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Robust optimization of the insecticide-treated bed nets procurement and 
distribution planning under uncertainty for malaria prevention and control 
 

Abstract 

 

Vector control, particularly distribution of insecticide-treated bed nets (ITNs), 

constitutes one of the major pathways to prevent and reduce malaria transmission. 

ITN distribution campaigns face several challenges, such as inadequate funding, 

budgetary constraints, hard-to-reach areas, limited transportation, and market and 

price volatility. While long-term agreements and proper planning can effectively 

overcome such challenges, those options may not be available for all humanitarian 

organizations and governments.  To gain a better understanding of such tradeoffs 

we develop a robust optimization model that minimize ITN distribution costs 

while taking into consideration protection against financial, market and logistical 

uncertainties. The simultaneous account of such uncertainties is rarely seen on the 

humanitarian supply chain design literature. The proposed robust model explores 

data-driven adaptive uncertainty sets that capture the dependence structure among 

procurement and distribution costs, leading to plausible uncertain scenarios. In 

addition, we develop a hierarchical optimization approach to ease the burden of 

setting a specific robustness level for each constraint, when uncertainties are 

related to the independent terms. We study a United Nations Children's Fund 

(UNICEF) ITN distribution campaign in Ivory Coast, observing that (1) total costs 

increase with campaign robustness, as expected, and (2) campaign robustness 

comprises of improved supply chain flexibility, which might minimize efforts if it 

becomes necessary to adjust procurement and transportation plans when 

uncertainty arises. In addition, assessing robust solutions through Monte Carlo 

simulations against several realizations of uncertain parameter values indicates 

that, as desired, robust plan feasibility increases with the specified level of 

conservatism. 
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1. Introduction 
 

In 2105, almost half of the world population lived in areas at risk of malaria, with 

more than 212 million new cases and 429,000 associated deaths, disproportionately 

(almost 70%) afflict children younger than five years old. Sub-Saharan Africa (SSA) 

carries the heaviest burden, being home to 90% of the cases and 92% of the malaria 

deaths (WHO, 2016a).  

The United Nations (UN) Member States adopted in 2015 a new sustainable 

development agenda with 17 broad goals that must be met by all countries until 2030. 

Particularly, the third goal aims to ensure healthy lives and promote the well-being for all 

at all ages, with a specific target to end malaria epidemic (UN, 2017).  

Malaria  spreads among humans by infected mosquitoes. Vector control is a cost-

effective approach to curb malaria. It focuses on preventing parasite transmission from 

humans to mosquitoes and back again, using insecticide-treated nets (ITNs), which work 

as physical and chemical barriers, and indoor residual spraying (IRS). The World Health 

Organization (WHO) estimates that malaria control interventions averted more than 663 

million malaria cases in SSA between 2001 and 2015, with ITNs being the keystone and 

accounting for 69% of this achievement (WHO, 2015a). For instance, ITN coverage in 

SSA increased from less than 2% in 2000 to more than 55% in 2015, with 68% for 

children younger than five years old. 

Long-lasting insecticidal nets (LLINs) are a highly resistant form of ITN, which 

can be washed without the need to re-immerse them in insecticide (Malaria Consortium, 

2016). In compliance with the WHO strategy of maximizing the impact of vector control, 

LLINs are the recommended form of ITN for public health programs, for which coverage 

of the entire population at risk is a highly desirable goal (WHO, 2016a). 

 In 2014, the global spending on ITNs reached almost $1 billion (63% of total 

spending on vector control commodities), avoiding $610 million in malaria case 

management costs (WHO, 2015a). About 177 million ITNs were distributed to 36 

countries in SSA in 2015 (Net Mapping Project, 2016), in which Global Fund accounted 

for most of the deliveries (61%), followed by President’s Malaria Initiative (PMI; 23%) 

and UNICEF (5%). However, more than 216 million people still lived in households 

without an ITN in 2015; hence, annual funding must be increased to meet the needs 

(WHO, 2015a).  

Humanitarian organizations, in cooperation with governments, are responsible for 

carrying out ITN distribution campaigns within their humanitarian operations to reduce 

malaria transmission. However, planning ITN campaigns capable of effective distributing 

over tens of millions ITNs in multiple countries spanning large geographical areas pose 
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significant challenges that might hinder distribution effectiveness. Such planning 

challenges arise mostly from the uncertainties that surround the involved logistics and 

supply chain management (LSCM) activities in an ITN distribution campaign such as 

uncertainty in the planning environment, including uncertainty in logistics 

infrastructure/capacity availability, supplier capacity, freight rates, LLIN prices, among 

others”. 

Our research develops a robust optimization model that minimizes ITN 

procurement and distribution plan costs, while considering uncertainties in logistics 

(infrastructure availability, capacity, multimode transport), market (supplier capacity and 

demand forecast), and price (freight rates, container and ITN acquisition price). 

Given this uncertain supply chain environment that surrounds ITN distribution, a 

robust optimization approach is imperative to avoid project scope narrowing, delay, 

cancellation or going over budget due to incorrect forecast of planning parameters. 

Ultimately, the consequence of improper planning has a direct impact on those who are at 

risk of contracting malaria. In this sense, the research question addressed by the paper is 

whether (and, if so, how) robust optimization can improve ITN procurement and 

distribution planning when compared to the traditional (i.e., deterministic) approach that 

does not consider the uncertainties associated with the problem. 

Apart from the previous work of Brito et al. (2014), this study is, to the best of our 

knowledge, the only known academic research related to ITN supply chain design 

optimization. This paper also considers several aspects with less academic research 

attention, such as the simultaneous accounting of supply, demand, logistical, and cost 

uncertainties and multimodal transportation. 

Our research also contributes to the literature by adapting the robust optimization 

frameworks of Bertsimas and Sim (2004) and the data-driven polyhedral uncertainty sets 

presented by Fernandes et al. (2016) to our problem. In the first framework, a pre-

determined number of parameters are allowed to assume their worst-case values, 

according to the decision maker’s conservatism level. The second approach uses a 

dynamic uncertainty set of observed data within a defined time window and forecasted 

values to create an adaptive convex polyhedral region. The major advantages of this 

second approach are the ability to capture the empirical dependence structure between 

cost parameters, which leads to more plausible uncertain scenarios, and the ease of 

understanding when setting the robustness parameter (time window).  

We apply our robust optimization model to the real case of UNICEF’s distribution 

of 12 million LLINs in Ivory Coast in 2014. We compare the robust solutions to their 

deterministic counterparts to highlight the importance of decision making under 

uncertainty. Since an infeasible plan cannot be used in practice, and it incurs additional 
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emergency re-planning costs, it is useful to measure and compare the reliability of the 

deterministic and robust plans. In other words, it is critical to understand whether plans 

are executable after uncertainties are realized. In this context, Monte Carlo simulation 

help us assess the reliability of both deterministic and robust plans.  

On the practical side, the use of such a robust model has a direct impact on the 

alleviation of human suffering since it allows more people to have access to ITNs through 

the efficient and effective use of financial and logistical resources by humanitarian 

organizations, governments and other stakeholders involved in ITN distribution 

campaigns. Although many uncertainties and risks related to this supply chain might be 

effectively overcome by some of these stakeholders through common pool resources, 

long-term agreements and proper planning, it is important to consider them during annual 

budgetary planning, when current contracts will be subject to review, or prior to the 

release of tenders. 

This paper is organized as follows: Section 2 reviews the relevant literature and 

situates our robust optimization model. Section 3presents an overview of the logistics and 

supply chain management of ITN distribution. The following section describes robust 

optimization frameworks to support decision making under uncertainty, namely 

Bertsimas and Sim’s (2004) and Fernandes et al.’s (2016). In Section 5, we define the 

mathematical model to represent the robust ITN transshipment problem. In Section 6, we 

illustrate the applicability of the proposed model with a real case. Finally, we conclude 

this paper and discuss future research. 

 

 

2. Literature Review 
 

 ITN distribution campaigns can be seen as humanitarian operations with the aim 

of reducing malaria transmission. Caunhye et al. (2012) noted that humanitarian 

operations’ key challenges are often addressed by academic researchers through 

operations research (OR) methods. Despite the uncertain nature of humanitarian 

operations, Leiras et al. (2014) indicated the predominance of deterministic models in 

mathematical programming papers. Among 83 papers reviewed by the authors, only 34 

used stochastic programming, in which uncertainties are approached through the 

optimization of an objective function based on the expected value of probabilistic 

scenarios.  

Nevertheless, a stochastic programming approach based on average value strategies 

might not be appropriate since it can hinder proper relief in several scenarios. As an 

alternative to stochastic programming, the robust optimization framework, in general, 
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uses worst-case perspectives to make prudent decisions in uncertain environments. In 

particular, in the humanitarian context, this approach seems to be a more appropriate 

choice since there is a natural priority in providing the greatest needed amount of aid with 

resource efficiency, instead of average quantities and costs (Góes and Oliveira, 2015). 

Ben-Tal and Nemirovski (2000) observed that the robust optimization (RO) goal is 

to find a feasible solution for all considered scenarios while optimizing the worst-case 

scenario. In addition, Bertsimas and Thiele (2006a) mentioned that stochastic 

programming is a powerful modeling framework when probability distributions of 

uncertain parameters are known. However, in a considerable portion of real-world 

applications, decision makers do not have this information available, mostly due to the 

absence of substantial historical data; hence, robust optimization becomes a relevant 

alternative. 

In this regard, Hoyos et al. (2015) reviewed the academic literature of OR models 

with stochastic components in disaster operations management, concluding that, among 

48 papers, only 5 considered a robust approach, while the clear majority considered two-

stage stochastic programming. This finding confirmed the conclusions of a previous 

literature review of OR models in humanitarian operations by Galindo and Batta (2013), 

which highlighted the lack of robust models to treat uncertainties. 

In our literature searches for robust optimization approaches to supply chain design 

in humanitarian operations (with facility location and aid distribution being closer to the 

focus of our research), demand has been by far the most commonly addressed uncertainty 

(Tang et al. 2009; Paul and Hariharan 2012; Bozorgi-Amiri et al. 2013; Najafi et al. 2013; 

Das and Hanaoka 2013; Jabbarzadeh et al. 2014; Álvarez-Miranda et al. 2015; Florez et 

al. 2015; Rezaei-Malek et al. 2016; Zokaee et al. 2016), followed by supply (Bozorgi-

Amiri et al. 2013; Najafi et al. 2013; Das and Hanaoka 2013; Jabbarzadeh et al. 2014; 

Álvarez-Miranda et al. 2015; Rezaei-Malek et al. 2016; Zokaee et al. 2016), and then by 

logistics capacity and availability (Das and Hanaoka 2013; Jabbarzadeh et al. 2014; 

Álvarez-Miranda et al. 2015; Florez et al. 2015; Rezaei-Malek et al. 2016). Despite the 

volatile nature of prices, only four papers have considered this type of risk (Bozorgi-

Amiri et al. 2013; Jabbarzadeh et al. 2014; Álvarez-Miranda et al. 2015; Zokaee et al. 

