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ABSTRACT
Devices in the Internet of Things (IoT) are software-driven,
thus, they need not be only programmed before deployment,
but also continuously updated. IoT deployments in urban
scenarios are particularly relevant as enablers of smart city
applications. For such a context, this work addresses the reli-
ability and security aspects of distributing software updates
to a large number of IoT devices. Specifically, it presents a de-
sign and implementation of a software update framework for
IoT devices in urban scenarios. The proposed approach lever-
ages long-range wireless broadcast to update a large num-
ber of IoT devices at the same time, which scales up to the
massive networks that are typical of densely-populated and
built-up metropolitan areas. Experiments on a real testbed
demonstrate that the proposed approach obtains a long range
(up to 350 m) and a success rate higher than 99% with a single
transmission, for IoT devices deployed both outdoors and
indoors. In particular, broadcast updates are always more
efficient than standard updates over the Internet through
enterprise WiFi for typical urban IoT deployments.
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1 INTRODUCTION
The Internet of Things (IoT) is around us: street lights auto-
matically switch on and off as we drive home; a smart ther-
mostat decides when and for how long to turn on heating
while saving energy; a virtual assistant (e.g., Amazon Alexa)
clears our doubts on recipes while we are cooking. Things
in the IoT are embedded devices with communication and
computing capabilities, yet constrained in terms of resources:
memory, storage, energy [20]. Being software-driven, things
need not be only programmed before deployment, but also
continuously updated [31]. This is needed to address chang-
ing requirements of IoT applications as well as to ensure
correct operations, in particular, to fix outstanding software
bugs and security vulnerabilities [25].
The number of things has reached billions worldwide in

diverse environments, especially in metropolitan areas as
technology enabler of smart city applications [5]. In fact, a
large amount of IoT devices are deployed in urban scenarios
for air quality and traffic monitoring [16], for instance. Most
of these devices are deployed outdoors and are wirelessly
connected to the Internet [5]. In any case, they run unat-
tended; clearly, updating their configuration and software
cannot be done manually but needs to be automated [31]. For
this purpose, over-the-air (OTA) programming has been de-
veloped to distribute software and configuration updates to
embedded devices [6], particularly, set-top-boxes (Section 2).
OTA updates in urban scenarios are challenging, mainly

due to the extent of deployed networks and the adverse
impact of built-up areas on reliability [24]. In this context, vi-
able long-range communication technologies include either
cellular or low-power wide area networks (LPWAN) [26].
Cellular communications leverage licensed radio frequen-
cies; they are rather reliable, but expensive and not very
energy-efficient [22]. In contrast, LPWANs employ the un-
licensed industrial, scientific and medical bands; they are
energy-efficient and low-cost, but they have very limited
bandwidth and poor reliability in large networks [30].

A different option consists in leveraging long-range broad-
cast transmissions, as those used for FM radio and digital tele-
vision. These wireless transmissions are inherently asymmet-
ric, implying that IoT devices have receive-only capabilities.
Despite appearing as a limitation, this approach has several
advantages. First, IoT devices are not permanently connected
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to the Internet, which reduces the chance of remote security
attacks [25]. Second, broadcast wireless transmissions enable
reaching a large number of IoT devices at once, especially
over extensive areas such as urban environments [17].
Using broadcast transmissions for software updates also

entails several challenges. The most important is the relia-
bility of communications; as IoT devices cannot send any
messages in the uplink, data must be protected by adequate
mechanisms to guarantee that they are correctly received
despite channel impairments [2]. Moreover, the security of
transmissions must be ensured against malicious users who
could read the content of the updates and gain access to con-
fidential information, or even try to send illegitimate updates
to the IoT devices [25].
This work specifically addresses these challenges with

the design (Section 3) and implementation (Section 4) of a
software update framework for IoT devices in urban scenar-
ios. The proposed approach leverages long-range wireless
broadcasts to update a large number of IoT devices at the
same time, which scales up to the massive networks that
are typical of densely-populated and built-up metropolitan
areas. The reliability of updates is guaranteed by employing
erasure codes and multiple transmissions in a cyclical up-
date schedule. Their security is ensured by cryptographically
signing and encrypting the updates, so that they are only
available to the intended recipients. Experiments on a real
testbed demonstrate that the proposed approach obtains a
long range (up to 350m) and a success rate higher than 99%
with a single transmission, for IoT devices deployed both
outdoors and indoors (Section 5). In particular, broadcast up-
dates are always more efficient than standard updates over
the Internet through an enterprise WiFi infrastructure for
typical urban IoT deployments.

