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A graphene superlattice is formed by a one-dimensional periodic potential and is characterized by the emer-
gence of new Dirac points in the electronic structure. The group velocity of graphene’s massless Dirac fermions
at the new points is drastically reduced, resulting in a measurable effect in the conductance spectroscopy. We
show here that tunnel spectroscopy using a superconducting hybrid junction is more sensitive to the formation of
Dirac points in the spectrum of graphene superlattices due to the additional contribution of Andreev processes.
We examine the transport properties of a graphene-based superlattice-superconductor hybrid junction and
demonstrate that a superlattice potential can coexist with proximity-induced superconducting correlations. Both
effects contribute to change graphene’s spectrum for subgap energies, and as a result, the normalized tunneling
conductance features sharp changes for voltages proportional to the energy separation between the original and
newly generated Dirac points. Consequently, the superconducting differential conductance provides an excellent
tool to reveal how the new Dirac points emerge from the original band. This result is robust against asymmetries
and finite-size effects in the superlattice potential and is improved by an effective doping comparable to the
superconducting gap.

DOI: 10.1103/PhysRevB.100.205429

I. INTRODUCTION

Graphene is a versatile material that can be modified to
be metallic or semiconducting, owing to its gapless, linear
low-energy spectrum [1–3]. This duality can be exploited in
graphene superlattices, formed by a periodic, one-dimensional
electrostatic potential on the graphene sheet, making graphene
a promising candidate for designed electronic circuits. It
is theoretically established that charge carriers in graphene
behave like chiral Dirac fermions. Under a one-dimensional
superlattice potential of amplitude U and period L (see Fig. 1),
chirality forbids the opening of a band gap, instead creating
new Dirac points (DPs) when the product UL reaches a critical
value [4–6].

The propagation of chiral Dirac fermions under superlat-
tices is highly anisotropic and can be controlled by varying the
superlattice potential and Fermi energy. The resulting carrier
velocity can be completely suppressed along one direction
but is barely changed in the opposite, allowing for collimated
electron beams [7]. Experimental realization of high-quality
periodic superlattice potentials on graphene has been achieved
using boron nitride encapsulation [8,9]. Dirac point formation
was measured as resistivity peaks [10–12], paving the way
for novel and exotic physics in graphene-based superlattices
[13,14].

The recent discovery of unconventional superconductivity
in bilayer graphene superlattices [14] has pointed to the inter-
esting connection between superconducting correlations and
superlattice potentials in graphene. However, to the best of

our knowledge, the interplay between superconductivity and
Dirac point formation by one-dimensional superlattices has
not been explored yet. Graphene-superconductor hybrids can
now be fabricated in high-quality transparent junctions that
work in the ballistic regime [15–18]. In such hybrid junctions,
electrons and holes from the conduction band of the normal
lead combine to form Cooper pairs in the superconductor by
means of a microscopic process known as Andreev reflection
[19]. When the doping is smaller than the applied voltage
and the superconducting gap, graphene’s peculiar gapless
dispersion allows for an unusual Andreev reflection where
conduction band electrons are converted into holes belonging
to the valence band [20]. Here, we demonstrate that these
interband Andreev processes provide unique signatures of the
formation of Dirac points, which could substantially facilitate
their experimental detection.

Advances in experimental control of graphene devices
are leading to a series of remarkable works reporting in-
terband Andreev reflections [21], spectroscopy of Andreev
bound states in Josephson junctions [22], splitting of Cooper
pairs [23], and proximity-induced unconventional supercon-
ductivity [24–28]. Since a superlattice potential can be seen
as a series of p-n junctions (see Fig. 1), an example of
the potential applications of superlattice-superconductor hy-
brids is the recently measured [29] focusing of beams of
Dirac fermions in graphene-based p-n junctions [30–32].
Existing theoretical works extend such effects to graphene
junctions involving ferromagnets [33] and superconductors
[34].
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FIG. 1. (a) Semi-infinite superlattice (SL) coupled to a supercon-
ductor (S) on top of a graphene layer. (b) Sketch of the system’s
energy diagram. (c) Phase space contour plot showing the formation
of a new Dirac point when the normalized barrier strength u reaches
a resonance condition (u = 2π ). See text for more details.

