which in turn increases exponentially with n and . For larger instances with fairly dense networks, for example,
with , the required memory to initialise and run CMP-Path becomes computationally expensive. However, as observed by
Chardaire et al. (2005), CMP-Path can solve small and sparse instances quite fast. We point out that in most instances experimented
by Chardaire et al. (2005), the network density is less than . In these instances, the number of paths for each convoy is rela-
tively very small with respect to the number of nodes. Since CMP-Path is not an efficient method to solve large and dense instances,
we do not present results for this method in Tables 4–8.

Table 4 presents computational results for CMP-I, CMP-II and CMP-Node for medium-sized instances. The computational exper-
iments performed on instances with the number of nodes in , the number of convoys for all convoys,
and three families of instances, namely A, B, and C. The computational results are presented in different columns based on the used
method and the values of network density . As shown in Table 4, CMP-I, CMP-II, and CMP-Node were able
to solve all of these instances in a short period of time. The performance of CMP-II and CMP-Node are almost in the same range.
However, CMP-I required around 7 times more computational efforts to solve the instances as compared to CMP-II and CMP-Node.

Table 3
Computational results for small GCMP instances.

n m
CMP-
I

CMP-
II

CMP-
Node

CMP-
Path n m

CMP-
I

CMP-
II

CMP-
Node

CMP-
Path

8 4 0.30 93725 0.70 0.25 0.16 0.24 9 6 0.30 200374 4.16 0.23 0.35 0.90
0.40 14517 0.99 0.33 0.20 4.15 0.40 69712 0.84 6.81 0.88 317.28
0.50 14409 1.11 0.30 0.22 200.93 0.50 67218 1.00 0.29 0.40 t
0.60 14349 4.09 0.46 0.26 t 0.60 67321 1.25 5.85 0.23 t

5 0.30 184583 0.85 0.25 0.17 0.54 10 4 0.30 18493 0.98 0.10 0.08 4.57
0.40 183554 7.12 7.95 3.69 19.69 0.40 17633 1.05 0.23 0.13 3904.56
0.50 42356 1.03 4.58 0.18 508.79 0.50 17032 1.08 0.41 0.25 t
0.60 42398 1.41 0.26 0.21 t 0.60 17030 1.23 0.27 0.19 t

6 0.30 158985 1.02 0.24 0.10 0.56 5 0.30 52416 0.86 0.17 0.17 40.38
0.40 156917 10.16 0.23 0.10 20.81 0.40 51933 1.01 0.23 0.25 t
0.50 59872 0.95 0.24 0.19 2491.20 0.50 51018 1.29 0.30 0.21 t
0.60 59740 0.99 0.28 0.20 t 0.60 51134 1.19 0.30 0.43 t

9 4 0.30 14769 0.94 1.62 0.13 0.62 6 0.30 164613 5.97 2.34 0.13 25.52
0.40 14867 0.97 0.28 0.15 137.49 0.40 163127 0.78 3.59 0.14 t
0.50 14476 1.14 0.33 0.08 t 0.50 78075 1.01 11.62 0.18 t
0.60 14300 1.33 0.54 0.15 t 0.60 77091 1.21 0.48 0.50 t

5 0.30 154408 7.41 0.22 0.07 0.54 7 0.30 214869 6.66 1.22 0.20 t
0.40 50373 1.15 0.17 0.11 180.62 0.40 212305 2.66 1.84 0.24 t
0.50 48113 1.21 0.19 0.11 t 0.50 101778 2.48 0.40 0.24 t
0.60 46084 2.53 0.26 0.21 t 0.60 101872 2.34 0.91 0.27 t
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Table 4
Computational results on medium sized instances.

