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a b s t r a c t 

Stochastic Neighbor Embedding (SNE) methods minimize the divergence between the similarity ma- 

trix of a high-dimensional data set and its counterpart from a low-dimensional embedding, leading to 

widely applied tools for data visualization. Despite their popularity, the current SNE methods experience 

a crowding problem when the data include highly imbalanced similarities. This implies that the data 

points with higher total similarity tend to get crowded around the display center. To solve this problem, 

we introduce a fast normalization method and normalize the similarity matrix to be doubly stochastic 

such that all the data points have equal total similarities. Furthermore, we show empirically and theoret- 

ically that the doubly stochasticity constraint often leads to embeddings which are approximately spher- 

ical. This suggests replacing a flat space with spheres as the embedding space. The spherical embedding 

eliminates the discrepancy between the center and the periphery in visualization, which efficiently re- 

solves the crowding problem. We compared the proposed method (DOSNES) with the state-of-the-art 

SNE method on three real-world datasets and the results clearly indicate that our method is more favor- 

able in terms of visualization quality. DOSNES is freely available at http://yaolubrain.github.io/dosnes/. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Information visualization by dimensionality reduction facilitates 

a viewer to quickly digest information in massive data. It is there- 

fore increasingly applied as a critical component in scientific re- 

search, digital libraries, data mining, financial data analysis, mar- 

ket studies, manufacturing production control and drug discovery, 

etc. Numerous dimensionality reduction methods have been in- 

troduced, ranging from linear methods such as Principal Compo- 

nent Analysis to nonlinear methods such as Multidimensional Scal- 

ing (MDS), [MDS; 14] , Isomap [13] , Locally Linear Embedding [10] , 

Gaussian Process Latent Variable Models [6] . A survey on nonlin- 

ear dimensionality reduction has been given by van der Maaten 

et al. [9] . Aspects in Multidimensional Scaling are discussed by 

Buja et al. [1] . 

Recently, Stochastic Neighbor Embedding (SNE) and its variants 

[4,8,12] have achieved remarkable progress in data visualization, 

✩ Handling by Associate Editor: Kar-Ann Toh. 
∗ Corresponding author at: Department of Computer Science, Norwegian Univer- 

sity of Science and Technology, Norway. 

E-mail address: zhirong.yang@ntnu.no (Z. Yang). 

especially for displaying clusters in data. An SNE method takes as 

input the pairwise similarities between data points in the high- 

dimensional space and tries to preserve the similarities in a low- 

dimensional space by minimizing the Kullback–Leibler divergence 

between the input and output similarity matrices. 

The input to SNE is a similarity matrix or the affinity matrix of 

a weighted graph. When the node degrees of the graph are highly 

imbalanced, SNE tends to place the high-degree nodes in the cen- 

ter and the low-degree ones in the periphery, regardless of the in- 

trinsic similarities between the nodes. Therefore, SNE often experi- 

ences the “crowding-in-the-center” problem for highly imbalanced 

affinity graphs. 

We propose two techniques to overcome the above-mentioned 

drawback. First, we impose a doubly stochasticity constraint on the 

input similarity matrix. Two-way normalization has been shown 

to improve spectral clustering [16] and here we verify that it is 

also beneficial for data visualization. Moreover, if the neighborhood 

graph is asymmetric, for example, k -Nearest-Neighbors ( k NN) or 

entropy affinities [8,15] , we provide an efficient method for con- 

verting it to a doubly stochastic matrix. 

Second, we observe that the data points are often distributed 

approximately around a sphere if the input similarity matrix is 

https://doi.org/10.1016/j.patrec.2019.08.026 
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Fig. 1. t-SNE visualization of a random uniformly distributed matrix (left) and a random doubly stochastic matrix (right). 

doubly stochastic, and we provide a theoretical analysis of this 

phenomenon. Our analysis suggests replacing the two-dimensional 

Euclidean embedding space with spheres in the three-dimensional 

space. Since there is no global center or periphery on the sphere 

geometry, the visualization is then naturally free of “crowding-in- 

the-center” problem. Moreover, we present an efficient projection 

step for adapting an SNE method with the spherical constraint. 