In this paper, we analyze the interplay between a su-
perlattice potential and proximity-induced superconductivity
on graphene. We focus on the effect of the emergence of
new DPs on the transport properties of a graphene-based
superlattice-superconductor (SL-S) junction. We demonstrate
that subgap transport is extremely sensitive to the creation
of new DPs when interband Andreev processes are domi-
nant. Strikingly, the differential conductance presents sharp
changes for voltages proportional to the energy separation
between the original and the newly generated DPs. This effect
is robust against asymmetries in the superlattice potential, the
presence of an additional doping on the graphene layer, and
finite-size effects. Therefore, graphene-based SL-S junctions
are a convenient setup for addressing fundamental questions
about the formation of new chiral Dirac fermions by periodic
potentials and a promising component of future graphene-
based electronic circuits with tailored properties.

II. DIFFERENTIAL CONDUCTANCE OF A
GRAPHENE-BASED

SUPERLATTICE-SUPERCONDUCTOR JUNCTION

We consider an infinite graphene plane where a superlattice
potential V (x) is created on the x < 0 region and supercon-
ductivity is induced by the proximity effect on the half plane
with x > 0. The resulting graphene-based SL-S junction is
sketched in Fig. 1. Assuming valley and spin degeneracy and
zigzag edge termination, the Dirac–Bogoliubov–de Gennes
(DBdG) Hamiltonian in sublattice and particle-hole (Nambu)
spaces is given by [20,35,36]

ȞDBdG =
(

ĥ + V (x)σ̂0 �̂(x)
�̂†(x) −ĥ − V (x)σ̂0

)
, (1)

with ĥ = vF (−i∂xσ̂1 + qσ̂2) − εσ̂0 being the single-particle
Dirac Hamiltonian, q being the conserved component of the
wave vector parallel to the interface, vF being the Fermi

velocity, and σ̂0,1,2,3 being the Pauli matrices in sublattice
space. The superlattice potential consists of a periodic repe-
tition of potential barriers and wells with height ±Un,p and
width Wn,p (see Fig. 1). Explicitly,

V (x) =
{

EF + Un, x ∈ [mL, mL − Wn],
EF − Up, x ∈ [mL − Wn, (m − 1)L], (2)

with m = 0,−1,−2, . . . and L = Wn + Wp being the period
of the superlattice potential.

We denote the Fermi energy in the superconducting regions
as EFS . We consider rigid boundary conditions for a conven-
tional proximity-induced s-wave pairing �̂(x) = �σ̂0�(x),
with �>0 being the pairing amplitude and �(x) being the
Heaviside step function. Approximating the spatial depen-
dence of the pairing potential by a step function is valid as
long as the Fermi wavelength of the quasiparticles in the
superconductor is much smaller than the superconducting
coherence length ξ0 = h̄vF /�, i.e., EFS ��.

The transport properties of the SL-S junction are
encoded in the retarded Green’s function ǧr

q(x, x′) =∫
dqeiq(y−y′ )ǧr

q(x, x′, y, y′), which satisfies the nonhomoge-
neous DBdG equation

[(E + i0+)Ǐ − ȞDBdG]ǧr
q(x, x′) = δ(x − x′)Ǐ, (3)

with Ǐ being the identity matrix. A solution of Eq. (3) is ob-
tained combining asymptotic solutions of Eq. (1) that obey the
boundary conditions at the edges of a finite-length graphene
sheet, following a generalization of the method developed in
Refs. [35,37–45]. The Green’s function for the SL can then be
written as