2016), and none have tackled budgetary uncertainties, which are frequently found in 

humanitarian organizations due to funding scarcity and unpredictability. Only one paper 

(Najafi et al. 2013) considered a multi-modal approach, which is unexpected since 

logistics infrastructure disruptions might hinder the use of usually available assets, such 

as trucks, leading to the use of more expensive options, such as helicopters.  

Only two papers related to malaria commodities’ supply chain optimization were 

found in our literature searches, and both had deterministic approaches (Rottkemper et al. 
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2011; Brito et al. 2014). Rottkemper et al. (2011) developed a deterministic multi-

objective transshipment and inventory relocation model for Artemisinin-based 

Combination Therapy (ACT), to minimize unsatisfied demand and operational costs 

during a malaria outbreak in areas with sustained humanitarian operations. The model 

determined the optimal relocation plan from neighboring depots with previous ACT 

stocks to compensate for the limited stock in the outbreak region, while avoiding future 

shortages in case the epidemic spread to neighboring areas. Uncertainty was examined as 

a demand parameter through sensitivity analysis, and an example from Burundi was 

discussed. 

Brito et al. (2014) introduced the relevance of considering an optimization model, 

which in their case was approached through deterministic inputs to reduce the total costs 

of an LLIN distribution campaign for a UNICEF project that in 2014 delivered 

approximately 12 million LLINs in Ivory Coast. Among others, their work revealed 

useful logistic insights into the problem, above all that the modeling process achieved a 

7% cost reduction, compared to UNICEF’s original supply and distribution plan. In this 

paper, the transshipment network flow model proposed by Brito et al. (2014) is extended 

to consider uncertainties related to logistics, market, and price volatility.  

We adapt the data-driven uncertainty set framework from robust financial portfolio 

dynamic optimization (Fernandes et al., 2016) to robust multi-period static optimization 

in the humanitarian context. We also present an extension of Bertsimas and Sim’s (2004) 

framework regarding uncertainties in the independent terms (i.e., right-hand side of 

constraints), based on a hierarchical optimization approach to reduce the burden of setting 

a particular robustness level for each constraint 

 

3. LLIN Supply Chain 
 
LLINs are produced in a broad range of sizes and colors by thirteen suppliers that 

are mainly located in Asia (WHO, 2016d). LLIN production lead time is high and 

uncertain, deeply affecting the planning of subsequent logistics activities. USAid (2010) 

revealed that, in 2010, the minimum lead-time was 10 days for the procurement of 1.7 

million nets from Sumitomo. However, the acquisition of less than half of this quantity 

from the same supplier required 74 days. Therefore, no significant correlation between 

production lead time and the number of LLINs procured could be found. In addition, the 

long average lead times for smaller orders (up to 150k nets), 24 days and 50 days for two 

distinct suppliers, showed that humanitarian organizations might face limited stock 

availability for short notice procurements.  
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Since several distribution campaigns occur at the same time, not all humanitarian 

organizations and governments are able to have a clear visibility of each suppliers’ 

production capacity availability for their projects until the release of an invitation to 

tender. In this sense, the supply context is uncertain since it may shift considerably from 

the project planning phase until the tender release.  

LLIN demand is based on financial availability and stability and on preventive 

campaign delivery modalities. The optimal allocation per household considered by the 

WHO (2014) is 1 LLIN per 1.8 persons. Annual demand can substantially differ since 

large scale projects are implemented in a two- to three-year cycle based on estimated bed 

net serviceable life (UNICEF, 2016). However, actual bed net durability has been 

difficult to measure since it depends on product characteristics and on the manner in 

which the household uses it, which is country and culture specific (UNICEF, 2016).  

Demand uncertainty is mainly associated with misjudgments in LLIN needs 

assessments and with the disparity between estimated and obtained funding over the 

fiscal year (Global Fund et al., 2015). For instance, since bed net durability varies widely, 

net replenishment forecast uncertainties affect demand planning of top-up campaigns. In 

addition, malaria occurs in remote areas in which the population census might not be 

accurate and thus, a margin of error is considered to avoid stock-outs and unmet demand. 

Moreover, from the period of planning until the project implementation, regional malaria 

incidence rates can vary drastically, shifting coverage priority to more pressing regions 

and hence changing initial demand planning of non-universal distribution campaigns. 

Humanitarian organizations can procure bed nets through a bidding process for 

each new order or by long-term agreements (LTAs) (USAid, 2010). The average 

weighted LLIN price decreased by 41% over the last five years, reaching approximately 

US$3 (UNICEF, 2016). This decrease was partially explained by Global Fund et al.’s 

(2015) assessment that bed net prices offered from July 2014 to May 2015 followed oil 

and derivatives (polyester and high-density polyethylene) price trends, which are the bed 

nets’ main production inputs. The price decrease was also achieved through humanitarian 

organizations’ collaboration in the reduction of LLIN types (from 44 different colors, 

sizes and shapes to fewer than ten) and in the alignment of demand forecasts, which in the 

end allow supplier capacity to increase through better production scheduling (UNICEF, 

2016). 

The African Leaders Malaria Alliance (ALMA) LLIN-funding projection through 

2020 shows that, from 2017 onward, there remains a major gap of LLINs to be financed, 

clearly revealing the short-range budget environment frequently observed with 

humanitarian operations (Global Fund et al., 2015).  
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Since the majority of ITN suppliers are located in Asia, and almost 90% of the 

demand is in Africa (WHO, 2015a), ITN distribution usually involves maritime 

transportation from Asian to African ports and inland transportation from suppliers to 

Asian ports and from African ports to local distribution points. Transport activities face 

many uncertainties and risks that both shippers and carriers must manage, including, 

among others, capacity availability, operational delays, disruptions, and freight rate 

volatility (Thanopoulou and Strandenes, 2017). 

LLINS are usually packaged in bales of 25, 40, 50, or 100, which are then fitted in 

containers for sea and inland transportation. There is no need for special storing 

precautions since LLINs are non-perishable, and they stay well protected within the bales 

for a reasonable amount of time within normal conditions. However, LLINs are light and 

voluminous compared to other humanitarian items, such as food, and thus require 

considerable warehouse space (CRS, 2014). In large-scale distribution campaigns, there is 

the possibility of acquiring the containers and transporting them to hub locations or final 

distribution points to use them as a temporary warehouse, hence reducing handling and 

storage costs. However, this solution requires roll on/off vehicles or cranes at the final 

destination, which in the end might become a costly solution if they are not available in 

advance (Roll Back Malaria, 2011b).  

 

4. Robust Optimization Frameworks 
 
Soyster (1973) originally proposed a linear programming model to build a feasible 

robust solution for all data belonging to a convex uncertainty set. With his approach, the 

results were too conservative since the model considers the unlikely scenario in which all 

uncertain data assume their worst values simultaneously.  

To overcome the problem of over-conservatism, Ben-Tal and Nemirovski (1998) 

proposed an ellipsoidal uncertainty set to adjust the conservatism level, which, however, 

led to a nonlinear robust counterpart model.  

Bertsimas and Sim’s (2004) propose a robust formulation that is able to adjust the 

conservatism of the solution in term of probabilistic bounds of constraint violations, 

whilst rendering a linear optimization problem. However, when Bertsimas and Sim’s 

(2004) framework is applied to address uncertainty on the independent terms of the 

constraint (i.e., the right-hand side, such as demand or supply capacity), the framework 

may become trivial and have limited applicability.  

Overcoming this issue, Bertsimas and Thiele (2006a) proposed the use of a single 

conservatism parameter, e.g. Τ , to define the number of demand locations 𝑖 that might 

assume their worst-case values in a single period inventory management problem but 
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with the drawback that all 𝑏% , 𝑖 ∈ 𝐼	(i.e., the demand of each location) must lie within the 

same uncertainty set )𝑏 − 𝑏+ , 𝑏 + 𝑏+ -.  

Conversely, with a multiperiod inventory management problem, in which 𝑡 

represents each time period, Bertsimas and Thiele (2006b) proposed an uncertainty 

budget, e.g. Τ%/ 	, that indicates for each period the number of past periods that the 

uncertain cumulative demand of a given location 𝑖, which appears on the RHS, might 

assume its worst-case deviation from its nominal value. In addition, they suggested that 

Τ%/  should increase over time to create a reasonable worst-case approach. However, no 

further propositions were made by the authors to overcome the issue of setting the 

uncertainty budget for each individual demand in each period, which might be 

challenging for large problem instances. 

 

4.1 Robust hierarchical optimization approach for uncertainties on the RHS 

The use of a global robustness level, Τ , is proposed in this paper and indicates the 

maximum number of uncertain right-hand side parameters 𝑏0%, 𝑖 ∈ Ω, that can assume their 

worst-case values; however, unlike Bertsimas and Thiele (2006a), it is considered the 

original uncertainty set of each 𝑏0%, 𝑖 ∈ Ω. The idea behind the proposition is an ordering 

heuristic within an auxiliary problem that might be based, for instance, on deviation 

values 𝑏+% , 𝑖 ∈ Ω to choose which 𝑏0% , 𝑖 ∈ Ω, will assume its worst value given a global 

robustness level Τ  set by the decision maker.  

Since Bertsimas and Thiele (2006b) studied a constraint with an accumulated 

uncertain demand on the RHS (similar to ∑ Γ%/4𝑏+%// ) under a similar strong duality 

argument, the objective function of the dual formulation from the auxiliary problem, 

which sets Γ%/4 values according to an uncertainty budget Τ%/ , can replace the RHS 

uncertainty term in the original problem constraint. However, observe that, if the original 

problem constraint had a non-accumulated demand for each location on the RHS, this 

reinjection would not be trivial. 

In contrast to Bertsimas and Thiele (2006b), the proposed formulation maintains 

the auxiliary problem to account for the particular cases in which the dual formulation is 

not directly applicable. In addition, this proposition allows for using other criteria for the 

ordering heuristic to set the appropriate budget of uncertainty, such as supplier production 

reliability or the priority of each demand location, instead of uncertain parameter 

deviation values. Moreover, in the proposed formulation, there is an explicit concern with 

reducing the complexity of setting several robustness levels on the RHS (i.e., for each 

row 𝑖) within large problem instances. 
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To provide a practical meaning for the global robustness level, it is worth noting 

that each 𝑏0% , 𝑖 ∈ Ω must be classified within a predefined constraint category, such as 

demand fulfilment, supply capacity or funding availability constraints. Therefore, the set 

𝑔 ∈ 𝐺 is introduced, which represents each uncertain constraint category, and henceforth, 

global robustness levels are indexed with 𝑔, i.e., Τ7. In addition, let each subset Ω7 ⊆ Ω 

represent the set of 𝑏% 	of uncertain coefficients that fall within the same category 𝑔. 