We tested the proposed method on several real-world datasets 

and compared it with the state-of-the-art SNE method, t-SNE [8] . 

The new method is superior to t-SNE in resolving the crowding 

problem and in preserving intrinsic similarities. 

In the next section we briefly review SNE methods. We then 

discuss doubly stochastic similarity matrix and spherical embed- 

ding in Sections 3 and 4 , respectively. We present experimental re- 

sults in Section 5 and conclusions in Section 6 . 

2. Stochastic Neighbor Embedding 

Stochastic Neighbor Embedding [SNE; 4] is a nonlinear dimen- 

sionality reduction method. Given a set of multivariate data points 

{ x 1 , x 2 , . . . , x n } , where x i ∈ R 

D , their neighborhood is encoded in a 

square nonnegative matrix P , where P ij is the probability that x j is 

a neighbor of x i . SNE finds a mapping x i �→ y i ∈ R 

d for i = 1 , . . . , n 

such that the neighborhoods are approximately preserved in the 

mapped space. Usually the mapping is defined such that d = 2 or 

3, and d < D . If the neighborhood in the mapped space is encoded 

in Q ∈ R 

n ×n such that Q ij is the probability that y j is a neighbor 

of y i , the SNE task is to minimize the Kullback–Leibler divergence 

D KL (P || Q ) over Y = [ y 1 , y 2 , . . . , y n ] 
T . 

Symmetric Stochastic Neighbor Embedding [s-SNE; 8] is a 

variant of SNE. Given input similarity p ij ≥ 0, s-SNE minimizes 

Kullback-Leibler divergence between the matrix-wise normalized 

similarities P i j = p i j / 
∑ 

ab p ab and Q i j = q i j / 
∑ 

ab q ab . The output 

similarity q ij is typically chosen to be proportional to a Gaussian 

distribution so that q i j = exp 

(
−‖ y i − y j ‖ 2 

)
, or proportional to a 

Cauchy distribution so that q i j = (1 + ‖ y i − y j ‖ 2 ) −1 . The Cauchy s- 

SNE method is also called t-Distributed Stochastic Neighbor Em- 

bedding [t-SNE; 8] . The optimization of s-SNE can be implemented 

with the gradients for Gaussian case: ∂ J /∂ y i = 4 
∑ 

j (P i j − Q i j )(y i −
y j ) and for Cauchy case ∂ J /∂ y i = 4 

∑ 

j (P i j − Q i j )(y i − y j ) q i j . Here 

4 
∑ 

j P i j (y i − y j ) or 4 
∑ 

j P i j (y i − y j ) q i j can be interpreted as the 

attractive force for y i , while −4 
∑ 

j Q i j (y i − y j ) or −4 
∑ 

j Q i j (y i −
y j ) q i j as the repulsive force. 

3. Doubly stochastic similarity matrix 

The input to s-SNE, P , is a nonnegative and symmetric matrix 

and can be treated as the affinity matrix of an undirected weighted 

graph. If the degree (i.e., row sum or column sum of P ) distribu- 

tion of nodes is highly non-uniform, then the high-degree nodes 

will usually receive and emit more attractive force than the aver- 

age nodes during the iterative learning. As a result, these nodes 

often glue together and form the center of display. On the other 

hand, the low-degree nodes tend to be placed in the periphery due 

to less attraction. This behavior is often undesired in visualization 

because it only reveals the data centrality but hinders the discov- 

ery of other useful patterns, and may be directly misleading when 

some high-degree nodes are actually disconnected in the underly- 

ing data. 

To overcome the above drawback, we can normalize the graph 

affinity such that the nodes have the same degree. For undirected 

graphs, this can be implemented by replacing the unitary matrix- 

wise sum constraint 
∑ 

i j P i j = 1 in s-SNE with the doubly stochas- 

ticity constraint, i.e., 
∑ 

i P i j = 

∑ 

j P i j = 1 . 

Given a non-normalized matrix, we can apply Sinkhorn–Knopp 

[11] or Zass-Shashua method [16] to project it to the closest dou- 

bly stochastic matrix P . In this work we use the former because 

it can maintain the sparsity of in the similarity matrix, which is 

often needed for large-scale tasks. Given a non-normalized simi- 

larity matrix S , the Sinkhorn–Knopp method initializes P = S and 

iterates the following update rules until P has converged: for all i, 

u i ← �j P ij , and then for all i, j , P i j ← P i j u 
−1 / 2 
i 

u −1 / 2 
j 

. 