ĝSL(0−, 0−) = i

2h̄vFCn

(
0 2Cn

0 M + √
J + M2

)
, (4)

with

M = CpCn − D2
pn − 1, J = 4CnCp,

Cp(n) = cp(n)
(
c2

n(p) + d2
n(p)

) + cn(p)

cpcn + 1
, Dpn = idpdn

cpcn + 1
,

and

cn(p) = e−iα[ε(χ )](e2ikx[ε(χ )]Wn(p) − 1)

1 + e−2iα[ε(χ )]e2ikx[ε(χ )]Wn(p)
,

dn(p) = e−ikx[ε(χ )]Wn(p) (1 + e−2iα[ε(χ )] )

1 + e−2iα[ε(χ )]e−2ikx[ε(χ )]Wp(n)
.

Here, e±iαe(h)[ε] = h̄vF (ke(h)
x [ε]± iq)/(ε ± E ), and ke(h)

x [ε] =√
[(ε + E )/h̄vF ]2 − q2, with E and ε being the excitation

and potential energies, respectively. We consider a transparent
coupling between the superlattice and the superconductor.
For more details of the calculations, we refer the reader to
Appendix A.

The differential conductance depends on the potential
difference between SL and S, V = VSL − VS, and can be
written as

σS(V ) = ∂I

∂V
= σQ(V ) + σA(V ), (5)
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FIG. 2. Undoped, symmetric graphene superlattice. (a) Spectral differential conductance for different values of the superlattice potential
(A) u/(2π ) = 1.03, (B) 1.11, (C) 1.19, (D) 2.15, and (E) 2.23. (b) Map of the zero-energy spectral differential conductance as a function of
u and q̄ = q/qmax, with h̄vF qmax �29�. (c) Differential conductance as a function of the energy for the different values of u used in (a). The
parameter ε indicates the separation of the new pair of Dirac points from the original cone. (d) Differential conductance as a function of u for
different energies. (e) Estimation of ε from the second derivative of the current with respect to the voltage. For all cases EF = 0 and L = ξ0/2.

where σA (σQ) represents the contribution of the Andreev
(quasiparticle) processes. Here,

σQ(A)(E ) = 8π2 e2

h

∫
dqσ̃Q(A)(E , q),

with σ̃Q(A) being defined in terms of the Green’s functions in
Appendix B. We normalize our results using the conductance
for � = 0, σN.

III. IDEAL SUPERLATTICE

We analyze the transport properties of a SL-S junction to
illustrate how the emergence of Dirac points by the super-
lattice potential is neatly captured in the subgap differential
conductance. We start considering an ideal superlattice po-
tential, i.e., semi-infinite, created around the charge neutrality
point, EF = 0, and symmetric with Up = Un ≡U and Wp =
Wn = L/2 (see Fig. 1). The normalized barrier strength is thus
given by u = UL/h̄vF . Under these conditions, a new set of
DPs is created when u = 2nπ , with n being a positive integer
[4–6].

As shown in Figs. 2(a) and 2(b), the superlattice po-
tential can coexist with proximity-induced superconducting
pairing in the superlattice region close to the interface with
the superconductor. Indeed, the energy-momentum plots in
Fig. 2(a), calculated for several values of the superlattice
strength, clearly show how the band dispersion relation for
subgap energies is modified after the first (panels A, B, C)
and second (panels D, E) generations of DPs. The condition
for the formation of DPs is thus not altered by the presence
of the superconductor. Setting E = 0, we plot in Fig. 2(b) the
spectral conductance σ (E = 0, q) as a function of the trans-
verse momentum h̄q and the barrier strength u. The first pair of
DPs is formed at the critical value u = 2π , and the second is

formed when u = 4π is reached. The spectral density σ (E , q)
has been calculated in the SL region close to the interface with
the superconductor. We identify the menorahlike structure of
Fig. 2(b) as the fingerprint of the superlattice.