2 RELATEDWORK
Substantial research has been carried out on the Internet of
Things [20]. A significant share of the literature targeted data
collection, for instance, through middleware platforms [21].
Instead, themanagement of large networks of interconnected
devices has received less attention. The work in [29] has
shown the feasibility of implementing standard Internet pro-
tocols (such as the Simple Network Management Protocol)
on resource-constrained devices, but has not elaborated how
these can support software updates. The lifecycle of things,
including the role of software updates, has been described
in [10] as a starting point to discuss security issues in the IoT.
Unfortunately, the work does not consider mechanisms to
deliver software updates to a large number of IoT devices. A
scalable directory service was devised in [13] to enable both
data access and attribute management of IoT devices with
a low latency. The corresponding update scheme only con-
siders records (i.e., set of attributes), thus, it is not suitable

for software updates. Indeed, remote software updates were
investigated in [14] through an architecture based on mo-
bile edge computing and long-range communications. The
solution proposed therein, however, was only evaluated for
the distribution of very small updates (i.e., less than one kilo-
byte). The use of software containers for the IoT has lastly
gained attention too [1], especially as technology enabler of
continuous integration and deployment in such a context.
However, containers only allow to update the applications
and not the operating system of IoT devices. Blockchains
have also been proposed to address scalability in the IoT [7],
including for device management [28]. In particular, block-
chains were leveraged in [4] to ensure accountability of IoT
software updates. The solution proposed therein prevents
attackers to distribute malicious software updates in an IoT
network, but has a significant overhead in content delivery.

Software reprogramming has long been considered for net-
works consisting of embedded devices [12]. However, several
solutions developed for large networks rely on a high de-
vice density and propagation of updates over multiple hops
through either flooding or gossiping. These are indeed not
scalable, as the network can quickly become congested as the
number of nodes increases [18]. More recently, OTA updates
have gained attention, especially for urban scenarios. Among
them, the LWMesh network protocol [19] has been lever-
aged to distribute firmware updates over an IoT network
for smart urban applications [6]. Other methods for secure
OTA update have been devised for electronic control units
in smart vehicles [23]. However, these solutions assume that
end devices establish bi-directional communication, which is
costly and not very reliable in urban environments. Instead,
this article proposes an architecture where IoT devices re-
ceive updates over a broadcast medium, without the need
for bi-directional communication. A different method for
sending software updates employs television broadcast. For
instance, OTA updates of digital TV receivers were evaluated
over local television services in [8]. Updates were success-
fully transmitted at bitrates up to 4.5Mbps; however, the
evaluation was performed in a lab scenario as opposed to
the real urban environment considered here.

There are also a few ongoing initiatives targeting software
updates of IoT devices. Among them, the suit working group
at the IETF [11] and the Eclipse hawkBit framework [9] are
particularly relevant. This work shares similarities with them
as to the how to describe and deliver software updates for IoT
devices. However, this article specifically focuses on long-
range broadcast communication for urban IoT scenarios.

3 SYSTEM OVERVIEW
This section describes the proposed software update system.
The reference architecture is presented first, followed by
the characteristics of the supported devices. The section
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Figure 1: Reference architecture: a software update server in
the cloud stores and provides updates to IoT devices through
a content distribution infrastructure, consisting of one or
more access points. These access points employ a long-range
wireless technology and broadcast transmissions to reach
IoT devices in an urban area.

concludes with a discussion of broadcast data transmission
and security considerations.

Reference architecture
Figure 1 illustrates the reference architecture considered in
this work. A device manufacturer or service provider releases
software or configuration updates for IoT devices running a
certain application. Updates are uploaded on a dedicated
server in the Internet which is connected to a content dis-
tribution infrastructure consisting of one or multiple access
points. These employ long-range wireless communication
to deliver updates over a metropolitan area by using, for in-
stance, licensed / unlicensed spectrum or TV whitespaces [3].
This work targets the downlink (i.e., communication from
access points to devices) as a broadcast communication chan-
nel. This allows to send data simultaneously to all the devices
in reach of the content distribution infrastructure. Conse-
quently, all IoT devices in the coverage area of the access
points can receive updates at the same time, thereby increas-
ing the efficiency of communications towards a large number
of devices. IoT devices have suitable receiving capabilities
through either special-purpose hardware (e.g., a WiFi inter-
face) or software-defined radios. They also run a software
update service that receives and installs the update packages.