CMP-I CMP-II CMP-Node

n m V 0.25 0.35 0.40 0.45 0.25 0.35 0.40 0.45 0.25 0.35 0.40 0.45 0.25 0.35 0.40 0.45
10 5 A 156485 176186 128852 175503 1.75 16.37 28.82 0.59 0.15 0.14 0.17 0.22 0.20 0.31 0.11 0.08

B 161330 164202 125334 112911 21.50 1.87 21.87 30.32 0.32 15.33 0.76 0.33 7.27 0.23 0.39 0.10
C 170410 152617 185091 117059 1.48 0.78 14.15 7.43 0.15 0.17 0.29 0.34 0.16 0.10 0.11 0.09

11 5 A 179314 171626 140565 142731 1.04 0.56 0.63 1.73 0.27 0.19 0.25 0.28 0.12 0.14 0.20 1.00
B 171577 160364 126863 169600 10.54 16.21 1.60 0.73 0.34 0.36 0.22 0.23 0.19 0.10 0.25 0.41
C 159072 173161 158392 182365 19.33 1.35 25.12 2.00 0.33 0.19 0.79 0.27 0.47 0.23 0.46 0.45

12 5 A 154353 150203 171122 170856 17.32 0.62 0.90 0.82 0.19 0.20 0.26 0.29 0.10 0.12 0.31 0.37
B 167932 167603 130208 156214 10.67 14.38 0.69 0.35 0.23 0.24 0.30 0.31 0.23 0.17 0.23 0.55
C 161012 164819 126584 137640 12.59 0.58 0.87 0.72 0.19 0.24 0.28 0.30 0.13 0.21 0.39 0.35

13 5 A 142244 144667 189216 191672 1.98 2.02 1.83 2.14 0.66 0.49 0.31 0.62 0.17 0.15 0.32 0.17
B 155245 150194 190938 191152 56.72 1.94 2.05 2.17 0.33 0.29 0.49 0.64 25.48 32.56 0.15 0.18
C 153607 151777 127496 135356 31.76 1.96 2.10 2.24 13.55 0.34 0.69 0.58 0.13 0.19 0.12 0.16

14 5 A 140090 138954 138940 174653 2.03 2.05 2.22 2.08 0.46 0.60 0.64 0.59 0.17 0.21 0.21 0.19
B 143624 142673 142672 142609 1.89 2.51 16.55 2.09 0.55 0.65 0.37 0.76 0.14 0.15 0.16 0.16
C 122701 149690 149369 158392 2.00 1.87 1.91 5.06 0.53 0.32 0.61 1.26 0.15 0.15 0.15 0.38
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Table 5
Computational results on dense instances instances in T-family.

CMP-I CMP-II CMP-Node

n m 0.40 0.65 0.85 0.40 0.65 0.85 0.40 0.65 0.85 0.40 0.65 0.85
20 4 4577 4369 4425 2.11 2.87 3.70 0.68 1.05 1.76 0.70 0.74 1.91

6 7152 7331 9012 5.82 9.36 14.31 1.79 7.52 7.19 1.04 0.82 1.20
8 10854 13596 7984 12.42 23.97 39.10 9.32 11.65 20.68 3.29 18.98 3.04
10 18892 13572 12119 22.33 42.91 64.43 20.97 22.31 34.92 5.21 6.08 17.21

25 4 5827 2712 5102 3.23 4.95 7.90 1.02 1.99 3.64 0.45 0.94 15.71
6 9145 6011 8809 15.51 25.72 40.78 6.10 11.95 15.08 0.92 2.27 7.11
8 7492 5445 11435 25.44 39.68 63.40 11.10 26.78 35.46 7.40 2.49 8.52
10 11831 12984 11472 34.87 77.16 111.53 23.46 43.32 71.55 26.02 24.32 12.32

30 4 4463 3359 4722 4.63 11.96 20.36 1.39 8.42 14.06 1.79 0.75 17.45
6 9330 6425 10032 25.34 34.81 48.60 12.28 16.91 32.25 0.97 11.47 20.41
8 10886 14362 8997 36.23 67.16 105.18 13.91 39.47 54.25 16.56 22.42 15.66
10 13365 10991 13593 59.59 118.80 206.37 35.67 89.30 130.73 14.68 15.70 13.98