In the absence of the superlattice potential, a small trace
of the original Dirac cone centered around q = 0 remains for
energies below the superconducting gap � (cf. Refs. [46–48]).
The superlattice potential changes the Fermi velocity, thus
widening graphene’s conelike spectrum, even before creating
new DPs. Importantly, when coupled to a superconductor,
the spectral density of states for subgap energies is higher
compared to the nonsuperconducting case with � = 0, which
can be seen as a sharp change in color for energies below
and above the gap in Fig. 2(a). Finally, as u increases beyond
the critical value [panels A–C in Fig. 2(a)], a new pair of
Dirac points appears. The original DP and the newly created
ones are disconnected at zero energy, but they merge for
finite energies over a characteristic value ε, indicated by white
arrows in Fig. 2(a). The parameter ε becomes finite for u>2π

and increases with u until it approaches � as a new pair of
DPs is completely formed when u = 4π . At this critical value,
ε is set to zero and becomes finite again when u>4π . The
energy parameter ε thus provides a qualitative measure of the
separation between the original DP and every new pair.

These three effects, namely, (i) the formation of DPs
when u = 2nπ , (ii) an enhanced spectral density for subgap
energies, and (iii) the separation between DPs characterized
by the parameter ε, can be neatly observed in the normalized
differential conductance σS/σN. Figures 2(c) and 2(d) show
the normalized differential conductance of the SL-S junction
as a function of the excitation energy and superlattice strength,
respectively. In the absence of superlattice potential, since
EF = 0, we recover the conductance results of Ref. [20],
where interband Andreev reflection is dominant (gray line

205429-3
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with u = 0). For u �=0, the normalized conductance at zero
energy remains fixed at 2σ0, except at the critical values
where DPs are formed [see Fig. 2(d)]. Since the normal-
state conductance σ0 accounts for the contribution from three
channels, the doubling of the conductance is due to perfect
Andreev reflection taking place at the original and new DPs.

By contrast, for finite energies we observe two effects
connected to the presence of a superlattice potential. First,
the conductance features a peak or a dip for energies equal
to the parameter ε [see arrows in Fig. 2(c)]. Second, the
superlattice increases the conductance for energies close to
the gap (E � �). The latter is a direct consequence of the
superlattice-enhanced spectral density for subgap energies.
The former can be associated with the different contributions
from Andreev and normal reflections. For small values of ε,
the normalized conductance exhibits a peak, indicating that
interband Andreev processes become dominant when the DPs
are created. As ε approaches �, the peak in the conductance
becomes a dip since the DPs are more clearly separated, thus
producing more backscattering for q values between DPs. In
both cases, the parameter ε, which indicates the separation
between the newly created DPs and the original band, is
accessible through the differential conductance. By taking
the derivative of the conductance with respect to the voltage
(i.e., d2I/dV 2), the small kinks in the conductance shown in
Fig. 2(c) appear as clear peaks in the derivative [see Fig. 2(e)].

The above results show that a superlattice potential can cre-
ate new DPs in the presence of superconducting correlations.
As long as the strength of the potential is comparable to the su-
perconducting gap, the zero-energy normalized conductance
is completely dominated by interband Andreev processes and
fixed to 2σ0. For finite energies, the normalized conductance
features a sharp change at E = ε, which determines the energy
separation between Dirac cones in the dispersion relation. The
differential conductance of a SL-S junction and its derivative
thus provide a very sensitive tool to study the creation of DPs
by a superlattice potential.

IV. NONIDEAL SUPERLATTICE

We now consider three deviations from the ideal super-
lattice potential described above, namely, a finite doping on
the graphene layer EF �=0, an asymmetry in the superlattice
potential, and a SL region of finite length.