Device software and platforms
IoT devices run an application on top of an embedded oper-
ating system, following the mobile device landscape where
this case is already prevalent (e.g., for smart phones and
smart watches). The maturation and the consolidation of

embedded operating systems, many of which are specifically
targeted for the IoT, makes this approach not only desirable,
but also flexible enough to support future device classes and
platforms [32]. Operating system images are general enough
to be used for different platforms sharing the same hard-
ware (for instance, all “Nest Thermostat E” boards): these are
referred to as device types. While the sheer number of IoT
devices is very large, there is significantly less variability in
their types. For instance, there might be hundreds of smart
locks in a corporate building, but all of them1 belong to one
or a few types (e.g., a certain model of a given manufacturer).
Devices update both their operating system and their appli-
cations: the update process considers the two independently.
For instance, a smart thermostat could use embedded Linux
as operating system and a custom application to implement
the actual temperature monitoring / control functions. The
operating system could be updated to patch security vulner-
abilities, while the custom application could be updated to
fix software bugs or to add new functionality.

Broadcast updates
Broadcast data transmission employs multiple channels, each
delivering a different type of update (e.g., operating system
and application). Update packages are a collection of files
in compressed format (e.g., zip) and also contain metadata
including the name of the update package, its version, the
target device class, and a cryptographic hash (for verification
purposes). The proposed system also supports incremental
updates [15], wherein update packages only contain the dif-
ferences between a previous version and the current one.
Updates are cyclically broadcasted so as to increase availabil-
ity. Additional channels could also be used, for instance: to
provide the schedule of upcoming software updates, based
on which IoT devices can turn off their radio transceivers to
save energy; to provide input data for certain applications,
such as real-time public transportation timetables. Forward
error correction is applied to update packages to increase
the reliability of communications against channel errors [2].

Security
Two different types of adversaries are considered. The first
type of adversary intends to transmit illegitimate updates to
the IoT devices. The ultimate goal of such an attacker may be,
for instance, to get some IoT devices under their control. The
second type of adversary passively listens to transmissions
so as to learn any confidential information that they might
contain.
The update system is protected against the aforemen-

tioned attacks by cryptographically signing and encrypting

1The expected number of devices per type is at least two orders of magnitude
higher than the type of devices [17].



IoT 2019, October 22–25, 2019, Bilbao, Spain Toro Betancur, Viquez Zamora, Antikainen and Di Francesco

(in this order) all transmitted data. For this to work, the IoT
devices must store the public key of the server that is used
for signing the data. The confidentiality and authenticity
of the transmitted data could be ensured, for instance, with
symmetric AES-CCM, which is done after signing. IoT de-
vices of the same type share the same symmetric key that
is used for encryption / decryption. The reason for this is to
protect the confidentiality against passive adversaries and
to make denial-of-service attacks that target the slow asym-
metric signing more difficult – the IoT devices verify the
asymmetric signature only after the symmetric decryption.
It must be noted that only attackers that operate on the

wireless channel are considered here. That is, attackers that
can physically access an IoT device and extract decryption
keys from it are considered out of scope for this work. Such
an attacker could use the extracted keys to breach the con-
fidentiality of the future transmissions that are destined to
IoT devices of the same class as that of the breached device.
However, the authenticity of the follow-up transmissions
would still be ensured due to the asymmetric signatures.

4 IMPLEMENTATION
The following details an implementation of the proposed
software update service for IoT devices in urban scenarios.
It first discusses the software update server in the backend,
then the software update service running at the IoT devices.
The section concludes by introducing a long-range data trans-
mission scheme leveraging WiFi.

Backend
The backend of the system is represented by the software
update server, located in the cloud. The backend includes a
web application as the user-facing component of the update
service and a database for storing update packages. In par-
ticular, the web application supports managing users, device
types and actual updates. Moreover, software developers can
create user accounts to upload software updates for specific
device types. An update has an associated name, version,
target device type, and an optional2 release time. Once up-
loaded, the update package is encrypted and signed with the
private key of the server, according to the device type (as
discussed in Section 3). When the release time is reached,
the server makes the update available over-the-air as part of
those sent over the broadcast channel. The backend is real-
ized by using the CakePHP web development framework3
with the model-view-controller architectural pattern and
MySQL as database.