35 4 3852 3775 4727 5.90 12.60 25.20 10.91 6.54 14.17 0.82 3.43 13.32
6 6620 8974 6633 32.09 42.06 60.37 12.96 25.60 34.94 5.08 3.21 12.51
8 11804 9825 10888 46.44 106.81 144.12 25.81 76.67 84.89 4.28 10.53 19.37
10 13410 11053 12073 87.21 188.06 298.97 43.80 117.68 178.15 22.24 23.99 66.33

40 4 5812 5061 4654 20.01 20.84 41.44 4.31 14.27 14.90 0.97 24.97 10.89
6 8001 5731 7074 25.89 63.98 90.90 12.71 33.82 64.07 22.44 25.54 8.92
8 11931 11724 12038 64.53 151.20 234.67 38.98 93.39 235.96 16.25 19.69 17.77
10 13568 12316 12525 133.96 304.23 474.58 72.98 209.24 467.29 18.67 21.82 20.76

45 4 6272 2295 4199 19.80 23.48 52.99 11.32 20.87 24.99 1.16 8.13 12.80
6 8078 7551 7411 41.77 90.71 142.59 20.55 46.86 132.76 15.04 10.93 9.86
8 12926 11878 11010 75.57 190.88 360.17 52.33 134.69 353.22 9.27 16.50 20.30
10 13535 11672 12453 152.73 406.48 767.63 90.94 282.69 636.33 11.86 17.62 84.42

Table 6
Computational results on GCMP instances in ‘T’-family.

CMP-I CMP-II CMP-Node

n m 0.40 0.65 0.40 0.65 0.40 0.65 0.40 0.65
50 4 3497 5705 16.30 32.84 13.03 22.17 16.59 5.05

6 9674 8746 133.24 112.40 53.07 118.18 14.91 14.18
8 11184 11752 103.44 282.81 63.31 184.74 15.16 23.52
10 11923 12765 201.10 597.27 162.03 593.82 42.40 50.30

55 4 4912 4509 34.73 54.62 18.05 28.20 10.70 12.22
6 7521 7926 110.78 157.06 67.57 159.03 10.82 16.86
8 11381 11793 269.99 419.27 198.41 380.34 34.55 20.55
10 12343 13613 494.91 807.42 337.74 780.58 15.38 58.41

60 4 6249 3660 31.82 48.72 17.16 36.92 8.38 10.43
6 8436 7189 76.69 181.13 56.53 184.05 6.81 16.36
8 12908 12196 192.49 478.94 123.71 459.40 22.58 18.25
10 12627 11008 368.54 1055.80 231.30 962.05 24.20 45.82

65 4 5893 4249 32.86 67.04 18.10 41.49 15.20 11.67
6 7787 7569 103.47 238.73 75.60 229.69 48.78 57.93
8 12264 11138 236.68 525.95 153.83 515.84 24.66 32.29
10 12434 13090 449.98 1037.68 292.27 1151.73 34.35 271.34

70 4 4241 4903 46.85 76.43 25.68 53.12 12.52 15.40
6 7486 8555 118.77 263.15 132.39 320.54 16.46 96.93
8 12762 12088 280.80 672.48 249.37 679.80 30.05 30.95
10 11717 11378 582.79 1200.26 400.55 1352.67 90.35 67.75

75 4 4084 5175 50.29 67.79 22.24 44.82 10.39 10.11
6 8483 7875 145.58 247.58 124.80 261.31 63.61 66.78
8 12729 12772 356.40 518.25 335.92 576.05 33.60 50.79
10 11906 11292 698.52 1203.49 710.20 1190.33 85.97 85.79

Table 5 presents the computational results of CMP-I, CMP-II, and CMP-Node on large and dense instances in the T-family of the
GCMP dataset with nodes, various numbers of convoys , and for all convoys u.

All methods were able to solve all instances in Table 5. On average, CMP-II was 40% faster than CMP-I and CMP-Node was
about 5 times faster than CMP-II. It is evident from Table 5 that the optimal values increase with m. This is due to neces
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Table 7
Computational results on instances in H-family with .