A. Electrostatic asymmetry

We start analyzing the effect of asymmetry on the super-
lattice potential. First, we consider the effect of finite doping
on the graphene layer with a perfectly symmetric SL potential
with Un = Up and Wn = Wp. Doping the graphene layer with
EF �=0 shifts the position where the new DPs are created
[see Fig. 3(a)], but it does not change the condition for their
formation, u = 2nπ . If EF <�, shifting the position of the
DP to finite energies results in an enhanced suppression of
the conductance [see Figs. 3(b) and 3(c)] due to the vanishing
density of states for holelike excitations [20,46]. This is a
unique property of graphene’s gapless spectrum which, inter-
estingly, is not affected by the creation of new Dirac points, in
contrast to the undoped case with EF = 0 [compare Figs. 2(d)

FIG. 3. Doped symmetric graphene superlattice. (a) Spectral dif-
ferential conductance with EF = �/2 for different values of (A)
u/(2π ) = 1.03, (B) 1.11, and (C) 1.19. In all maps h̄vF qmax �16�.
(b) Differential conductance as a function of the energy for the
different values of u in (a). The arrows indicate the parameter ε.
(c) Differential conductance as a function of u for different energies.
In all cases L = ξ0/2.

and 3(c)]. Since the splitting of the energy band into several
DPs now takes place completely in the positive energy range
(if EF >0), the range of energies where normal reflections are
enhanced is now 2ε. As before, an analysis of the derivative
of the conductance allows us to estimate the value of ε, cor-
responding to the change in slope in the conductance. Finite
doping of the graphene layer, in the regime where interband
Andreev reflections are enhanced, thus helps visualize the
formation of DPs using the normalized conductance.

Asymmetry in the superlattice potential has an important
effect on the formation of new DPs. The asymmetry may be
induced by changing the relative height (Up �=Un) or width
(Wp �=Wn) of the potential barriers and wells. We can thus
parametrize it defining α = Wn/Wp and β = Un/Up. For an
asymmetric superlattice, it is useful to define the average
potential as the integral over a period [49], resulting in E∗

F =
EF + ω, with ω = Up(αβ − 1)/(1 + α). The position of the
original DP under an asymmetric superlattice is given by E∗

F ,
so we henceforth refer to it as the effective Fermi energy. It is
now possible to redefine the potential in Eq. (2) as

V (x) =
{

E∗
F + ω

1+β

αβ−1 , x∈ [mL, mL − Wn],

E∗
F − ω

α+αβ

αβ−1 , x∈ [mL − Wn, (m − 1)L].
(6)

For the case where the potential barriers and wells have the
same width (α = 1) but different heights (β �=1), following
the sketch in Fig. 1, the barriers and wells take the values
E∗

F ± 〈V 〉, respectively, with 〈V 〉 = Up(1 + β )/2. The main
effect of the asymmetry is to shift the Fermi energy to the
effective one E∗

F , where the original Dirac cone is and the
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FIG. 4. Asymmetric superlattice potential characterized by pa-
rameters α and β as defined in the text. (a) Asymmetry in the height
of the potential barriers and wells: for α = 1 and u/(2π ) = 1.11,
differential conductance with different E∗

F and β. Dotted lines have
EF = �/2, and solid lines have EF = 3�/2. (b), (c) Asymmetry in
the width of the potential barriers and wells: (b) spectral differential
conductance and (c) differential conductance for β =1, u/(2π )=
1.11, and different values of α, adjusting EF so that E∗

F =�/2 in
all cases. In all cases, L = ξ0/2, and h̄vF qmax �15� for the maps.

new DPs are created [see Fig. 4(a)]. For reference, we also
plot in Fig. 4(a) a case with a symmetric SL potential taken
from Fig. 3(b) (blue line). By changing the value of β, the
conductance features a dip at different energies below the
gap, as long as E∗

F <� (green line). If the asymmetry is such
that E∗

F >�, the conductance does not exhibit any dip and
approaches the case of a heavily doped graphene layer, even
if EF <� (dashed gray line). The doping EF of the graphene
layer thus provides an experimentally controllable parameter
that can rectify any asymmetry in the height of the barriers
and wells of the SL potential.