Alternatively, the neighborhood information in high- 

dimensional space can be encoded in an asymmetric matrix 

B ≥ 0 with n rows, for example, the k NN graph or the entropy 

affinities [8,15] . B can also be a non-square dyadic data such as 

document-term or author-paper co-occurrence matrix. In these 

cases, we can apply the following steps to construct a doubly 

stochastic matrix: suppose �k B ik > 0 for all i , we first calculate 

for all i, k, A ik ← B ik / �u B iu , and then for all i, j P i j ← 

∑ 

k 

A ik A jk ∑ 

v A v k 
. 

It is easy to verify that by this construction P is symmetric and 

doubly stochastic. The calculations of A and P are performed only 

once and are thus computationally much more efficient than 

Sinkhorn–Knopp method which needs iterative steps. Here the 

matrix A ik can be treated as the random walk probability from the 

i th row index to the k th column index and P ij is interpreted as the 

two-step random walk probability between two row indices i and 

j via any column index k (with uniform prior over row indices). 

4. Spherical embedding of doubly stochastic similarity matrices 

When the input similarity matrix is doubly stochastic, we 

find that s-SNE often embeds the data points around a sphere 

in the low-dimensional space. The phenomenon is illustrated in 

Fig. 1 , where we generated a 20 0 0 × 20 0 0 similarity matrix with 
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Fig. 2. Visualizations of the NIPS dataset. 

uniform distribution and visualize it by t-SNE. We can see from 

the left subfigure that the embedding is close to a ball. In con- 

trast, if the matrix is doubly stochastically normalized (by using 

the Sinkhorn–Knopp method), the resulting embedded points ap- 

proximately lie around a circle. The same phenomenon also holds 

for 3D visualizations. 

We provide a theoretical analysis of this phenomenon. If P is 

doubly stochastic, then Q is often approximately doubly stochas- 

tic (up to a constant factor) because it approximates P by the 

KL-divergence. That is, �j Q ij is approximately the same for all 

i . For example, in Fig. 1 (right), �j Q ij mainly distribute around 

a constant (with mean 0.0 0 05 and very small standard devia- 

tion 1 . 7 × 10 −6 ). In this case, we show that 
∑ 

j ‖ y i − y j ‖ 2 be- 

comes approximately the same for all i , bounded by constants, 

in Proposition 4.1 . Furthermore, we show that when 

∑ 

j ‖ y i − y j ‖ 2 
is exactly the same for all i , the embedded points must be on a 

sphere, in Proposition 4.2 . The proofs of the propositions are pro- 

vided in the supplemental document. 

Proposition 4.1. If 
∑ 

j q i j = c for i = 1 , . . . , n and c > 0, then 

L ≤ ∑ 

j ‖ y i − y j ‖ 2 ≤ U, where (1) for q i j = exp (−‖ y i − y j ‖ 2 ) , 
L = n ln 

n 
c and U = n ln 

n 
c−nb 

, with b = a + (1 − a ) m − m 

a , 

m = min j exp (−‖ y i − y j ‖ 2 ) and a = 

ln [ ln (1 /m ) / (1 − m )] 

ln (1 /m ) 
; (2) for 

q i j = (1 + ‖ y i − y j ‖ 2 ) −1 , L = 

n 2 

c − n and U = 

n 2 

c − n + n ( 
√ 

b − 1) 2 , 

with b = 1 + max j ‖ y i − y j ‖ 2 . 
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Fig. 3. Visualizations of the WorldTrade dataset. 

Proposition 4.2. If 
∑ 

j ‖ y i − y j ‖ 2 = c for i = 1 , . . . , n, c > 0 and ∑ 

i y i = 0 , then ‖ y 1 ‖ 2 = ‖ y 2 ‖ 2 = · · · = ‖ y n ‖ 2 . 

The propositions show that embeddings are often nearly spher- 

ical for doubly stochastic similarity matrices. Therefore it is more 

suitable to replace the 2D Euclidean embedding space with spheres 

in 3D space. The resulting layout can be encoded with n × 2 + 1 

numbers (two angles for each data point plus the common radius). 