The proposed framework results in a hierarchical optimization model, where, once 

given global robustness levels, Τ7, the lower level defines Γ%4, 𝑖 ∈ Ω7 values that 

maximize or minimize a given criterion. To illustrate this approach the uncertain 

parameters deviation values are set as the criteria; thus, the lower level problem 

maximizes the global decrease on the RHS:  

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒? 	𝒄A 𝒙   (1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜   

H𝑎%I
I

𝑥I ≤ 𝑏%  ∀𝑖 ∈ 𝐼\Ω (15) 

H𝑎%I
I

𝑥I 	≤ 𝑏% − Γ%4𝑏+%  ∀𝑖 ∈ Ω (21) 

𝐱 ≥ 0  (3) 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒P 	HΓ%4𝑏+%
%∈Q

  
(22) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜   

H Γ%4

%∈QR

	≤ Τ7 ∀𝑔 ∈ 𝐺 (23) 

0 ≤ Γ%4 ≤ 1 ∀𝑖 ∈ Ω (24) 

 

Given an uncertain constraint category 𝑔 ∈ 𝐺, if Τ7= 0, the formulation becomes 

the nominal problem for that particular category, and if Τ7 = UΩ7U, where UΩ7U is the 

cardinality of the uncertainty set Ω7,it goes back to Soyster’s approach. 

 

4.2 Data-driven uncertainty sets 

Within the context of a robust portfolio dynamic optimization, Fernandes et al. 

(2016) proposed adaptive polyhedral uncertainty sets that are empirically determined 

using the last 𝐾 observed data. In this manner, the decision maker must choose a window 
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of robustness 𝐾, which might be more insightful than setting the number of parameters 

that can assume their worst-case values during each implementation period. Next, the 

formulation proposed by Fernandes et al. (2016) is adjusted from a dynamic optimization 

model to a static multi-period model.  

First, let 𝑡 ∈ 𝑇	 ⊆ ℕ represent the set of implementation periods where decisions 

would originally be made with predicted data only. Once again, let 𝐽%  represent the set of 

uncertain parameters 𝑎%I/, 𝑗 ∈ 	 𝐽%  in a particular row 𝑖 of the constraint matrix 𝐀. 

However, no assumptions are made regarding the boundaries or probability distribution 

of random variable  𝑎[%I/, 𝑗 ∈ 	 𝐽% .  

Let 𝐿 ⊆ ℕ  represent a set of time series lag operators used to establish the 

backward periods that set the robustness window and to adjust parameter values in case 

there is an associated lead-time decision until the implementation period t. 

Let 𝛽 ∈ Β ⊆ 𝐿 represent a subset of lag operators used to define the distance 

between the implementation period 𝑡 and a reference period, when the problem to be 

optimized is actually being studied (i.e., 𝑡 − 𝛽) and from which there exists some 

observed data behind. 

Further, other lag operators can be included to account for the time gap between 

distinct decisions (e.g., LLIN procurement and freight hiring) and the implementation 

period 𝑡, which might arise, for instance, from long lead times (e.g., production and 

transport lead times).  

Therefore, let 𝐺% ⊆ 𝐽  represent the set of parameters 𝑎%I/, 𝑗 ∈ 	𝐺%  in a particular 

row 𝑖 of the constraint matrix 𝐀, which are associated with decision-making processes 

that occur in periods prior to implementation period 𝑡. Thus, for each parameter 𝑎%I/, 𝑗 ∈

	𝐺% , 𝑑I ∈ D  ⊆ 𝐿 is introduced, which indicates the lag operator used to represent the 

distance between the implementation period 𝑡 and the actual decision-making period for 

𝑎%I/, 𝑗 ∈ 	𝐺% , i.e., 𝑡 − 𝑑I. 

In the context of an LLIN distribution campaign, Figure 1 shows an illustrative 

example of the distance from a particular implementation period 𝑡 (i.e., distribution 

phase) to its planning phase and decision milestones. 
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Figure 1: Illustrative time gaps between the actual LLIN distribution period 𝑡 

(Jun/14) and its planning phase and decision milestones.  

 

Note that the lag operator 𝛽 = 12, sets a one-year distance from implementation 

period 𝑡 (considered the beginning of LLIN distribution to districts) to budgetary 

planning period 𝑡 − 𝛽 (i.e., the period in which the project feasibility is being studied). 

Similarly, lag operators 𝑑b = 1 and 𝑑c = 3 are introduced to set the distance from the 

LLIN distribution period 𝑡 to the maritime freight (𝑡 − 1) and LLIN procurement (𝑡 − 3) 

decision-making periods, respectively. 

Further, let 𝑘 ∈ 𝐾 ⊆ 𝐿 represent the set of lag operators used to define the 

robustness window for uncertain parameters 𝑎%I/, 𝑗 ∈ 	 𝐽% , comprised of periods 𝑡 − 	𝛽 −

1 until 𝑡 − 	𝛽 − 𝑘.  

Considering the assumptions of the above example (Figure 1) and an LLIN price 

time series of a specific supplier, Figure 2 depicts, for implementation period 𝑡 (Jun/14), a 

9-month robustness window covering values from periods 𝑡 − 	15	(Mar/13) until 𝑡 − 24 

(Jun/12) and the predicted procurement value 𝑡 − 3 (Mar/14). With reference to a 

minimum cost model, the worst value among the predicted and considered past values is 

represented within the robustness window in period 𝑡 − 15 (Mar/13). 
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Figure 2: Robustness window comprised of 9 months and the predicted value for 

a particular LLIN supplier price.  

 

It is worth noting that the robustness window does not necessarily need to be 

composed of consecutive past values. For instance, observe that, in some cases, it might 

be interesting to consider the impact of seasonality; therefore, it is possible to add the lag 

operator 𝑘 = 12 (i.e., seasonality lag on monthly observations) to more recent past 

observations, leading to a non-sequential robustness window such as 𝑘 ∈ {1,2,12}, that 

considers two immediate past observations and the previous year value. However, for the 

sake of notation simplicity, it is considered, and otherwise noted, that a robustness 

window 𝐾 is comprised of 𝐾 consecutive past values. 

In light of the above, for each row 𝑖 and implementation period 𝑡 ∈ 𝑇, the proposed 

data-driven uncertainty set hedges the solution against the simultaneous combination of 

forecasted values (eq. (25)) and the values within the robustness window (eq. (26)):  

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒? 	𝒄A 𝒙   (1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜   

H 𝑎%I/
I∈l\mn

𝑥I/ + H 𝑎%I,/opq
I∈mn

𝑥I/ ≤ 𝑏%/  ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇  (25) 
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H 𝑎%I/
I∈{l∖ln∩l∖mn}

𝑥I/ + H 𝑎%I,/opq
I∈{l∖ln∩mn}

𝑥I/ + H 𝑎%I,/otou
I∈{ln∩l∖mn}

𝑥I/

+ H 𝑎%I,/opqotou
I∈{ln∩mn}

𝑥I/ ≤ 𝑏%/  

∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾, 𝛽 ∈ Β  (26) 

  

𝐱 ≥ 0  (3) 

 

The first term of equation (25) represents the sum over the subset of parameters 

without an associated decision lag. The second term represents the sum over the subset of 

parameters with an associated decision lag; therefore, the lag operator 𝑑I is reduced from 

implementation period 𝑡. It is worth mentioning that both subsets are disjointed.  

The first term of equation (26) represents the sum over the subset of parameters 

without uncertainty and without decision lag. Similarly, the second term also denotes the 

sum over the subset of parameters without uncertainty but with an associated decision 

lag. The third term depicts the sum over the subset of uncertain parameters without an 

associated decision lag; thus, 𝛽 (budgetary lag) and 𝑘 periods are reduced from 

implementation period 𝑡 to shape the robustness window. The last term accounts for the 

sum over the subset of uncertain parameters with an associated decision lag; therefore, 𝛽, 

𝑘 and 𝑑I are reduced from 𝑡. Finally, observe that all of the subsets are disjointed. 

Note that the model is adaptive since the robustness window moves over time, 

absorbing new patterns and forgetting old ones. In other words, for each period (after the 

first period) in the implementation horizon, new constraints are added, and those that 

become obsolete are removed. Therefore, the model captures the empirical dependence 

structure between the uncertain coefficients 𝑎%I/, 𝑗 ∈ 	 𝐽% , as the uncertainty set changes 

for each implementation period. Since this idea reflects the dynamics of changing 

environments (e.g., market conditions) that affect uncertain parameters, it is a significant 

enhancement over Bertsimas and Sim’s (2004) framework when applied to multi-period 

or dynamic models. 

  
5. Mathematical Model 

 

The proposed model represents a five-level supply chain, comprised of LLIN 

suppliers, ports of origin, ports of discharge, hubs and health districts (Figure 3).  
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Figure 3: Summarized model structure. 

 

Compared to Brito et al. (2014), the proposed model considers additional sets of lag 

operators, robust parameters, hubs and modes of transport. In addition, safety stock costs, 

capacities of hubs, ports of discharge and modes of transport are also added. Finally, 

LLINs and container flows are broken down into separate variables. The sets, variables, 

and parameters of the model are presented in Appendix 1.  

The model minimizes the total procurement, safety stock and distribution costs 

involved in an LLIN distribution campaign. Consequently, it also indicates: 

i. The number and size of containers to be used in each district; 

ii. From which suppliers to purchase and which port to use at the origin (this 

decision also depends on container procurement costs at each port of 

origin); 

iii. The safety stock levels at each supplier; 

iv. Which port of discharge should be used; 

v. Whether to use hubs as consolidation points; and 

vi. Which modes of transport should be used to reach each district. 

 

Market uncertainties, such as supply capacity and demand forecast, which appear 

on the RHS, are addressed with the proposed extension of Bertsimas and Sim’s (2004) 

robust framework. The same approach is taken regarding logistics uncertainties, such as 

mode of transport and hub/port discharge capacities. Financial uncertainties, such as 

LLIN and container prices and transport freight rates, are approached through the 

proposed adaptive data-driven uncertainty sets based on Fernandes et al. (2016). 

For the sake of notation simplicity, consider, unless otherwise noted, that the 

summation and constraint domains are equal to their respective index domains. 