B. Spatial asymmetry

When the asymmetry on the SL potential affects the widths
of the barriers and wells (α �=1), the impact on the conduc-
tance is more pronounced. In this situation, the position of
the original DP is still given by E∗

F , but the new DPs appear
at different energies. For example, the real doping EF in the
three panels in Fig. 4(b) has been adjusted so that all cases
have E∗

F = �/2. However, the barrier’s width is bigger than
the corresponding one for the wells in the left panel (α>1),
while it is smaller in the other panels (α<1). As a result,
the new DPs are created for energies below and above the
effective Fermi energy E∗

F , respectively. In the right panel, the
superlattice is so asymmetric that the new DPs merge back
into the original Dirac cone, recovering the result for a heavily
doped graphene layer.

The spatial asymmetry drastically changes the conduc-
tance, as we show in Fig. 4(c). As a reference, we show a
symmetric result with finite doping EF = �/2 (blue line) and
compare it to the asymmetric cases from Fig. 4(b), where
the doping was adjusted so that E∗

F = �/2. When α<1
(green line), the new DPs appear for energies bigger than the
effective Fermi energy, and their impact on the conductance is
diminished. On the other hand, if α>1 (red line), the new DPs
appear for smaller energies and can be clearly seen as kinks
in the conductance. The case with high asymmetry (gray line)
approximates the conductance of a doped graphene layer with
dominant intraband Andreev reflection [20].

Our results thus show the importance of a regularly spaced
superlattice potential, while the asymmetry in the electrostatic
barriers can be compensated by a uniform change in the
doping level of the graphene layer.

C. Finite-length superlattice

The emergence of new Dirac points and their separation
from the original cone in a semi-infinite SL potential can be
discerned in the differential conductance by the parameter ε.
We now analyze the impact of a finite-length SL potential
on the previous results. A finite size in the vertical direction,
parallel to the interfaces, would introduce additional struc-
ture due to the quantization of the parallel momentum. For
simplicity, we consider only the infinite-width limit, where
the vertical size is much larger than the horizontal length.
The finite-length superlattice is then contacted on one side
(x = 0) to a superconductor and on the other side (x = −NL)
to a normal-state reservoir, which we model as a heavily
doped graphene semi-infinite layer [35,36,46]. Here, L is the
size of an n-p junction, and N is the total number of n-p
junctions in the finite SL region. Nanoscale hybrid junctions
where the reservoirs and the intermediate-scattering region are
built from different materials present very different interface
transmissions [50,51]. For simplicity, we consider here only
transparent couplings between the finite SL and the normal
and superconducting leads and a symmetric SL potential.

The finite length of the intermediate region results in the
splitting of the continuous Dirac cone into energy bands [see
Fig. 5(a)]. In the presence of a SL potential, the condition for
the emergence of new DPs, u = 2nπ , is roughly maintained
even for a very small SL. A menorahlike pattern similar to
that of Fig. 2(b) emerges for small lengths, although the
resonances at the positions of the DPs are broadened and not
so well defined. The broadening of the dispersion relation for
subgap energies is shown in Fig. 5(a) for the undoped (left
panel) and doped cases (right panel). The blurring of the DPs
results in an increased probability of normal backscattering.
We show the finite-length effect in the differential conduc-
tance in Figs. 5(b) and 5(c) for EF = 0 and �/2, respectively.
For reference, the gray lines show the behavior of a semi-
infinite superlattice potential with the same parameters. We
confirm the robustness of the effect of the SL in the differential
conductance for all energies different from EF . At the charge
neutrality point EF , the semi-infinite case is qualitatively
reproduced for superlattice lengths N �50, with L = ξ0/2.
However, to estimate the value of 2ε for a doped superlattice,
only a few p-n junctions (N ∼20) are needed.
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FIG. 5. Finite superlattice potential. (a) Spectral differential con-
ductance for N = 50, with EF = 0 (left) and EF = �/2 (right). In
both cases h̄vF qmax �14�. Differential conductance for different
numbers of n-p junctions N of the finite superlattice potential, with
(b) EF = 0 and (c) EF = �/2. The gray line recovers the semi-
infinite superlattice potentials in Figs. 2 and 3. In all cases, L = ξ0/2.