CMP-I CMP-II CMP-Node CMP-I CMP-II CMP-Node
25 5 174383 47.60 18.31 0.73 50 5 146735 68.82 23.31 5.07

7 207009 28.97 9.69 0.86 7 168301 101.13 62.61 16.01
10 273986 159.40 38.78 7.38 10 238997 754.35 182.02 24.38
15 330796 178.49 91.48 9.26 15 425881 625.79 39.21

30 5 136408 13.93 4.68 0.91 55 5 128618 82.82 29.82 7.65
7 159988 34.33 17.60 6.47 7 202566 271.69 76.76 16.49
10 301650 110.40 46.54 32.27 10 292429 531.84 269.97 19.20
15 392244 345.31 163.38 22.24 15 353384 916.74 47.23

35 5 158133 146.08 11.45 1.08 60 5 185711 92.01 16.18 10.26
7 189022 216.52 22.33 9.43 7 222662 682.18 150.94 16.53
10 260726 191.57 70.34 17.19 10 185322 728.40 385.62 29.47
15 358000 1192.3 267.70 34.00 15 419086 1189.06 44.32

40 5 138115 117.11 10.87 9.28 65 5 142261 161.37 23.83 9.55
7 201717 67.20 36.96 10.40 7 219076 174.97 22.93
10 297883 102.23 15.07 10 277488 444.79 55.25
15 421783 1579.9 398.95 27.25 15 356018 76.41

45 5 168051 152.10 13.76 22.09
7 187955 113.50 44.9 6.21
10 314004 891.03 128.78 19.06
15 420115 533.49 21.86

Table 8
The gap of solutions in root nodes with respect to the corresponding best integer solutions.

CMP-
I

CMP-
II

CMP-
Node

CMP-
I

CMP-
II

CMP-
Node

CMP-
I

CMP-
II

CMP-
Node

20 4 0.40 16% 0% 0% 40 4 0.40 20% 0% 0% 60 4 0.40 31% 0% 0%
0.65 35% 8% 0% 0.65 28% 0% 0% 0.65 41% 0% 0%

6 0.40 23% 0% 0% 6 0.40 26% 0% 0% 6 0.40 31% 2% 0%
0.65 9% 0% 0% 0.65 26% 2% 0% 0.65 22% 0% 0%

8 0.40 10% 0% 0% 8 0.40 16% 0% 0% 8 0.40 22% 0% 0%
0.65 17% 1% 0% 0.65 14% 0% 0% 0.65 23% 0% 0%

10 0.40 16% 1% 0% 10 0.40 22% 1% 0% 10 0.40 31% 0% 0%
0.65 11% 0% 0% 0.65 25% 0% 0% 0.65 22% 0% 0%

25 4 0.40 14% 0% 0% 45 4 0.40 27% 0% 0% 65 4 0.40 22% 0% 0%
0.65 24% 0% 0% 0.65 29% 0% 0% 0.65 40% 0% 0%

6 0.40 13% 0% 0% 6 0.40 24% 2% 0% 6 0.40 23% 0% 0%
0.65 25% 0% 0% 0.65 27% 1% 0% 0.65 23% 0% 0%

8 0.40 17% 0% 0% 8 0.40 23% 0% 0% 8 0.40 23% 0% 0%
0.65 29% 1% 0% 0.65 19% 0% 0% 0.65 18% 0% 0%

10 0.40 21% 0% 0% 10 0.40 35% 1% 0% 10 0.40 27% 0% 0%
0.65 23% 0% 0% 0.65 27% 0% 0% 0.65 35% 0% 0%

30 4 0.40 16% 0% 0% 50 4 0.40 43% 0% 0% 70 4 0.40 15% 0% 0%
0.65 23% 0% 0% 0.65 35% 1% 0% 0.65 37% 0% 0%

6 0.40 15% 0% 0% 6 0.40 37% 4% 0% 6 0.40 16% 0% 0%
0.65 20% 0% 0% 0.65 32% 0% 0% 0.65 36% 1% 0%