𝑀𝑖𝑛	H𝜓x
x

	
 

(27) 

Subject to 
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𝜓x ≥H𝑝𝑟xoc,{,%𝑁𝑃x{%
{%

+H𝑖𝑐xoc,{,%𝑆x{%
{%

+ H 𝑐𝑐xob,~I𝑇𝑂x{~Iu
{~Iu

+H 𝑐𝑠xoc,{~%I𝑇𝑆x{~%I +
{~%I

H 𝑐𝑜xob,{~Iu𝑇𝑂x{~Iu
{~Iu

+ H 𝑐𝑝x{~up�𝑇𝑃x{~up�
{~up�

+ H 𝑐ℎx{~u��𝑇𝐻x{~u��
{~u�

+ H 𝑐𝑑x{~�p�𝑇𝐷x{~�p�
{~�p�

 

∀	𝑟, 𝜋, 𝜆 (28) 

𝜓x ≥H𝑝𝑟xotoco�,{,%𝑁𝑃x{%
{%

+H𝑖𝑐xotoco�,{%𝑆x{%
{%

+ H 𝑐𝑐xotobo�,~I𝑇𝑂x{~Iu
{~Iu

+H 𝑐𝑠xotoco�,{~%I𝑇𝑆x{~%I +
{~%I

H 𝑐𝑜xotobo�,{~Iu𝑇𝑂x{~Iu
{~Iu

+ H 𝑐𝑝xoto�,{~up�𝑇𝑃x{~up�
{~up�

+ H 𝑐ℎxoto�,{~u��𝑇𝐻x{~u��
{~u��

+ H 𝑐𝑑xoto�,{~�p�𝑇𝐷x{~�p�
{~�p�

 

 

∀	𝑟, 𝜋, 𝜆, 𝛽, 𝜐 (29) 

H𝑁𝑇𝑃x{up�
{u�

+ H 𝑁𝑇𝐷x{�p�
{��

≥ 	𝑑𝑚xp	 ∀	𝑟, 𝑑 (30) 

𝑁𝑃x{% ≤ 	 𝑠𝑐x{% − 𝑠𝑐� x{%Γx{%
��{{�� ∀	𝑟, 𝑝, 𝑖 (31) 

H𝑁𝑇𝑆x{%I
I

≤ 	𝑁𝑃x{% +	𝑆x{%		 ∀	𝑟, 𝑝, 𝑖 (32) 

H𝑆x{%
%{

≥ 	H𝑑𝑚� xpΓxpp�����p
p

 ∀	𝑟	 (33) 

	𝑆x{% = 	 𝑆xo�,{% + 𝑁𝑃x{% −H𝑁𝑇𝑆x{%I
I

 ∀	𝑟, 𝑝, 𝑖 (34) 

H𝑁𝑇𝑆x{%I
%

= 	H𝑁𝑇𝑂x{Iu
u

	 ∀	𝑟, 𝑝, 𝑗 (35) 

H𝑁𝑇𝑂x{Iu
I

= 	H𝑁𝑇𝑃x{up�
p�

+	H𝑁𝑇𝐻x{u��
��

	 ∀	𝑟, 𝑝, 𝑘 (36) 

	H𝑁𝑇𝐻x{u��
��

=H𝑁𝑇𝐷x{�p�
p�

 ∀	𝑟, 𝑝, ℎ (37) 

H𝑇𝑆x{~%I
%

= 	H𝑇𝑂x{~Iu
u

	 ∀	𝑟, 𝑝, 𝑐, 𝑗 (38) 
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H𝑇𝑂x{~Iu
I

= 	H𝑇𝑃x{~up�
p�

+	H𝑇𝐻x{~u��
��

	 ∀	𝑟, 𝑝, 𝑐, 𝑘 (39) 

H𝑇𝐻x{~u��
��

=H𝑇𝐷x{~�p�
p�

 ∀	𝑟, 𝑝, 𝑐, ℎ (40) 

𝑁𝑇𝑆x{%I ≤H𝑇𝑆x{~%I
~

𝑛𝑞{~ ∀	𝑟, 𝑝, 𝑖, 𝑗 (41) 

𝑁𝑇𝑂x{Iu ≤H𝑇𝑂x{~Iu
~

𝑛𝑞{~ ∀	𝑟, 𝑝, 𝑗, 𝑘 (42) 

𝑁𝑇𝑃x{up� ≤H𝑇𝑃x{~up�
~

𝑛𝑞{~ ∀	𝑟, 𝑝, 𝑘, 𝑑,𝑚 (43) 

𝑁𝑇𝐻x{u�� ≤H𝑇𝐻x{~u��
~

𝑛𝑞{~ ∀	𝑟, 𝑝, 𝑘, ℎ,𝑚 (44) 

𝑁𝑇𝐷x{�p� ≤H𝑇𝐷x{~�p�
~

𝑛𝑞{~ ∀	𝑟, 𝑝, ℎ, 𝑑,𝑚 (45) 

H𝑁𝑇𝑂x{Iu
{I

≤ 	𝑝𝑐xu − 𝑝𝑐�xuΓxu
{�x/	 ∀	𝑟, 𝑘 (46) 

H𝑁𝑇𝐻x{u��
{u�

≤ ℎ𝑐x� − ℎ𝑐�x�Γx���4 ∀	𝑟, ℎ (47) 

H𝑁𝑇𝑃x{up�
{

≤ 𝑚𝑝xup� −𝑚𝑝� xup�Γxup���p�� ∀	𝑟, 𝑘, 𝑑,𝑚 (48) 

H𝑁𝑇𝐻x{u��
{

≤ 𝑚ℎxu�� −𝑚ℎ� xu��Γxu����p�� ∀	𝑟, 𝑘, ℎ,𝑚 (49) 

H𝑁𝑇𝐷x{�p�
{

≤ 𝑚𝑑x�p� −𝑚𝑑� x�p�Γx�p���p�� ∀	𝑟, ℎ, 𝑑,𝑚 (50) 

𝑇𝑆x{~%I𝑎𝑠x{%I ≥ 𝑇𝑆x{~%I	 ∀	𝑟, 𝑝, 𝑐, 𝑖, 𝑗 (51) 

𝑁𝑇𝑆x{%I𝑎𝑠x{%I ≥ 𝑁𝑇𝑆x{~%I	 ∀	𝑟, 𝑝, 𝑖, 𝑗	 (52) 

𝑇𝑂x{~Iu𝑎𝑜x{Iu ≥ 𝑇𝑂x{~Iu	 ∀	𝑟, 𝑝, 𝑐, 𝑗, 𝑘 (53) 

𝑁𝑇𝑂x{Iu𝑎𝑜x{Iu ≥ 𝑁𝑇𝑂x{Iu ∀	𝑟, 𝑝, 𝑗, 𝑘 (54) 

𝑇𝑃x{~up�𝑎𝑝x{up� ≥ 𝑇𝑃x{~up�	 ∀	𝑟, 𝑝, 𝑐, 𝑘, 𝑑,𝑚 (55) 

𝑁𝑇𝑃x{up�𝑎𝑝x{up� ≥ 𝑁𝑇𝑃x{up� ∀	𝑟, 𝑝, 𝑘, 𝑑,𝑚	 (56) 

𝑇𝐻x{~u��𝑎ℎx{u�� ≥ 𝑇𝐻x{~u�� ∀	𝑟, 𝑝, 𝑐, 𝑘, ℎ,𝑚 (57) 

𝑁𝑇𝐻x{u��𝑎ℎx{u�� ≥ 𝑁𝑇𝐻x{u�� ∀	𝑟, 𝑝, 𝑘, ℎ,𝑚 (58) 

𝑇𝐷x{~�p�𝑎𝑑x{�p� ≥ 𝑇𝐷x{~�p� ∀	𝑟, 𝑝, 𝑐, ℎ, 𝑑,𝑚 (59) 

𝑁𝑇𝐷x{�p�𝑎𝑑x{�p� ≥ 𝑁𝑇𝐷x{�p� ∀	𝑟, 𝑝, ℎ, 𝑑,𝑚 (60) 

H 𝑇𝑃x{~up�
x~u�

+ H 𝑇𝐷x{~�p�
x~��

≤ 	Ζ{p ∗ 𝑀		
∀	𝑝, 𝑑 (61) 
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H 𝑇𝑃x{~up�
x~u�

+ H 𝑇𝐷x{~�p�
x~��

≥ 	Ζ{p	
∀	𝑝, 𝑑 (62) 

HΖ{p
{

= 1		 ∀	𝑑 (63) 

Ζ{p ∈ {0,1} ∀	𝑝, 𝑑 (64) 

𝑇𝑆x{~%I, 𝑇𝑂x{~Iu, 𝑇𝑃x{~up�, 𝑇𝐻x{~u��, 𝑇𝐷x{~�p� ∈ ℕ	 

∀	𝑟, 𝑝, 𝑐, 𝑖, 𝑗,𝑘, ℎ, 𝑑,𝑚 (65) 

𝑁𝑇𝑆x{%I, 𝑁𝑇𝑂x{Iu, 𝑁𝑇𝑃x{up�,𝑁𝑇𝐻x{u��,𝑁𝑇𝐷x{�p�, ∈ ℕ 

∀	𝑟, 𝑝, 𝑖, 𝑗, 𝑘, ℎ, 𝑑,𝑚 (66) 

𝑁𝑃x{%, 𝑆x{% 	 ∈ ℕ ∀	𝑟, 𝑝, 𝑐, 𝑖, 𝑗, 𝑘, 𝑑 (67) 

𝜓x ∈ ℝ� ∀	𝑟 (68) 

 

The objective function of the upper level problem (eq. (27)) minimizes the 

maximum total procurement, transportation and inventory costs for all implementation 

phases, considering both predicted (eq. (28)) and observed costs within a robustness 

window defined by the decision maker (eq. (29)). 

Equation (28) defines the total procurement, transportation and inventory costs, 

using predicted costs for each implementation phase (i.e., nominal values that would be 

used, for instance, in a deterministic model). The lag operators 𝜋 and 𝜆, both linked to 

implementation period 𝑟, are introduced to account for production lead time and maritime 

transport lead time, respectively.  

Considering 𝛽 as the budgetary planning period lag, with reference to the 

implementation period 𝑟, and 𝜐 as the number of backwards periods, with reference to 𝛽, 

equation (29) guarantees that the solution is feasible against the realization of all of the 

observed costs within the defined robustness window (e.g., 𝑟 − 𝛽 − 𝜐).  

Constraint (30) assures that demand is met at district d during implementation 

phase	𝑟. Constraint (31) restricts procurement according to the supplier’s 𝑖	production 

capacity of LLINs 𝑝 (decreased by a robust parameter Γx{%
��{{��) during implementation 

phase 𝑟. 

For each implementation phase 𝑟, constraint (32) limits the number of LLINs 

transported from each supplier 𝑖 to all ports of origin 𝑗,	according to supplier’s 

𝑖	production capacity and safety stock of LLINs 𝑝. 