Therefore the embedding is still intrinsically two-dimensional. 

The spherical geometry itself brings other benefits for visual- 

ization. First, the embedding in the Euclidean space has a global 

center in the middle, while on spheres there is no such global 

center. Therefore a spherical visualization is free of the “crowding- 

in-the-center” problem. Every point on the sphere can be a local 

center, which provides fish-eye views for navigation and for exam- 

ining patterns beyond centrality. Second, the attractive and repul- 

sive forces can be transmitted in a cyclic manner, which helps in 

discovering macro patterns such inter-cluster similarities. 

We thus formulate our learning objective as follows: 

minimize 
Y ∈ S 

J (Y ) = D KL (P || Q ) , (1) 

where J (Y ) is an SNE objective function with P doubly stochastic, 

Q defined in Section 2 and 

S = 

{ 

Y 

∣∣∣ Y ∈ R 

n ×3 ; ‖ y 1 ‖ = · · · = ‖ y n ‖;
∑ 

i 

y i = 0 

} 

. (2) 

We call the new method Doubly Stochastic Neighbor Embedding 

on Spheres (DOSNES). 

It is important to notice that our formulation is more flexi- 

ble than other works on spherical embeddings (e.g., [2,3,7] ). In 

DOSNES, the solution space S includes all centered spheres in 

the three-dimensional space, not only the sphere with unit or 
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Fig. 4. Visualizations of the MIREX dataset. 

pre-fixed radius. Moreover, we do not require normalization of the 

input vectors. Detailed comparison with related work is given in 

Section 2 of the supplemental document. 

We employ a projection step after each SNE update step to en- 

force the sphere constraint. The DOSNES algorithm steps are sum- 

marized as follows: 

1. Normalize P to be doubly stochastic. 

2. Repeat until convergence 

(a) ˜ Y ← OneStepUpdateSNE( P, Y ), 

(b) Y ← arg min Z∈ S ‖ Z − ˜ Y ‖ . 

The projection step 2b is performed by implicitly switching ˜ Y = 

[ ̃  y 1 , . . . , ̃  y n ] 
T to the spherical coordinate system, taking the mean 

radius, and switching back to Cartesian coordinates. This is imple- 

mented as: For i = 1 , . . . , n 

y i ← 

˜ y i 
‖ ̃

 y i ‖ 

·
( 

1 

n 

∑ 

j 

‖ ̃

 y j ‖ 

) 

, (3) 

where ˜ y i = ˜ y i −
1 

n 

∑ 

j 
˜ y j . The iterations converge to a stationary 

point with suitable learning step sizes [see e.g., 5 , Section 5 ]. 

5. Experiments 

We developed a browser-based software for displaying and nav- 

igating the DOSNES results. The software and its demos can be 

found in the project website. 1 In the paper we present the 2D pro- 

jected views of the spheres. 

1 http://yaolubrain.github.io/dosnes/ 

http://yaolubrain.github.io/dosnes/
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Table 1 

Quantitative comparison: (top) K-means clustering purity and (bottom) running time 

(in seconds). 

DOSNES t-SNE 

WorldTrade 0.64 0.44 

MIREX 0.40 0.31 

DOSNES t-SNE 

WorldTrade 0.1 s 0.1 s 

MIREX 108.4 s 107.1 s 

NIPS 333.3 s 328.9 s 

We compare our proposed method DOSNES with two- and 

three-dimensional t-SNE 2 as well as non-metric MDS 3 in Euclidean 

embedding space [8] to verify the effectiveness of using doubly 

stochastic similarities and the sphere constraint. 

The compared methods were tested on three real-world 

datasets from different domains: 

(1) NIPS : 4 the proceedings of NIPS conferences (1987–2015) 

which contains 5993 papers and their associated 6621 authors. 

We used the largest connected component in the co-author graph 

with 5300 papers and 5422 authors. The (non-normalized) simi- 

larity matrix is from the co-author graph, i.e., BB T where B is the 

author-paper co-occurrence matrix. 

(2) WorldTrade : 5 trade network of metal manufactures 

among 80 countries in 1994. Each edge represents the total trade 

amount (imports and exports) between two countries. 