2The update is available immediately if no specific release time is supplied.
3https://cakephp.org/

Access point
The access point runs a client software that connects to the
software update server, retrieves the available packages and
builds the schedule for transmitting the actual updates over
the air. Our implementation constructs a simple cyclical up-
date schedule based on the release time of the packages: those
available earlier appear at the beginning of the schedule. Af-
terwards, the client retrieves the actual software updates,
appends the relevant metadata, and broadcasts them over
WiFi. In doing so, it employs Wifibroadcast, a software4 pri-
marily designed for transmission of high-definition videos
over WiFi, for instance, aerial video streams from drones.
Wifibroadcast can actually be used with any type of source
data and allows to configure different levels of forward error
correction, realized through Reed Solomon codes [27]. The
client software at the access point is written in python.

Software update service
IoT devices also employWifibroadcast and run a software up-
date service that keeps listening for updates over the broad-
cast channel. In particular, the service receives the broadcast
schedule /metadata to determine if a software update is avail-
able and needs to be installed. This happens when the update
package is fit for the device type and has a higher version
than the one currently running at the device. Eligible up-
dates are then retrieved over the air and processed. First,
error correction is applied to erase errors, then the crypto-
graphic hash in the metadata is checked; finally, the package
is decrypted and the signature is verified.
Upon success, the service proceeds onto installing the

update. Our implementation leverages a seamless update
process similar to Android A/B system updates5. Seamless
updates have the advantage to reduce the downtime, as the
device is still operational while the update is downloaded
and installed; whereas it only becomes unavailable during
restart. Specifically, seamless updates use two partitions that
run different versions of an operating system: active and
inactive, each considered as independent entity. The update
service runs on the currently active operating system in the
primary partition. It decompresses and installs the update
package onto the inactive (secondary) partition, then config-
ures the boot loader to mark the currently inactive partition
as primary. As a result, the newly installed version of the op-
erating system will be started upon restart. As the previous
version of the operating system is still available, it can still
be rolled back in case an error occurs with the new software
image. The update service is implemented for Linux as a
combination of python and bash scripts.

4https://befinitiv.wordpress.com/wifibroadcast-analog-like-
transmission-of-live-video-data/
5https://source.android.com/devices/tech/ota/ab/

https://cakephp.org/
https://befinitiv.wordpress.com/wifibroadcast-analog-like-transmission-of-live-video-data/
https://befinitiv.wordpress.com/wifibroadcast-analog-like-transmission-of-live-video-data/
https://source.android.com/devices/tech/ota/ab/
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Figure 2: Testbed for the experimental evaluation, deployed at the Aalto University campus in Otaniemi. Node locations are
represented by circles with different colors, according to the considered scenarios: light blue with a vertical pattern for non-
line of sight (non-LOS), pink for line of sight (LOS), and yellow with a horizontal pattern for indoors. Map data from Google.

5 EXPERIMENTAL EVALUATION
The following presents an experimental evaluation of the
proposed system, divided into two parts. The first focuses on
the software-related aspects of the update process; whereas
the second part investigates the reliability of delivering soft-
ware updates in a real urban scenario. In both cases, results
are obtained with the system prototype realized according
to the description in the previous section. Unless otherwise
specified, a full software update package (i.e., the whole op-
erating system) with a size of 48.293MB is considered.

System performance
The performance of the proposed system is characterized in
terms of availability, as the time needed to install and acti-
vate the newly downloaded software (the lower the better).
Experiments are carried out on a Raspberry Pi 3B as a repre-
sentative IoT device6 class. Ten iterations of each experiment
are run according to the independent replication method.

Table 1 shows the time taken to install and activate a soft-
ware update. Note that the installation phase in the table
includes the time to process the metadata, decrypt the update
package and verify its signature, extract files onto the inac-
tive partition, and configure the boot loader; it does not con-
sider the time needed to receive the update package over the
air (evaluated in the next section). The results clearly show
how the installation time is much longer than the reboot
time, i.e., from 30% to 75% longer. This result demonstrates
the advantage of seamless updates, as they significantly re-
duce the downtime, namely, the time during which the IoT
device is not operational. It is also worth noting that the total
time for the update, including both installation and reboot,
is below 1.5 minutes on the average despite consisting of a
full (operating system) update.

6https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

Table 1: Update time by component.