For each implementation phase 𝑟, constraint (33) defines the minimum safety stock 

level of LLINs totaled among all suppliers as a protection measure against demand 

uncertainties that are only revealed after the end of each implementation phase (i.e., after 
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campaign evaluation). In this context, the inventory buffer allows for a faster 

humanitarian response in case of LLIN needs misjudgment. Equation (34) recursively 

defines the safety stock of a supplier 𝑖 during phase 𝑟 as the difference between procured 

LLINs and the outbound flow to port of origin	𝑗. 

Constraints (35)-(37) guarantee LLIN flow conservation at port of origin 𝑗, port of 

discharge 𝑘 and at hub ℎ, respectively. Constraints (38), (39) and (40) guarantee 

container flow conservation at port of origin 𝑗, port of discharge 𝑘 and hub ℎ, 

respectively. 

Constraints (41)-(45) assure that the number of LLINs inside a container 𝑐 is 

limited by its capacity. Constraint (46) limits the total flow through a port of discharge (or 

hub) 𝑘 according to its capacity (decreased by a robust parameter Γxu
{�x/). Constraint (47) 

limits the total flow through a hub ℎ according to its capacity (decreased by a robust 

parameter Γx���4). Constraint (48) limits the total flow between each port of discharge 𝑘 

and district 𝑑 by the mode of transport 𝑚 capacity along that particular route. Constraint 

(49) limits the total flow between each port of discharge 𝑘 and hub ℎ by the mode of 

transport 𝑚 capacity along that particular route. Constraint (50) limits the total flow 

between each hub ℎ and district 𝑑 by the mode of transport 𝑚 capacity along that 

particular route. 

The next ten constraints define route availability due to uncertainties (e.g., security, 

rainy or harvest season) from supplier 𝑖 to port of origin 𝑗 (51 and 52), from port of origin 

𝑗 to port of discharge 𝑘 (53 and 54), from port of discharge 𝑘 to district 𝑑 (55 and 56), 

from port of discharge 𝑘 to hub ℎ (57 and 58), and from hub ℎ to district 𝑑 (59 and 60). 

To avoid disagreements among beneficiaries, as a result of preferences for a 

specific supplier, a humanitarian organization might choose to supply each district with 

only one type of LLIN. Therefore, discretionary constraints (61) and (62) are used to 

determine	Ζ{p, which assumes 1 if a district 𝑑 is supplied by an LLIN 𝑝 and 0 otherwise, 

and equation (63) assures that a district is supplied exclusively by one LLIN 𝑝 (i.e., 

exclusively by one supplier). It is worth noting that the large number M is bounded by 
��? {∑ p���� ,∀p}
�%� ��� ¡,∀{,~¢

, which is equivalent to the largest possible number of containers 

required to supply the most demanding district. 

Finally, constraint (64) defines binary variables, (65)-(68) define real integer 

variables, and (69) defines nonnegative real variables. 

Next, the lower level problem is presented that defines the uncertainty budget 

variable Γ%4 of each constraint according to the global robustness level parameters Τ7 set 

by the decision maker. 
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𝑀𝑎𝑥P 	H£𝑠𝑐� x{%Γx{%
��{{�� +	𝑑𝑚� xpΓxpp�����p 	+ 𝑝𝑐�xuΓxu

{�x/ + ℎ𝑐�x�Γx���4
{%Ip

+ 𝑚𝑝� xup�Γxup���p�� + 𝑚ℎ� xu��Γxu����p�� + 𝑚𝑑� x�p�Γx�p���p��¤ 

∀	𝑟 (69) 

Subject to 

HΓx{%
��{{�� ≤ Τx

��{{��

{%

  
(70) 

HΓxpp�����p ≤ Τxp����p
p

  
(71) 

HΓxu
{�x/ ≤ Τx

{�x/

u

  
(72) 

HΓx���4 ≤ Τx��4
�

  
(73) 

HΓxup���p��

up

+HΓxu����p��

u�

+HΓx�p���p��

�p

≤ Τx���p��  ∀	𝑚 (74) 

Γx{%
��{{��, Γxpp�����p, Γxu

{�x/, Γx���4, Γxup���p��, Γxu����p��, Γx�p���p�� 	 ∈ [0,1] 

∀	𝑟, 𝑝, 𝑐, 𝑖, 𝑗, 𝑘, ℎ, 𝑑,𝑚 (75) 

Equation (69) describes the objective function of the lower level, which for each 

implementation phase 𝑟 maximizes the total deviation from uncertain parameters’ 

nominal values, given global robustness levels Τ7. 

Constraint (70) limits the number of suppliers 𝑖 that might assume their lowest 

production capacity. Constraint (71) limits the number of districts 𝑑 that might assume 

their highest demand values. Constraints (72) and (73) limit the number of ports of 

discharge 𝑘 and the number of hubs ℎ that might assume their lowest capacity, 

respectively. Similarly, constraint (74) limits for each mode of transport 𝑚 the number of 

routes that might assume their lowest capacity. Finally, equation (75) defines the 

variables inside the unit interval. 

 
6. Case Study 

 

Between July and December 2013, a large-scale LLIN distribution campaign 

started in Ivory Coast with two pilot phases, comprising 1.8 million LLINs funded by the 

World Bank and implemented by CARE. Later, from June to December 2014, UNICEF 

was responsible for the procurement and distribution of 12 million LLINs within three 

implementation phases funded by the Global Fund. In this context, Figure 4 depicts the 
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ports of discharge, hubs and demanding regions per distribution phase on an Ivory Coast 

map.  

 

 
Figure 4: Panorama of UNICEF’s large-scale distribution campaign in Ivory 

Coast, 2014. 

Source: Adapted from Brito et al. (2014) 

 

 LLINs can be procured from distinct suppliers based in Asia, and they are 

delivered to the nearest port: Haiphong and Ho Chi Minh (Vietnam), Chennai (India), 

Bangkok (Thailand), Qingdao, Shanghai and Tianjin (China).  

Ivory Coast’s two main ports, Abidjan and San Pedro, are considered in the model 

and three cities - Ferkessédougou, Yamoussoukro and Bouake - can be set as hubs to 

allow for the usage of smaller trucks to reach remote areas and to reduce last mile 

transportation distance and overall transport costs.  

From these ports of discharge and hubs, LLINs are distributed to 71 health 

districts, where they are prepositioned before the distribution occurs. With the exception 

of Abidjan health district, all of the other regions must receive LLINs inside containers to 

overcome the lack of storage capacity at the health district level, which also represents a 

security concern. In addition, each health district must be supplied entirely by a single 

supplier to avoid quarrels among beneficiaries, due to preferences for a specific supplier 

once the distribution begins. It is worth noting that hubs are also used to address potential 

bottlenecks, such as insufficient space to accommodate containers at district levels, and 
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the need for proper equipment to handle containers, for instance, forklifts and trucks with 

cranes. 

Suppliers are responsible for delivering LLINs in containers to the port of origin in 

Asia. In addition, no transportation costs are introduced when suppliers are located in the 

same city as the port of origin. There are three available container sizes: 20 ft., 40 ft. and 

40 ft. HC (high-cube). The freight rates from ports of origin in Asia to ports of discharge 

and hubs in Ivory Coast were collected through market research, and they include local 

insurance, customs clearance and duties, port storage and offloading costs in Ivory Coast. 

Transportation costs from the ports of discharge and hubs to the health districts were 

calculated based on their distance, with the linear regression presented in equation (76), 

which has a coefficient of determination of 𝑅¨ = 0.99 (Brito et al. 2014). 

 

𝐼𝑛𝑙𝑎𝑛𝑑	𝐶𝑜𝑠𝑡 = 395.60	 + 2.45 ∗ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒  (76) 

 

Each supplier has: (i) a specific production capacity; (ii) a variable stuffing 

capacity according to each container size; and (iii) an LLIN selling price. Demand in each 

health district was calculated using the WHO (2014) recommendation of one LLIN for 

every 1.8 persons in the target population. Figure 5 illustrates the entire supply chain 

structure considered in the model. 

 

 
Figure 5: Supply chain structure (adapted from Brito et al., 2014) 
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For the data-driven robust approach implementation, time series were generated for 

each cost parameter, considering their nominal values multiplied by monthly return rates 

of crude oil price (LLIN procurement price), diesel price (inland freight rates), steel coil 

price (container procurement price) and the dry Baltic index (maritime freight rates) 

obtained through Index Mundi (2017), Investing (2017a; 2017b) and the United States 

Energy Information Administration (USEIA, 2017) databases. Actual transportation and 

procurement costs are omitted due to confidentiality. It is worth noting that the China 

Containerized Freight Index (CCFI) would be a more adherent proxy since it is specific 

for container freight; however, unlike the dry Baltic index, it is not publicly available.  

 The budgetary planning phase is considered as 12 months prior to the actual LLIN 

distribution phase 𝑟, i.e., 𝛽 = 12, and the maritime transport and the production lead time 

are both 2 months, i.e., 𝜋 = 4	and	𝜆 = 2. Figure 6 shows the aforementioned time series 

proxies’ monthly returns, with reference to the first UNICEF implementation phase, 

which began in June 2014. Note that, considering a robustness window of one year (𝐾 =

12), the oil price reaches its maximum in March 2012 and is 15% more expensive than 

its predicted value, and the diesel price peaks in September 2012 (5% increase). In 

addition, the dry Baltic index, which presents high volatility, has its highest value (24% 

increase) in April 2012, and steel coil prices are actually lower than the forecasted value. 

 

 
 Figure 6: Data-driven robust optimization parameters and time series proxies. 
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The inventory costs of maintaining a safety stock within supplier facilities are 

considered to be 10% of LLIN procurement costs per LLIN unity stock. Demand and 

supply worst-case values are assumed to be a percentage of their nominal values in Brito 

et al. (2014), i.e., 105% and 75% for each health district and supplier, respectively. 

Port of discharge capacities were obtained from Logistics Cluster (2017) Ivory 

Coast’s port assessments and their monthly capacity significantly outweigh the project’s 

container flow, so the model disregards the port of discharge robustness parameters. In 

addition, the hub’s and road transportation capacities are considered sufficient, and since 

they do not represent a limitation to logistics planning, their robustness parameters were 

also disregarded in the model. 

 

6.1 Numerical results 
 

The proposed robust optimization model and the described cases were 

implemented using AIMMS 4.30, CPLEX solver 12.5, processor Intel® Core™ i7-4500U 

@ 2.40 GHz, 8 Gb RAM and the 64-bit operating system Windows10 ®. An optimality 

gap of 1% was set as the stopping criterion for the minimum cost model.  

The impact of each type of uncertainty on the total costs and the overall effect on 

the supply chain design are assessed through the cases presented in Table 1.  

First, the deterministic model (case 1) is used as a reference for the robust models. 