V. CONCLUSIONS

We have analyzed the transport properties of a graphene
SL-S junction. We have demonstrated that the superlattice
potential can create new DPs even in the presence of su-
perconducting correlations. Moreover, the changes that the
SL potential causes in graphene’s spectrum are enhanced
for subgap energies. Therefore, the emergence of new DPs
can be monitored through the differential conductance of the
junction. The normalized conductance features sharp changes
for energy values equal to a parameter, ε, determined by
the separation between newly created DPs and the original
cone. Further, the superconducting conductance is always
enhanced over the normal-state one for energies below but
close to the gap �. These effects are robust in the presence
of asymmetry in the superlattice potential and finite size,
as long as the formation of new DPs is possible. Potential
fluctuations due to charge inhomogeneity in graphene could
be up to ∼5 meV [9]. We showed how changing the doping
of the graphene layer by local gating could help correct the
asymmetry in the superlattice potential induced by the charge
inhomogeneity. Our results thus suggest that superconducting
tunneling spectroscopy could be an interesting alternative to
supercurrent measurements [52] to experimentally observe
the modification of the band dispersion relation due to a
superlattice potential on a graphene layer.
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APPENDIX A: SUPERLATTICE GREEN’S FUNCTION

To analyze the transport properties of the SL-S junction,
we calculate the Green’s function of the system. The building
block for a semi-infinite graphene in the superlattice space is
the Green’s function of an isolated zigzag graphene layer finite
in the x direction:

ĝ<(>)
0 (x, x′) = −i

2h̄vF
(
1 − rB

L rA
R

)
cos α

× (
eikx |x′−x| f̂∓ + rB

L rA
Re−ikx |x′−x| f̂±

+ rB
L eikx (x+x′ )h+ + rA

Re−ikx (x+x′ )h−
)
, (A1)

with

f̂± =
(

1 ±e±(−iα)

±e±iα 1

)
, ĥ± =

(
e±(−iα) ∓1

±1 −e±iα

)
,

and

rA
L = −eiαe−2ikxxL , rA

R = −e−iαe2ikxxR ,

rB
L = e−iαe−2ikxxL , rB

R = eiαe2ikxxR .

Here, vF is the Fermi velocity of the graphene sheet. The sym-
bol < (>) indicates x < x′ (x > x′). The explicit calculation
of Eq. (A1) is given in Ref. [35].

One superlattice period (n-p junction) is composed of two
finite graphene regions with different Fermi energies and
widths Wp,n. The Green’s function for each region is given
by Eq. (A1), and they can be coupled using Dyson’s equation
to obtain the Green’s function of the finite n-p junction.
Assuming that the coupled region extends from xL = −L to
xR = 0−, we obtain the Green’s functions

ĝ>
np(−L,−L) = −i

h̄vF

(−Cp 0
1 0

)
, (A2a)

ĝ<
np(−L, 0−) = −i

h̄vF

(
0 −Dpn

0 0

)
, (A2b)

ĝ<
np

(
0−, 0−) = −i

h̄vF

(
0 −1
0 −Cn

)
, (A2c)

ĝ>
np

(
0−,−L

) = −i

h̄vF

(
0 0

−Dpn 0

)
. (A2d)