8 0.40 13% 0% 0% 8 0.40 16% 0% 0% 8 0.40 25% 0% 0%
0.65 13% 0% 0% 0.65 19% 0% 0% 0.65 27% 0% 0%

10 0.40 17% 0% 0% 10 0.40 28% 0% 0% 10 0.40 21% 0% 0%
0.65 18% 0% 0% 0.65 33% 0% 0% 0.65 26% 0% 0%

35 4 0.40 23% 0% 0% 55 4 0.40 25% 0% 0% 75 4 0.40 25% 0% 0%
0.65 29% 0% 0% 0.65 36% 0% 0% 0.65 19% 0% 0%

6 0.40 36% 0% 0% 6 0.40 22% 0% 0% 6 0.40 32% 1% 0%
0.65 29% 0% 0% 0.65 29% 0% 0% 0.65 29% 0% 0%

8 0.40 21% 2% 0% 8 0.40 15% 0% 0% 8 0.40 26% 0% 0%
0.65 21% 0% 0% 0.65 24% 0% 0% 0.65 28% 0% 0%

10 0.40 19% 0% 0% 10 0.40 23% 0% 0% 10 0.40 25% 1% 0%
0.65 21% 0% 0% 0.65 38% 0% 0% 0.65 25% 0% 0%
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Fig. 1. Computational time of CMP-Path versus the number of nodes nand network density .

sary delays in convoy movements (a result of more conflicts on links and nodes). Also, with the need to resolve these conflicts,
the computational effort for all three methods increases significantly. Note that the increase in computational efforts by CMP-I and
CMP-II with m are much more steep than that of CMP-Node especially for denser networks. However, CMP-Node is reasonably fast
for all instances reported in this table and it was able to solve all instances, except two, within 30 s.

Fig. 2 shows the performances of CMP-I, CMP-II and CMP-Node with respect to density and size of networks. The computational
efforts of all methods to solve dense instances of T-family grow with or n. However, the computational efforts of CMP-Node in-
creases with almost linearly while this increase is much larger for CMP-I or CMP-II.

Table 6 presents computational results for CMP-I, CMP-II and CMP-Node for very large instances in the T-family of GCMP. The
computational experiments are performed on instances with the number of nodes n in , the number of convoys
m in , and for all convoys u.

The computational results are presented in different columns based on the method and the values of network density . As shown
in Table 6, CMP-Node was able to solve all instances to optimality in a relatively short period of time. As with the medium sized
instances, the computational efforts increase with the number of nodes n, the number of convoys m, and network density . The com-
putational times for all approaches increases moderately with the number of nodes n where network density is fixed in this exper-
iment. Also, the computational efforts grow with for a given network size, especially for large n. But, the growth of computational
efforts with the number of convoys m, for a given network size or density, is notably large. However, this increase is not significant
for CMP-Node. In fact, CMP-Node was able to solve all instances in this experiment, except one, within 2min. On average, CMP-II
outperforms CMP-I in the computational times by around 10%, and CMP-Node outperforms CMP-II by solving these instances 8 times
faster. As expected (see discussions in Section 3.5), CMP-II shows a moderate reduction in the computational efforts. In contrast, the
computational effort required by CMP-Node is notably reduced in comparison with CMP-I and CMP-II. A similar and stronger impli-
cation for larger numbers of convoys, that is , is observable here.

Fig. 3 presents the average computational times for instances in Tables 5 and 6 by for each method. This figure indicates that
the three models have exponentially increasing computational times. However, the performance of CMP-Node was notably better.
This shows that CMP-Node is capable of solving large CMP instances. As shown in Fig. 3, the computational efforts by CMP-I and
CMP-II increase exponentially with n or m. While CMP-I and CMP-II can solve instances with a small number of convoys m, their ca-
pability drops as m increases. It is evident from the computational results that CMP-Node outperforms CMP-I and CMP-II remarkably,
especially for instances with larger n or m.