Next, cases 2.1 to 2.5 investigate financial cost uncertainties within the data-driven robust 

framework, in which the size of the robustness window ranges from one month to one 

year of consecutively observed values, with quarterly gaps between each robustness level, 

i.e., 𝐾 = 	1,3,6,9,12. cases 3.1 to 3.4 discuss supply capacity uncertainties in which up to 

four suppliers might assume their worst-case capacity. Demand uncertainty is examined 

with a 20% progressive increase in the number of districts that might assume their highest 

LLIN needs through cases 4.1 to 4.5. Both supply and demand uncertainties are 

investigated within the proposed RHS robustness hierarchical framework. Finally, cases 

5.1 to 5.5 investigate the gradual and simultaneous increase in each uncertain parameter 

robustness level.  

 

Table 1: Minimum cost model investigated cases 

# Uncertainty 
type 

Modeling 
approach 

Financial 
costs 

(Robustness 
Window 𝐾) 

Demand 
£𝛵xp����p∀𝑟¤ 

Supply 
£𝛵x

��{{��∀𝑟¤	

1 N/A Deterministic 0 0 0 
2.1 Financial Data-driven 1 0 0 
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2.2 costs  uncertainty 
sets 

3 
2.3 6 
2.4 9 
2.5 12 
3.1 

Supply RHS 
robustness 0 0 

1 
3.2 2 
3.3 3 
3.4 4 
4.1 

Demand RHS 
robustness 0 

20% 

0 
4.2 40% 
4.3 60% 
4.4 80% 
4.5 100% 
5.1 

Financial 
costs, 

supply and 
demand 

Data-driven 
uncertainty 

sets and RHS 
robustness 

1 20% 1 
5.2 3 40% 2 
5.3 6 60% 3 
5.4 9 80% 4 
5.5 12 100% 4 

 

Because the deterministic approach is insensitive to variability in the uncertain 

parameters, the plans suggested by such models are very often rendered infeasible once 

uncertainties are revealed.  

In this context, to assess the feasibility rate of each solution, uncertain parameters 

values were sampled for each case through 10,000 Monte Carlo simulations, using 

uniform, triangular and normal (Gaussian) distributions. For a given set of sampled 

uncertain parameters in a particular simulation, a solution is considered infeasible if it 

violates a constraint. Note that the violation probability proposed by Bertsimas and Sim 

(2004) assumes that random variables are independent, which is not true for the case 

under study; therefore, the proposed Monte Carlo simulation is required to assess the 

feasibility rates. 

In the absence of the real probability distributions underlying each uncertain 

parameter, a uniform distribution is used to assess uncertain parameters’ extreme values 

inside the uncertainty interval with constant probability. A triangular distribution is used 

to investigate a conservative risk profile with positive (e.g., supplier capacity parameter) 

or negative (e.g., demand parameter) skewness. Finally, a Gaussian distribution is used to 

provide an unbiased assessment.  

The minimum and maximum values inside a parameter uncertainty interval, e.g., 

[𝑠𝑐x{%-𝑠𝑐� x{%, 𝑠𝑐x{%+𝑠𝑐� x{%], were used as input parameters for the uniform distribution. For 

the normal distribution, the nominal parameter’s value was considered the average, e.g., 

𝑠𝑐x{%, and the standard deviation was one third of the maximum deviation, 
�~�� n

¯
. For the 

financial cost parameters, the standard deviation was calculated for the monthly return 
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(i.e., first difference) time series within the periods inside the robustness window. The 

triangular distribution requires an additional parameter, the mode, which was considered 

to be one standard deviation from the average (nominal) parameter value, e.g., 𝑠𝑐x{% −

	
�~�� n

¯
 . Note that, for financial costs and demand parameters, the standard deviation must 

be added to, instead of being subtracted from, the average value to achieve a more 

conservative distribution than the Gaussian distribution. In this context, Figure 7 

illustrates the considered probability distributions for supplier B’s production capacity (in 

thousands of LLINs) during the first implementation phase. 

 
Figure 7: Estimated normal, triangular and uniform probability distributions for supplier 

B’s production capacity (in thousands of LLINs) 

 
6.1.1 Financial cost uncertainty 

Financial cost uncertainties are evaluated through cases 2.1 to 2.5, in which Figure 

8 presents the price of robustness for the data-driven robust model up to a one-year 

robustness window, as well as the results from the simulations that evaluated the robust 

solution feasibility rate.  

To provide an overall idea of the size of the robust minimum cost problem, note 

that the data-driven model with a one-year robustness window (case 2.5) has 17,405 

variables (13,177 integers) and 6,788 constraints. 
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Figure 8: Price of robustness and robust plan feasibility for the robust model with 

financial cost uncertainty. 

 

The total costs for the deterministic model are $22.31 million, and as the 

robustness window lag increases, it results in an average of a 2.4% increase over the prior 

robustness level. In the most conservative scenario, spanning a one-year robustness 

window, the cost increase reaches as much as 12.7% ($2.83 million) from its 

deterministic counterpart, comprising a total of $25.14 million. It also becomes clear that 

LLIN procurement costs represent by far the major cost share (average of 88.3%), 

followed by maritime transportation costs (7%), container procurement (3.4%) and inland 

transportation costs (1.3%). Total transportation costs from suppliers to port of origin are 

equal to zero because the dataset only allows for production distribution to ports in cities 

where suppliers are located. It is important to mention that cost profile differences among 

robust solutions are spurious. As the robust window increases, LLIN procurement also 

has the greatest average impact on total costs, at 7.1%. Further, the container and 

transportation plans in the robust models are, on average, 3.1% less expensive than in the 

deterministic case, indicating a solution that prioritizes an LLIN procurement plan to 

achieve the least expensive solution.  

Regarding feasibility rates, when solutions are tested against the several 

realizations of uncertain financial cost parameters, the deterministic model has the highest 

likelihood of exceeding the optimal total costs (e.g., 97.4% under triangular distribution), 

thus violating constraints (28) or (29). In contrast, as the robustness window increases, so 

does the likelihood of the robust solution being feasible. Note that, when 𝐾 = 3, the 

robust plan starts to perform reasonably well, with a 69.3% probability of being feasible 
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under a normal distribution and reaching up to 99.5% when 𝐾 = 12 under the same 

distribution. As expected, in most cases, the results from the triangular distribution are 

more conservative than those from the uniform distribution, which in turn are more 

conservative than those from the normal distribution. 

In general, the results show that supply chain design features, such as supplier 

utilization, container procurement and logistic infrastructure assessment, are little affected 

by increasing robustness windows. In this context, supplier A represents an average of 

53.2% (6.6 million LLINs) of the total share, followed by supplier B with 25% (3.1 

million), supplier C with 18% (2.2 million) and supplier D with 3.7% (0.4 million). In 

addition, suppliers A, B and C are almost fully utilized, while supplier D only uses 14.6% 

of its capacity. On average, 40 ft. HC containers represent 72.6% (354 units) of container 

procurement, followed by 40 ft. with 25.1% (124 units) and 20 ft. with 3.3% (16 units), 

which makes sense since 40 ft HC represents the best marginal value per capacity.  

Concerning LLIN flow from ports of origin in Asia, on average, Haiphong port in 

Vietnam moves 536 twenty-foot equivalent unit containers (TEUs) (55.2%), followed by 

Qingdao port in China (208 TEUS, 21.4%), Chennai port in India (202 TEUs, 20.8%), 

and Shanghai port in China (24 TEUs, 2.5%). From ports and hubs in Ivory Coast directly 

to health districts, most containers are dispatched or unloaded in Abidjan port (average of 

488 TEUS, 50.5%) since the Abidjan district alone accounts for almost 23% of the total 

LLIN demand. In contrast, San Pedro port dispatches an average of 348 TEUs (35.7%). 

Hubs are used almost entirely during phase 1 to supply the less populated central and 

northern regions, which account for approximately 25% of the project’s demand. 

Yamoussoukro hub, 236 km from Abidjan port, consolidates an average of 72 TEUs 

(6.4%), followed by Bouake (58 TEUs, 6%) and Ferkessedougou (7 TEUs, 0.6%). 

In the light of the above, it is concluded that, despite the considerable impact on 

financial aspects, the data-driven robust approach imposed a marginal influence on the 

supply chain design. In this context, robustness can be understood as the proper budget 

buffer, in other words, an additional amount of money on top of the original budget, to 

hedge against the impact of price volatility on procurement and distribution plans.  

 

6.1.2 Supply Uncertainty 

Next, supply uncertainties are evaluated in cases 3.1 to 3.4. In this context, Table 2 

illustrates, for each supplier and implementation phase, its average and minimum 

capacities, the difference between them, i.e., the deviation from the nominal value, and 

the lower level problem solution from the proposed hierarchical approach to manage 

supply uncertainty. In other words, given a supply robustness level Τx
��{{�� ∈ {0,1,2,3,4} 
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that represents the number of suppliers that might assume their minimum capacity value 

in each implementation phase, Γx{%
��{{��values are chosen in such a manner that the 

maximum decrease in global supply capacity is achieved. Note that supplier E is omitted 

from the robustness analysis because it is a standby supplier, representing a capacity 

buffer to avoid model infeasibility and the LLIN price of which is 42% greater than that 

of the cheapest supplier. 

 

Table 2: Supplier nominal and minimum capacities per phase, and Γx{%
��{{�� value for each 

robustness level Τx
��{{��. 

Supplier Phase 

Supplier Capacity 
(million LLIN) 

𝚪𝒓𝒑𝒊
𝒔𝒖𝒑𝒑𝒍𝒚 for each 

𝚻𝒓
𝒔𝒖𝒑𝒑𝒍𝒚 

Min Average ∆ (Avg 
- Min) 0 1 2 3 4 

A 1 1.128 1.505 0.376 0 1 1 1 1 
  2 1.568 2.090 0.523 0 1 1 1 1 
  3 2.311 3.081 0.770 0 1 1 1 1 

B 1 0.624 0.832 0.208 0 0 0 1 1 
  2 0.915 1.220 0.305 0 0 0 0 1 
  3 0.841 1.121 0.280 0 0 1 1 1 

C 1 0.819 1.092 0.273 0 0 1 1 1 
  2 0.947 1.263 0.316 0 0 0 1 1 
  3 0.581 0.774 0.194 0 0 0 1 1 

D 1 0.430 0.574 0.143 0 0 0 0 1 
  2 0.973 1.298 0.324 0 0 1 1 1 
  3 0.312 0.416 0.104 0 0 0 0 1 

E 1 10.000 10.000 0.000 0 0 0 0 0 
  2 10.000 10.000 0.000 0 0 0 0 0 
  3 10.000 10.000 0.000 0 0 0 0 0 

 

Regarding the procurement and transportation costs for the deterministic and robust 

models with supply uncertainties, on average, the gradual increase in supply robustness 

level, 𝑻𝒓
𝒔𝒖𝒑𝒑𝒍𝒚, represents a 1.2% increase in total costs. The worst-case scenario, 

equivalent to Soyster’s approach, in which all suppliers assume their lowest capacity 

values, reaches $ 23.44 million, or $ 1.13 million (5.1%) greater than with the 

deterministic model (Figure 9). Since LLIN procurement represents the highest share of 

the project’s costs (88.1%), these findings confirm the expected significant impact of 

supply uncertainties on total expenses. 