Phase Time (s)
Minimum Maximum Average

Installation 42.58 65.75 52.49
Reboot 32.67 37.43 35.25

Both 75.25 103.18 87.74

Communication performance
Setup and methodology. Two Raspberry Pi 3B, one acting as
the IoT device and another as the access point, are employed
to assess the performance in delivering software updates
over the air. Both devices use an Alfa Network long-range
USB adapter based on the Atheros AR9271 chipset; the device
operating as access point uses a 12 dBi-gain antenna instead
of the default one shipped with the adapter. Wifibroadcast
uses messages with a 1024-byte payload and operates on a
block basis; each block includes 10 source data packets and
a variable number of redundant packets to achieve a target
error correction level.
Devices are deployed at the Aalto University campus as

a representative urban environment inclusive of different
types of buildings (e.g., university buildings and a shopping
mall), a public transportation hub (with several bus stops
and a metro station), roads, parking spaces, lawns and trees.
Three different scenarios are considered: outdoors line-of-
sight (LOS), where the access point and the IoT device are
approximately located at the same height; outdoors non-LOS,
where the IoT devices are located at different vertical dis-
tances with respect to the access point; indoors, where the
IoT devices are located inside a building, while the access
point is located on another building. These scenarios are
representative of use cases wherein IoT devices are deployed
either outdoors or indoors, with long-range access points

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
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Figure 3: Decoding success as a function of the stretch factor for different scenarios: outdoors (a) LOS, (b) non-LOS, and (c) indoors.

primarily installed outside buildings (i.e., similar to cellu-
lar base stations). Experiments are carried out for different
distances between the IoT device and the access point for
the outdoor scenarios as detailed in Figure 2. The vertical
offsets7 between the access point and the IoT device for the
non-LOS scenario are 9m and -6m for the distances of 120m
and 350m, respectively.

The communication performance is characterized in terms
of reliability, namely, the success probability in decoding
the blocks in a software update (i.e., after applying error
correction) and download delay, as the time it takes to fully
receive an update. Both metrics are derived for different
values of the stretch factor, that is, the ratio between the size
of the update package after applying error correction and
the original size of the data. Each experiment is repeated five
times and the median is reported in the figures.

Experimental results. The reliability in receiving software up-
dates is illustrated in Figure 3. In particular, Figure 3a shows
the decoding success as a function of the stretch factor for
different distances in the LOS scenario. The results clearly
show that software updates can be obtained with a success
probability higher than 99%; stretch factors over 1.5 even
increase the decoding success above 99.9%. Clearly, longer
distances between the access point and the IoT device in-
cur in lower success rates. The difference is substantial for
a low stretch factor; however, results get very similar for
stretch factors of 1.3 and above, consistently over 99.6% de-
coding success. There were no more than 21 unrecoverable
blocks in these cases; receiving one additional update (i.e.,
two transmissions in total) sufficed for successful decoding.
Figure 3b also shows the decoding success as a function

of the stretch factor, again for different distances but in the
non-LOS scenario. The decoding success is above 96% for

7Offsets are calculated by subtracting the height of the IoT device from that
of the access point; thus, a negative value indicates that the IoT device is
higher than the access point.

distances up to 120m; the decoding success at the highest
distance of 350m is close to 92% but it significantly increases
with stretch factors greater than 1.3, resulting in at most 25
unrecoverable blocks on the average. The different heights of
the IoT devices in this scenario results in a higher variability
of the decoding success, which not always decreases with
the distance from the access point. This can be explained by
actual shadowing and multipath fading that depend on the
specific physical elements in the environments. As before,
the update package could be successfully decoded after two
transmissions for every single iteration of the experiments,
irrespective of the stretch factor.
Finally, Figure 3c shows the decoding success as a func-

tion of the stretch factor for the indoors scenario. The results
clearly show that high decoding success percentages – con-
sistently above 99.5% – can also be obtained by IoT devices
located indoors for an access point deployed outdoors and
rather far away (i.e., approximately 353m). Specifically, there
were no more than 63 unrecoverable blocks for stretch fac-
tors of at least 1.3; at most two transmissions were needed
to successfully decode all blocks in every single iteration of
the related experiments also in this case.
Table 2 shows the time taken to receive a full software

update package as a function of the stretch factor. The table
shows the average value obtained over all experiments, along
with the corresponding minimum and maximum values. The
results clearly show how the download delay roughly dou-
bles as the stretch factor increases from 1.1 to 1.9, ranging
from about 7 to 12.5 minutes for an update package with a
size of 48.293MB. Moreover, there is no significant variability
in the measured download delays. The results are consistent
with the WiFi bitrate used for long-range communications,
approximately corresponding to 1Mbps.