We present our computational results on tighter and harder GCMP instances, that is the H-family of the GCMP dataset,
in Table 7. This family of instances contains harder instances since the time intervals are more overlapped, the networks are
denser, and the numbers of convoys are larger. In this table, we tested CMP-I, CMP-II, and CMP-Node on instances with the
number of nodes , the number of convoys for all convoys u, and the network den-
sity . As shown in Table 7 CMP-I was able to solve 78% of instances to optimality, CMP-II was able to solve all in

Fig. 2. Computational time for values of n and on instances in T-family.
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Fig. 3. Average computational times by the numbers of node n and convoys m on T-instances.

stances except one in this experiment, and CMP-Node was able to solve all instances efficiently. The computational times for CMP-I
and CMP-II increase rapidly as n and m grow. However, CMP-Node was able to solve all instances to optimality in less than 2min.

In order to get a better insight about the performance of CMP-I, CMP-II and CMP-Node approaches, we also present the gap of
optimal values and the optimal solutions of the relaxed problems (solution time of root node in branch and bound method) in root
nodes for the T-instances in Table 8.

A tight formulation generally results in smaller gaps of the root node solutions, fewer number of branching nodes, and hence,
a faster convergence. As observed in Table 8, the optimal values of the relaxed CMP-Node formulation are within a tiny/negligible
percentage of the optimal values in all tested instances. The root nodes bounds for CMP-I and CMP-II are within 24% and 0.3% of
the optimal (respectively), on average. This shows that CMP-Node is a tight formulation in general. Hence, the number of required
branching nodes in this approach is very small. Since CMP-Node is a tight formulation, which requires very few branching nodes, it
can be said to outperform all other approaches significantly. Note that in this experiment CMP-II outperforms CMP-I in computational
time and the number of solved instances.

Based on the observations in Tables 3–8, CMP-II outperforms CMP-I through our improvements. This is due to: (1) reducing the
number of variables and constraints, and, (2) tightening the disjunction constraints in order to provide stronger binding constraints
between arc traversal variables and movement traversal variables in the formulation. Also, it is obvious that CMP-Node significantly
outperforms CMP-I and CMP-II. From Table 8, we conclude that this improvement is due to the tightness of the CMP-Node formula-
tion. This results in a small lower bound gap at the root node between the value of the LP relaxation and the optimal value of the
problem instance. We notice that the lower bounds obtained at the root node of the branch and bound approach for CMP-Node are
strong enough to result in very few branching nodes before the optimal solutions are found. Note that the strength of CMP-Node is
through the introduction of variables and formulating strong bounds for them. Also, the new way of formulating headway time
and blocking of arcs using the variables was helpful in making the formulation even tighter.

6. Conclusions

In this paper, we have provided a comprehensive and extensive formal definition for the CMP. We incorporated many new side
constraints and practical considerations to the CMP and called this version of the problem as the Generalised CMP (GCMP). We
adapted and improved existing formulations for the CMP. We also developed new models and approaches to solve the GCMP more
effectively. We generated a new dataset for the GCMP which offers a wide range of complexity. The instances in this dataset also
cover examinations of approaches for a wide set of side constraints. These side constraints generally cover a broad range of practical
scenarios. We further generated a set of tougher instances which require heavy computational efforts to resolve conflicts for opti-
mal paths and schedules. We then undertook a comprehensive set of computational experiments. Using these, we demonstrated the
efficacy of our new models. We presented a detailed discussion and analysis of the models and approaches. Finally, we have demon-
strated that although the CMP is known to be NP-hard, it is still possible to find exact solutions to practical-sized instances using our
techniques.

In future research, we will aim to extend our work for different objective functions. We will also consider improving the per-
formance of our approaches through the introduction of tighter constraints. The strong lower bounds – especially in CMP-Node
– can be exploited by the development of a good heuristic for delivering tight better upper bounds. It may also be worth-
while to explore whether any additional cuts (in a branch-and-cut approach) can further improve the solution time. This will
enable us to solve even larger problems. We also propose that column generation techniques could be employed to solve prob-
lem instances with a larger number of convoys. Another interesting extension of this problem is inclusion of some uncertainty
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in data, for example uncertain travel times of convoys.
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