In addition, Figure 9 presents the solution’s feasibility probability regarding 

constraint (31), which restricts procurement according to supplier’s 𝑖 uncertain 

production capacity. For the deterministic plan, the chances are virtually zero, and when 
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𝑇x
��{{�� = 1, they remain limited (3.5% under normal distribution). Even when 

𝑇x
��{{�� = 3, the plan has modest performance (42.3% under normal distribution). In 

contrast, when 𝑇x
��{{�� = 4, the probability is almost 100% for all distributions, which is 

actually the expected outcome since, for this particular case, the protection function is 

equivalent to Soyster’s formulation. This behavior might be explained by suppliers A, B 

and C having their production capacity nearly fully utilized in all cases. Note that the 

results from the triangular distribution are more conservative than those from the uniform 

distribution, which in turn are more conservative than those from the normal distribution. 

 

 
Figure 9: Price of robustness and plan feasibility for the robust model with supply 

uncertainty. 

 

Figure 10 indicates LLIN procurement per supplier. Note that, as 𝑇x
��{{�� 

increases, suppliers that assume their minimum capacity value now represents a smaller 

share than with the deterministic solution. For instance, supplier A accounts for 53.7% of 

LLIN procurement in the deterministic model, and when 𝑇x
��{{�� = 1, it represents only 

39.6%, increasing procurement costs by 2.4%. 

Further, note that, in the deterministic model, 96.6% of the LLIN supply comes 

from three distinct suppliers (A, B and C). As supply robustness level increases, more 

suppliers are used, until the point at when three suppliers are allowed to assume their 

worst-case values, i.e., 𝑇x
��{{�� = 3, all five suppliers are used, including the standby 

supplier E, which in this case represents 4.6% of the supply share.  
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In this context, robustness can be translated into supply chain flexibility, which is 

defined as the ability to change or react with little penalty in time, effort, cost or 

performance (Toni and Toncha, 2005). In other words, to minimize the negative impact 

of supply shortage, the robust solution involves additional costs by using more suppliers 

to ease the reallocation from the original procurement plan. 

 

 
Figure 10: Impact of distinct supply robustness levels on the number of LLINs procured 

per supplier. 

 

 The overall effect of robust supply solutions on the remainder of the supply chain 

is a direct result of procurement plan changes. As UNICEF becomes more averse to 

supply shortage risk, Haiphong (Vietnam) and Qingdao (China) ports are used less since 

supplier A and B’s shares decrease. In contrast, with suppliers D and E experiencing 

share growth, Shanghai (China) and Chennai (India) ports are preferred. However, no 

significant changes occur with the Ivory Coast port of discharge or the hub distribution 

plan.  

 

 

6.1.3 Demand Uncertainty 

Demand uncertainty is investigated in cases 4.1 to 4.5 and is addressed through 

the procurement of safety stocks that are stored at suppliers’ facilities and that might be 

sent to districts after program evaluation results. Within the adopted demand forecast 
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errors and warehousing cost assumptions, the progressive increase in demand robustness 

levels represent an average growth of $ 0.35 million in total costs. Regarding the 

deterministic model, the worst-case scenario, in which UNICEF hedges against forecast 

errors in all 71 districts, i.e., 𝛵xp�����p = 100%, represents a significant increase of $ 

0.41 million (1.85%) in overall costs (Figure 11). 

In addition, Figure 11 presents the solutions’ feasibility probability regarding 

constraint (33), which defines the minimum required safety stock for a given budget of 

uncertainty 𝛵xp����p. The simulation shows that, when 𝛵xp����p = 20%, the robust plan 

performs well with a 36.9% chance of feasibility under a normal distribution, and from 

𝛵xp����p = 40% onward, the chance is already 100% for the same distribution. This 

sudden increase in the feasibility rates might be explained by 40% of the most demanding 

districts (𝛵xp����p = 40%) representing a considerable 67% of total demand. In addition, 

constraint (33) simultaneously considers all health districts and thus sampled high 

demand values that would hinder feasibility might be counterbalanced by other districts’ 

sampled values. Therefore, even for lower levels of conservatism, the constraint does not 

have a significant likelihood of being violated. Note that, unlike previous results, instead 

of the triangular distribution, the uniform distribution produces the most conservative 

results. 

 
Figure 11: Price of robustness and plan feasibility for the robust model with demand 

uncertainty. 

  

Note that, in Table 3, as robustness grows, the total number of LLINs procured rises to 

1.8% in the worst-case scenario, to protect against the 5% demand forecast error. It is also 

possible to observe that supplier’s D share increases from a 3.4% baseline to a maximum 
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of 4.3%, whereas other suppliers almost remain constant, compared to the deterministic 

plan.  

 

Table 3: Impact of distinct demand robustness levels on the number of LLINs procured 

per supplier. 

Supplier proc. 1 4.1 4.2 4.3 4.4 4.5 Rob.  Rob.  Rob 
(millions of 
LLINs) Det. 20% 40% 60% 80% 100% Avg. Avg. Dev. 
A 6.66 6.66 6.62 6.64 6.65 6.67 6.65 52.8% 0.3% 
B 3.09 3.13 3.13 3.13 3.13 3.13 3.13 24.9% 0.0% 
C 2.22 2.29 2.28 2.29 2.29 2.29 2.29 18.2% 0.1% 
D 0.43 0.45 0.53 0.54 0.54 0.53 0.52 4.1% 7.2% 
E 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0% 0.0% 
Total 12.40 12.53 12.56 12.60 12.61 12.62 12.58 100% 0.3% 
Rob. - Det. - 0.14 0.17 0.20 0.21 0.22 0.19 - 18.2% 
Rob. - Det. (%) - 1.1% 1.3% 1.6% 1.7% 1.8% 1.5% - - 
Supplier D 
share 3.4% 3.6% 4.2% 4.3% 4.3% 4.2% 4.1% - - 
  

Although procurement from supplier D increases, its production is almost entirely 

shipped to districts instead of being part of the safety stock. Therefore, the robust model 

tends to hold part of the supplier’s original procurement plan to build the stock. In this 

context, the supplier’s safety stock tends to be spread among suppliers A (average of 

9.3%), B (21.2%) and C (68,5%), as seen in Figure 12.  

 

 
Figure 12: Impact of distinct demand robustness levels in safety stock levels per supplier. 
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Concerning supply chain design revisions, the robust model must increase 

Shanghai port utilization to ship supplier D’s additional production.  

Under demand uncertainty, robustness can also be understood as supply chain 

flexibility, since the prepositioning of safety stock in several suppliers before uncertainty 

is revealed, allowing for a timelier reaction with less of a financial burden than the release 

of a new tender. 

 

6.1.4 Financial costs, supply and demand uncertainties 

 

Next, financial costs and supply and demand uncertainties are simultaneously 

considered to investigate their combined effects (cases 5.1 to 5.5). When robustness is 

gradually increased in this model, each level accounts, on average, for 4% growth of the 

total costs, almost entirely due to LLIN procurement cost growth. In the worst-case 

scenario, total costs reach up to $ 27.03 million, representing a substantial $ 4.72 million 

(21.1%) surplus upon the deterministic model (Figure 17). Regarding the probability of 

the robust solution being feasible (i.e., not violating constraints (28), (29), (31) and (33)), 

only after case 5.4 does the robust plan perform reasonably well, with a 90.0% chance 

under normal distribution, but in contrast, under a more conservative distribution, the 

performance is still modest (e.g., 50.3% for a triangular distribution). This behavior is 

explained by the uncertain production capacity constraints, which produce similar results 

when assessing supply uncertainties alone (cases 3.1 to 3.4). Note that, as expected, the 

triangular distribution renders the most conservative results, followed in order by the 

uniform and normal distributions. 
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Figure 1: Price of robustness and plan feasibility for the robust model with financial cost, 

supply and demand uncertainty. 

Source: Author 

 

 Regarding supply chain design alterations, the impact of combining all of the 

uncertainties is similar to the sum of their previously described individual contributions. 

In particular, the combined uncertainties model adopts an LLIN procurement plan 

(supplier utilization) and transportation plan (port of origin, discharge and hub utilization) 

very similar to the supply uncertainty robust model. In contrast, the safety stock results 

show an average increase of 21.9% in supplier A’s share, 3.9% in supplier C’s share and 

2.5% in supplier D’s share, whereas suppliers B and C decrease by 4.0% and 24.3%, 

respectively. 

 

7. Conclusion 
 

With increased efforts in prevention and control measures, several countries have 

significantly reduced the burden of malaria. Large-scale distribution campaigns of 

insecticide treated nets (ITNs) constitute one of the most effective ways to control and 

prevent malaria transmission. However, such distribution campaigns face significant 

challenges due to different types of constraints and uncertainties, and therefore they 

require careful financial and logistic planning. 

This research proposed a robust optimization approach to minimize the total costs 

of a mass distribution campaign. Our proposed model adapts Bertsimas and Sim’s (2004) 

framework to account for uncertainties in the constraints’ independent terms, such as 
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logistics and supply capacities. In addition, to consider financial cost uncertainties, our 

work adjusts to a static multi-period setting, the data-driven dynamic model with adaptive 

uncertainty sets of Fernandes et al. (2016).  

To validate and illustrate features of the robust optimization model, we apply it to a 

UNICEF distribution campaign (Brito et al. 2014). The robust solution to the UNICEF 

campaign suggests procurement and logistics changes, according to the chosen level of 

conservatism toward uncertainties. In particular, robust solutions increase total costs (i.e., 

the price of robustness) from a marginal 1.1% (total of $ 22.55 million) up to a significant 

21% ($ 27.03 million), compared to its deterministic counterpart ($ 22.31 million). 

This cost increase can be interpreted as the required budget buffer to hedge against 

a pre-defined level of uncertainty. In return, the robust model provides a solution with 

improved supply chain flexibility by reallocating suppliers and logistic infrastructure 

utilization. In other words, the proposed (robust) model provides solutions that are robust 

in the sense that they mitigate the likelihood of needing to adjust procurement and 

transportation plans when the uncertainty is revealed (e.g., supply shortage risk), 

ultimately reducing time, effort, cost or performance penalties arising from the need for 

re-planning. 