(3) MIREX : 6 the dataset is from the Third Music Information 

Retrieval Evaluation eXchange (MIREX 2007). It is a network of 

3090 songs in 10 music genre classes. The weighted edges are hu- 

man judgment on how similar two songs are. 

MDS requires a distance matrix as input. Given a similarity ma- 

trix S , we first normalize ˜ S i j = S i j / max (S) . Treating ˜ S ′ 
i j 

s as cosine 

similarities, we obtain the cosine distances by D i j = 1 − ˜ S i j . Next 

we calculate the shortest graph distances between all nodes and 

feed them to MDS. 

The NIPS co-author graph is visualized in Fig. 2 . The node de- 

grees of the graph are highly uneven, where many authors have 

only one paper while the most productive author has 93 pa- 

pers. In Fig. 2 (a) and (b), we can see both 2D and 3D t-SNE 

caused the most productive NIPS authors crowded in the cen- 

ter. This is undesirable because these authors actually do not of- 

ten co-author NIPS papers. For example, Hinton_G has no co- 

authored paper with Schölkopf_B but they are very close in 

the t-SNE layout. A similar crowding problem is observed in the 

MDS visualizations. In Fig. 2 (e) and (f), DOSNES resolves neatly 

the crowding problem, by normalizing the similarity matrix with 

our method in Section 3 and visualizing the authors with spher- 

ical layout. The productive NIPS authors are now more evenly 

distributed. For example, Hinton_G becomes more distant to 

Schölkopf_B . Meanwhile, retrieval around the most established 

authors reveals accurate co-authorship. For example, Revow_M , 
Nair_V and Brown_A are close to Hinton_G because all their 

NIPS papers are co-authored with Hinton_G . See our online 

demo 7 for more details. 

The visualizations of the WorldTrade graph are given in 

Fig. 3 . In this graph, some countries such as United States 
and Germany have more total trade amount than many others. 

2 https://lvdmaaten.github.io/tsne/ 
3 We used the isoMDS() function in the MASS R package. 
4 https://papers.nips.cc/ 
5 http://vlado.fmf.uni-lj.si/pub/networks/data/esna/metalWT.htm 

6 http://www.music-ir.org/mirex/wiki/2007 
7 http://yaolubrain.github.io/dosnes/demo/nips/ 

In Fig. 3 (a)–(d), we can see both 2D and 3D t-SNE, as well as the 

MDS visualizations, caused these countries crowded in the center. 

In contrast, DOSNES places the countries more evenly. In Fig. 3 (e) 

and (f), we can see on the sphere many meaningful clusters (e.g., 

Europe and Asia ) which well match the geography even though 

we did not use such information in the training. See our demo 

globe 8 for other viewpoints. 

Fig. 4 gives the visualizations of the MIREX dataset. In the pan- 

els (a) and (b), we can see that t-SNE caused over 90% of songs 

crowded in the center. A similar crowding problem appears in the 

MDS visualizations (panels c and d). In contrast, DOSNES performs 

much better in terms of separating the song genres and their sub- 

groups, as in Fig. 4 (e) and (f). 

The effectiveness of DOSNES can be quantified by using the 

WorldTrade and MIREX data sets where ground truth classes are 

available. We performed K-means clustering on the DOSNES and 

t-SNE embeddings. The resulting cluster purities are reported in 

Table 1 (top). We can see that DOSNES achieves significantly higher 

purity for both data sets. 

We also recorded the running time of DOSNES and t-SNE for 

the data sets. See Table 1 (bottom). DOSNES requires almost the 

same time as t-SNE, which shows that DOSNES improves t-SNE at 

negligible additional cost. 

6. Conclusions 

We have presented a new visualization method for high- 

dimensional and graph data. The proposed DOSNES method is 

based on the Stochastic Neighbor Embedding principle but with 

two key improvements: we normalize the input similarity matrix 

to be doubly stochastic and replace the 2D Euclidean embedding 

space with spheres in 3D space. Empirical results show that our 

method significantly outperforms the state-of-the-art approach t- 

SNE in terms of resolving the crowding problem and preserving 

intrinsic similarities. 
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