Discussion. The performance evaluation above has demon-
strated the feasibility of using long-range broadcast com-
munications to deliver software updates in urban scenarios.
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Table 2: Time to receive the update.

Stretch factor Time (s)
Minimum Maximum Average

1.1 403 411 407
1.3 490 517 501
1.5 576 584 580
1.7 662 667 664
1.9 745 752 748

It is important to note that unlicensed bands in the consid-
ered deployment are quite congested as there are several
co-located WiFi networks used for both office, education
and research purposes. Moreover, experiments were carried
out at different times due to logistic constraints (including
weather conditions) during workdays. These factors affected
the consistency of the results; in particular, those for the
indoors scenario experienced a considerable improvement in
reliability when performed after working hours – the time
when the experiments were carried out.

The joint use of stretch factors and multiple transmissions
of update packages (as part of a cyclical schedule) allows
for enough flexibility to cope with diverse environmental
conditions which are deployment-dependent. According to
the obtained results, a stretch factor of 1.3 is adequate to sig-
nificantly boost the reliability of receiving software updates
in most cases; if needed, the IoT device could listen for more
than one transmission. Clearly, listening for re-transmissions
of the same update package incurs in a delay that may be
significant, depending on the length of the update schedule.
Nevertheless, this is not generally a problem, as IoT devices
could go to sleep and save energy in the meantime, while
still being fully operational, although not up-to-date.
It is also worth recalling that the case of a full (i.e., op-

erating system) update was considered in the experiments.
This is a worst-case scenario as, in practice, incremental up-
dates would have a much smaller size (a few megabytes or
less), especially for updating applications as opposed to the
operating system of the devices.

Comparison with enterprise WiFi
A “standard” software update process could be used in certain
application scenarios, wherein an enterprise WiFi network
is deployed with enough coverage to reach all relevant IoT
devices. In this case, devices would independently fetch their
updates over an Internet connection established through
a conventional bi-directional WiFi link, with acknowledg-
ments and retransmissions employed for reliable commu-
nication. The following compares such an option with the
broadcast update solution proposed in this work.

In doing so, the enterprise WiFi network of Aalto Univer-
sity is employed. In particular, experiments are carried out
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Figure 4: Minimum number of IoT devices for which broad-
cast updates take less time than individual downloads.

at different times of the day to characterize the download
time achievable in practice, given the other (background)
traffic in the network. The related effective download rate8
is close to 14Mbps, thereby requiring about 28 seconds to
successfully download the update package. The following
assumes that all IoT devices download their update packages
at different times (e.g., as a result of a scheduling policy),
so that the achievable bandwidth is not reduced due to con-
current access to the wireless medium. Note that this is an
optimistic scenario, as in practice download of updates can
be uncoordinated, thus, possibly also overlapping in time.
Accordingly, Figure 4 shows the tradeoff between using

the proposed broadcast update solution as compared to a
WiFi enterprise network. In particular, the figure shows the
minimum number of IoT devices for which broadcast up-
dates take less time. The derivation accounts for the time
taken to receive corrupted blocks in the updates multiple
times until they are successfully decoded, as measured in the
experiments. The results clearly show that the solution in
this work is always beneficial when the number of devices
is higher than 30, which occurs in practice for most deploy-
ments [17]. This happens due to the nature of the broadcast
transmission of the software updates, which are received by
all devices in range at the same time. Broadcast updates are
slower, as they employ a lower data rate to obtain a longer
range; however, their duration depends only on the update
package and not on the number of devices. As a consequence,
they are scalable, especially since the number of devices un-
der the coverage of the long-range access point is higher
than that in enterprise WiFi.

8TheWiFi card is using the IEEE 802.11g standard with a nominal maximum
bitrate of 54Mbps.
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6 CONCLUSION
This work has introduced a novel software update service
based on long-range broadcast transmissions, specifically
targeted to urban IoT scenarios. The proposed system has
also been implemented and evaluated on a real urban testbed
by leveraging WiFi as communication technology. The ob-
tained results showed that the proposed approach can pro-
vide updates to devices in a large area securely and reliably,
resulting in a much higher scalability than using standard
Internet-based approaches.
It would be especially interesting to evaluate other com-

munication technologies instead ofWiFi. A promising option
would be to leverage either TVwhitespaces or licensed bands
(such as VHF or UHF) by means of custom modulation and
access schemes, realized through software-defined radios.
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