The robust solutions were assessed through Monte Carlo simulation against several 

realizations of uncertain parameter values, with solution feasibility increasing with the 

level of conservatism, as desired. At times (e.g., under supply uncertainty alone), the 

robust plan does not perform reasonably well until a high level of conservatism is set. 

Hence, considering uncertainties independently does not necessarily lead to much better 

performance, and it is important considering uncertainties simultaneously. In this context, 

it is critical to evaluate the trade-off between additional costs and improved reliability in 

the robust plan. Since the deterministic plan usually has a low likelihood of feasibility, it 

is important to question its optimality. 

It is worth noting that it may be very challenging to set and approve an appropriate 

budget buffer to hedge against price volatility and other unforeseen expenses, especially 

in an environment where funds are scarce and humanitarian organizations compete 

fiercely for them. Furthermore, adopting an organizational culture that embraces risk 

aversion would likely require decisions that espouse unpopular and challenging trade-

offs, such as changes in the current project portfolio (e.g., withdrawing a mass campaign 

project in a lower priority country to redistribute its budget and foster robust solutions in 

a higher priority one). Nevertheless, to ensure a viable strategic long-term vision, robust 

solutions are required to guarantee reliable campaigns and continuity of humanitarian aid. 

There are several opportunities for further research related to this work. First, it 

would be worthwhile investigating the addition of hub location decisions within the 
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robust model. While not frequently mentioned in the context of LLIN distribution 

campaign, it might yield interesting logistics insights. Second, the inclusion of a multi-

product set to account for different LLIN sizes and other health commodities would 

capture other challenges associated with LLIN distribution campaigns. Third, the 

inclusion of the reverse supply chain of LLINs and other malaria commodities would also 

provide interesting research opportunity. Finally, driven by the simulation results, which 

indicated a high likelihood of constraint violations under lower levels of conservatism, it 

is recommended the addition of an adjustable or recoverable robust framework to 

minimize the involved costs in redesigning the procurement and distribution plan, in case 

the revealed uncertainty results in an infeasible plan.  
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APPENDIX 
 

1. Model sets, parameters and variables 

Table 1: Model sets, parameters and variables. 

Sets 

𝑐 ∈ 𝐶 Container type 

𝑖 ∈ 𝐼 Suppliers 

𝑗 ∈ 𝐽 Ports of origin 

𝑘 ∈ 𝐾 Ports of discharge  

ℎ ∈ 𝐻 Hubs  

𝑑 ∈ 𝐷 Health districts 

𝑚 ∈ 𝑀 Mode of transport 

𝑡 ∈ 𝑇 Set of periods 

𝑟 ∈ 𝑅 ⊂ 𝑇 Project implementation phases (subset of periods) 

𝐿 Set of time series lag operators 

𝜐 ∈ Υ ⊂ 𝐿 Robustness window (subset of lag operators) 

𝜋 ∈ Π ⊂ 𝐿 Production lead time (subset of lag operators) 

𝜆 ∈ Λ ⊂ 𝐿 Maritime transportation lead time (subset of lag operators) 

𝛽 ∈ Β ⊂ 𝐿 Budget planning period (subset of lag operators) 

Auxiliary Set 

𝑝 ∈ 𝑃 = 𝐼 For LLIN tracking purposes, 𝑃 is defined as an auxiliary set that is 

equal to suppliers’ set 𝐼.  

 

Parameters Unit 

Financial Parameters  

𝑐𝑠/{~%I Transportation cost of a container c with LLINs p 

from supplier i to port of origin j considered for 

period t. 

US$/container 

𝑐𝑜/{~Iu Transportation cost of a container c with LLINs p 

from port of origin j to port of discharge k considered 

for period t. 

US$/container 

𝑐𝑝/{~up� Transportation cost of a container c with LLINs p 

from port of discharge k to district d within mode of 

transport m considered for period t. 

US$/container 

𝑐ℎ/{~u�� Transportation cost of a container c with LLINs p US$/container 
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from port of discharge k to hub h within mode of 

transport m considered for period t. 

𝑐𝑑/{~�p� Transportation cost of a container c with LLINs p 

from hub h to district d within mode of transport m 

considered for period t. 

US$/container 

𝑝𝑟/{% LLIN p procurement cost with supplier i considered 

for period t. 

US$/LLIN 

𝑐𝑐/~I  Container c procurement cost at port of origin j 

considered for period t. 

US$/container 

𝑖𝑐/{%  LLIN p safety stock inventory cost with supplier i 

considered for period t. 

US$/LLIN 

Market Parameters 

𝑑𝑚xp	 Demand for LLINs in district d during 

implementation phase r. 

LLINs 

𝑑𝑚� xp	 Maximum allowed deviation from nominal value 

𝑑𝑚xp. 

LLINs 

	𝛵xp�����p		 Quantity of districts d during implementation phase r 

that might assume their highest demand value. 

Districts 

𝑠𝑐x{%	 Capacity of supplier i to produce LLINs p during 

implementation phase r. 

LLINs 

𝑠𝑐� x{%	 Maximum allowed deviation from nominal value 

𝑠𝑐x{%. 

LLINs 

𝛵x
��{{��	 Quantity of suppliers i during implementation phase r 

that might assume their lowest production capacity. 

Suppliers 

Logistics Parameters 

𝑛𝑞{~ Capacity of LLINs p inside container c.  LLINs/Container 

𝑝𝑐xu	 Capacity of port of discharge k during 

implementation phase r. 

LLINs 

𝑝𝑐�xu	 Maximum allowed deviation from nominal value 

𝑝𝑐xu. 

LLINs 

	𝛵x
{�x/	 Number of ports of discharge that might assume their 

lowest capacity during implementation phase r. 

Ports 

ℎ𝑐x� Capacity of hub h during implementation phase r. LLINs 

ℎ𝑐�xu Maximum allowed deviation from nominal value 

ℎ𝑐x�. 

LLINs 
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	𝛵x��4 Number of hubs that might assume their lowest 

capacity during implementation phase r. 

Hubs 

𝑚𝑝xup�	 Flow capacity between port of discharge k and 

district d under mode of transport m during 

implementation phase r. 

LLINs 

𝑚𝑝� xup�	 Maximum allowed deviation from nominal value 

𝑚𝑝xup�.  

LLINs 

𝑚ℎxu�� Flow capacity between port of discharge k and hub h 

under mode of transport m during implementation 

phase r. 

LLINs 

𝑚ℎ� xu�� Maximum allowed deviation from nominal value 

𝑚ℎxu��.  

LLINs 

𝑚𝑑x�p� Flow capacity between hub h and district d under 

mode of transport m during implementation phase r. 

LLINs 

𝑚𝑑� x�p� Maximum allowed deviation from nominal value 

𝑚𝑑x�p�.  

LLINs 

	𝛵x���p��	 Quantity of routes per mode of transport m that might 

assume their lowest flow capacity during 

implementation phase r. 

Routes 

𝑎𝑠x{%I	 Binary parameter that indicates whether a route from 

supplier i to port of origin j is available for LLIN p 

during implementation phase r. 

- 

𝑎𝑜x{Iu	 Binary parameter that indicates whether a route from 

port of origin j to port of discharge/hub k is available 

for LLIN p during implementation phase r. 

- 

𝑎𝑝x{up	 Binary parameter that indicates whether a route from 

port of discharge k to district d is available for LLIN 

p during implementation phase r. 

- 

𝑎ℎx{u� Binary parameter that indicates whether a route from 

port of discharge k to hub h is available for LLIN p 

during implementation phase r. 

- 

𝑎𝑑x{�p Binary parameter that indicates whether a route from 

hub h to district d is available for LLIN p during 

implementation phase r. 

- 

Auxiliary Parameters 

ℳ	 Large number auxiliary, used to assure that a district is - 
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supplied by only one supplier. 

 

Decision Variables 

Market Variables 

𝑁𝑃x{% Quantity of LLINs p procured from supplier i for 

implementation phase r. 

LLINs 

𝑆x{% Safety stock of LLINS p of supplier i during 

implementation phase r to account for uncertainties 

related to the demand forecast of implementation phase 

r. 

LLINs 

Logistic Variables 

𝑇𝑆x{~%I Quantity of containers c with LLINs p transferred from 

supplier i to port of origin j for implementation phase 

r. 

Containers 

𝑁𝑇𝑆x{%I  Quantity of LLINs p transferred from supplier i to port 

of origin j for implementation phase r. 

LLINs 

𝑇𝑂x{~Iu Quantity of containers c with LLINs p transferred from 

port of origin j to port of discharge (or hub) k for 

implementation phase r. 

Containers 

𝑁𝑇𝑂x{Iu Quantity LLINs p transferred from port of origin j to 

port of discharge (or hub) k for implementation phase 

r. 

LLINs 

𝑇𝑃x{~up� Quantity of containers c with LLINs p transferred from 

port of discharge k to district d under mode of 

transport m during implementation phase r. 

Containers 

𝑁𝑇𝑃x{up� Quantity of LLINs p transferred from port of discharge 

k to district d under mode of transport m during 

implementation phase r.  

LLINs 

𝑇𝐻x{~u�� Quantity of containers c with LLINs p transferred from 

port of discharge k to hub h under mode of transport m 

during implementation phase r. 

Containers 

𝑁𝑇𝐻x{u�� Quantity of LLINs p transferred from port of discharge 

k to hub h under mode of transport m during 

implementation phase r.  

LLINs 

𝑇𝐷x{~�p� Quantity of containers c with LLINs p transferred from 

hub h to district d under mode of transport m during 

Containers 
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implementation phase r. 

𝑁𝑇𝐷x{�p� Quantity of LLINs p transferred from hub h to district 

d under mode of transport m during implementation 

phase r.  

LLINs 

RHS robustness variables  

Γx{%
��{{�� Production capacity decrease of supplier 𝑖 for LLIN p 

during implementation phase r.  

% 

Γxpp�����p Demand increase in district d during implementation 

phase r due to forecast errors. 

% 

Γxu
{�x/ Port of discharge k capacity decrease during 

implementation phase r. 

% 

Γx���4 Hub h capacity decrease during implementation phase 

r. 

% 

Γxup���p�� Flow capacity decrease from port of discharge k to 

district d under mode of transport m during 

implementation phase r. 

% 

Γxu����p�� Flow capacity decrease from port of discharge k to hub 

h under mode of transport m during implementation 

phase r. 

% 

Γx�p���p�� Flow capacity decrease from hub h to district d under 

mode of transport m during implementation phase r. 

% 

Auxiliary variables  

Ζx{p  Binary auxiliary variable that equals 1 if a district d is 

supplied by an LLIN p and 0 otherwise. It is used to 

assure that a district is supplied by only one supplier. 

- 

 

 