The Green’s function for a finite superlattice of length
NL, with L being the period of an n-p junction, is obtained
by coupling Eqs. (A2) to each other N times. The resulting
Green’s function reads

g̃ f sl = −i

h̄vF

(−CN
n 0

1 0

)
,

CN
n = CN−1

n t2
(
CN−1

p − DN−1
pn

) + CN−1
p

CN−1
n CN−1

p t2 + 1
, (A3)

where t describes the coupling between regions.
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The Green’s function of the semi-infinite superlattice is
calculated using the self-similarity of a semi-infinite chain.
Adding one block to a semi-infinite number of graphene n-p
blocks results in the same semi-infinite chain. Therefore, it
is possible to analytically calculate the Green’s function for
the complete superlattice evaluated at one edge ĝSL(0−, 0−)
by imposing that it is equal to the Green’s function of the
superlattice when a new block ĝnp has been added. Using
Dyson’s equation, we find

ĝSL(0−, 0−) = ĝnp(0−, 0−)

− ĝnp(0−,−L)�̂†M̂−1ĝSL(−L,−L)�̂ĝnp(−L, 0−),

(A4)

with
M̂ = I − ĝSL(−L,−L)�̂ĝnp(−L,−L)�̂†,

�̂ = t̃

(
0 1
0 0

)
.

Solving Eq. (A4), we obtain Eq. (4) of the main text.

APPENDIX B: DIFFERENTIAL CONDUCTANCE FOR THE
SUPERLATTICE-SUPERCONDUCTOR JUNCTION

Once the Green’s function for the coupled SL-S system is
obtained, the electric current follows from the Keldysh for-
malism. Following the extension of the Hamiltonian approach
described in Refs. [36,53], the zero-temperature differential
conductance reads

σ̃Q1 = t2Tr
{
Re

[(
Î + t Ĝr

t,eeσ
T
1

)
ρ̂sc,ee

(
Î + tσ1Ĝr∗

t,ee

)
ρ̄sl,e

]}
+ t4Tr

[
Re

(
Ĝr∗

t,ehρ̄sl,eĜr
t,ehσ

T
1 ρ̂sc,hhσ1

)]
, (B1)

σ̃Q2 = − t3Tr
{
Re

[(
Î + tσ1Ĝr∗

t,ee

)
ρ̄sl,eĜr

t,ehσ
T
1 ρ̂sc,he

+ (
Î + t Ĝr

t,ee(E )σ T
1

)
ρ̂sc,ehσ1Ĝr∗

t,ehρ̄sl,e
]}

, (B2)

σ̃A = t4Tr
[
Re

(
Ĝr∗

sc,ehρ̄sl,eĜr
sc,ehρ̄sl,h + Ĝr∗

sc,heρ̄sl,hĜr
sc,heρ̄sl,e

)]
,

(B3)

with ρ̄sl,e(h) = σ̂1ρ̂sl,ee(hh)σ̂
T
1 . The density of states ρsl and ρsc

are related to the Green’s functions of the decoupled system
at equilibrium and are defined as ρ(E ) = i

2π
(g − g†), where sl

denotes the superlattice and sc is the superconductor at x = 0.
The Green’s functions of the coupled junction (SL-S),

Ĝr
sc,eh(he) and Ĝr

t,ee(eh), are matrices in graphene sublattice
space, representing elements in Nambu space. The coupling
is realized via Dyson’s equation as follows:

G̃r
sc = g̃r

sc(0+, 0+) + Ĝr
t �̃g̃r

sc(0+, 0+),

G̃r
t = g̃r

sc(0+, 0+)�̃†P̃−1g̃r
SL(0−, 0−),

P̃ = Î − g̃SL(0−, 0−)�̃g̃sc(0+, 0+)�̃†,

where g̃r
sc(0+, 0+) corresponds to the Green’s function in

equilibrium for the superconducting region and is given in
Ref. [35].

In the case of a finite superlattice, the differential conduc-
tance is also given by Eq. (5), substituting the Green’s function
for the semi-infinite superlattice by a new function represent-
ing the coupling of a semi-infinite, heavily doped graphene
contact, g̃nc (cf. Refs. [35,46]), with the finite superlattice g̃ f sl ,
Eq. (A3).
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