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Abstract

In this work, we present an exact 3D plate solution in the conventional form of 2D plate theories
without invoking any of the assumptions inherent to 2D plate formulations. We start by formulating
a rectangular plate problem by employing Saint Venant’s principle so that edge effects do not appear
in the plate. Then the exact general 3D elasticity solution to the formulated interior problem is
examined. By expressing the solution in terms of mid-surface variables, exact 2D equations are
obtained for the rectangular interior plate. It is found that the 2D presentation includes the
Kirchhoff, Mindlin and Levinson plate theories and their general solutions as special cases. The
key feature of the formulated interior plate problem is that the interior stresses of the plate act
as surface tractions on the lateral plate edges and contribute to the total potential energy of the
plate. We carry out a variational interior formulation of the Levinson plate theory and take into
account, as a novel contribution, the virtual work due to the interior stresses along the plate edges.
Remarkably, this way the resulting equilibrium equations become the same as in the case of a
vectorial formulation. A gap in the conventional energy-based derivations of 2D engineering plate
theories founded on interior kinematics is that the edge work due to the interior stresses is not
properly accounted for. This leads to artificial edge effects through higher-order stress resultants.
Finally, a variety of numerical examples are presented using the 3D elasticity solution.

Keywords: Interior plate, Saint Venant’s principle, Clapeyron’s theorem, elasticity solution,
variational interior formulation, numerical examples

1. Background

1.1. Introduction

Engineering plate theories provide mathematically tractable descriptions for the bending and
stretching of flat three-dimensional (3D) bodies by dealing only with two-dimensional (2D) variables
defined on a reference surface, which is normally taken to be the mid-surface of the body at hand. In
order to obtain 3D displacement, strain, and stress fields, the field variables are expanded through
the plate thickness in an approximate sense. In the case of engineering plate theories based on
assumed displacement fields, mid-surface deflections and rotations are the independent variables
of choice, and integration through the plate thickness reduces the 3D theory to a 2D plate theory.

Displacement-based 2D plate theories can be divided into two major classes: theories which
consider transverse shear deformations and those that do not. The latter class relates to the study
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of thin plates where the Kirchhoff plate theory is used rather exclusively (Szilard, 2004; Reddy,
2006). When it comes to shear-deformable plate theories, a number of options are available. The
simplest and most well-known among them is the theory advanced by Mindlin (1951) which assumes
the transverse shear deformation to be constant throughout the plate thickness and requires shear
correction coefficients. Of particular interest to us are the so-called third-order plate theories which
accommodate quadratic variations of the transverse shear strains and stresses with respect to the
thickness coordinate (Reddy, 2006) and, thus, do not require shear correction coefficients.

The accuracy of 2D engineering plate theories may be tested by comparing their solutions
with the exact 3D elasticity solutions available in the literature (Srinivas et al., 1969, 1970, 1973;
Levinson, 1985; Piltner, 1988; Savoia and Reddy, 1992; Demasi, 2007; Batista, 2012). However,
we find that such comparisons lack generality because they are mostly numerical and limited to
certain cases. It is difficult to get detailed information on, for example, how well the analytical
form of the utilized assumed displacement field matches its exact elasticity-based counterpart. To
this end, we present in this paper an exact general 3D elasticity solution in the conventional form
of 2D plate theories without using any kinematic, constitutive, or energetical assumptions. The
elasticity solution takes the form of a third-order plate theory and introduces major improvements
to the analytical treatment of similar 2D theories.

1.2. Third-order engineering plate theories

As already noted, third-order plate theories account for quadratic variation of the transverse
shear strains and stresses through the plate thickness. This is accomplished by using an assumed
displacement field which includes cubic powers of the thickness coordinate. Vlasov (1957) was
possibly the first to develop a third-order plate theory. For surveys on third-order kinematics and
plate theories, see the works of Jemielita (1990), Reddy (1990, 2003), and Reddy and Kim (2012).
As pointed out by Reddy (1990), practically all third-order theories are in fact based essentially
on the same displacement field.

The equilibrium equations for third-order plate theories in terms of stress resultants may be
obtained by a vector approach where the 3D stress equilibrium equations are integrated with
respect to the thickness coordinate (e.g., Levinson, 1980) (and they are the same as those used for
the Mindlin theory), or by employing a variational method based on energy principles (e.g., Reddy,
1984). However, these two means are known to yield different governing equations. In more detail,
variational (Lagrangian) methods lead to higher-order equilibrium equations than the Newtonian
vector approach and, as a repercussion, Newtonian formulations are often labeled as “variationally
inconsistent”. To work towards sorting out this discrepancy, we ask: For what part of a plate is
an assumed third-order displacement field actually good for? After all, the interior and boundary
regions of a plate are two separate entities. For a detailed answer, we turn to 3D linear elasticity.

1.3. Exact elasticity solutions for plates

The most general state of stress within a linearly elastic, isotropic, homogeneous plate with
stress-free upper and lower faces can be decomposed into three parts: (1) interior state, (2) shear
state, and (3) Papkovich–Fadle state (Gregory, 1992; Wang and Zhao, 2003; Zhao et al., 2013).
Detailed, general 3D elasticity solutions for plates which account for all three states have been
given by Cheng (1979), Wang (1990, 1991), Piltner (1991, 1992a), and Batista (2015).

Piltner (1992a) constructed all displacement solutions that satisfy the stress-free boundary
conditions on the upper and lower plate faces. The solution for the interior bending state is
presented in terms of a biharmonic mid-surface function which is expanded through the plate by
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powers of the thickness coordinate z. However, terms above the third-order z3, do not contribute
to the solution, that is, transverse interior shear is quadratic. The solutions for the shear and
Papkovich–Fadle states are expanded through the plate by trigonometric and hyperbolic functions
of z, respectively. The flexural part of the shear state does not experience any transverse deflections
and on the mid-surface all displacements are zero. Therefore, the shear solution does not play a
direct role in the bending of plates. Instead, the shear state finds its place beside the interior
solution in the pure torsion of plates (Cheng, 1979). The Papkovich–Fadle state on the other
hand has been studied extensively in the context of 2D elasticity (Timoshenko and Goodier, 1970;
Barber, 2010). It may be used to develop a boundary layer solution to complement the interior
state. Such an edge effect solution is always (also in Piltner’s plate study) connected to a complex
eigenvalue problem from which the decay rates for the edge effects are determined. In fact, it has
been proven that both the shear and Papkovich–Fadle states are predominantly related to edge
effects (Gregory, 1992). Thus, we conclude these two states to be of secondary interest in the study
of conventional interior plate bending. Hereafter, the focus will be on the interior state, also known
as the “plate theory part” (Gregory, 1992). It will be shown that the 3D interior bending solution
by Piltner (1992a) takes the form of a 2D third-order plate theory once expressed in terms of
mid-surface variables instead of the biharmonic mid-surface function. Displacement considerations
will be complemented by Wang’s (1991) 3D interior membrane solution.

Finally, we return to our question on the nature and applicability of third-order kinematics
(Section 1.2): It would be too far-reaching to use third-order kinematics to model the states other
than the interior. For one thing, transverse shear strains and stresses are quadratic in the plate
interior but not in the boundary layer. This interior notion is of great importance because if our
plate consists solely of the interior state, the interior stresses of the plate act as surface tractions
on the lateral edges of the plate and, thus, they contribute significantly to the total potential energy
of the plate. Currently this contribution is not accounted for in any variational formulations of
2D engineering plate theories founded on interior kinematics. We will fill this gap to prevent the
interpretation that the Newtonian treatment to be presented herein is “variationally inconsistent”.

1.4. Recent interior studies and the present one

While the 3D plate solutions discussed above are usually obtained via displacement potentials,
interior solutions for 2D plane beams can be found by using the Airy stress function. Recently,
exact interior solutions, which excluded end effects by virtue of Saint Venant’s principle, were
developed for isotropic and anisotropic 2D interior plane beams and these solutions were reduced
to exact 1D third-order beam equations (Karttunen and von Hertzen, 2016a,c). In addition, it
was verified that the interior stresses acting as surface tractions on the lateral end surfaces of the
interior beams need to be accounted for in all energy-based considerations. In light of the interior
beam developments, the purpose of the present study is to generalize the beam results to plates.

The rest of this paper is organized as follows. In Section 2, an interior problem is formulated
for a rectangular plate and the implications of the interior definition are discussed. In Section
3, the general 3D elasticity solution to the formulated problem is studied. Exact 2D bending
equations for the interior plate are presented in terms of mid-surface variables formed from the 3D
solution. Section 4 is devoted to the variational formulation of the Levinson plate theory, which is a
special case of the 3D interior elasticity solution. As a novel contribution, the formulation properly
accounts for the work due to the interior stresses on lateral plate edges. Calculation examples
are presented in Section 5. These include polynomial-based solutions for simply-supported and
clamped plates subjected to uniform pressure. Finally, concluding remarks are given in Section 6.
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Figure 1: Rectangular interior plate subjected to a distributed load p = p(x, y,−h/2) on the upper face. The plate
may be divided into bending and membrane parts. The positive directions of the stress resultants are shown. The
directions are reversed for opposite faces.

2. Interior problem formulation

2.1. Boundary conditions

A three-dimensional linearly elastic, isotropic, homogeneous plate under a distributed load p is
shown in Fig. 1. The length, width and thickness of the plate are 2a, 2b and h, respectively. The
stress boundary conditions on the upper and lower faces of the plate read

σz(x, y,−h/2) = −p, σz(x, y, h/2) = 0, τxz(x, y,±h/2) = τyz(x, y,±h/2) = 0. (1)

The boundary conditions are introduced in a strong (pointwise) sense for the upper and lower faces.
On the lateral edges of the plate the tractions are specified through stress resultants as suggested
by Fig. 1 and, thus, the boundary conditions on the lateral edges are imposed only in a weak sense
(Barber, 2010). The stress resultants per unit length are calculated from the equations

Nx

Ny

Nxy

 =

∫ h/2

−h/2


σx

σy

τxy

 dz,


Mx

My

Mxy

 =

∫ h/2

−h/2


σx

σy

τxy

 z dz,

{
Qx

Qy

}
=

∫ h/2

−h/2

{
τxz

τyz

}
dz. (2)

In view of the reciprocity of the shear stresses (τxy = τyx), we have Nxy = Nyx and Mxy = Myx.
The replacement of the strong stress boundary conditions along the plate edges by the statically
equivalent weak boundary conditions (stress resultants) implies that all detailed, exponentially
decaying edge effects of the plate are eliminated by virtue of Saint Venant’s principle and only
the interior solution of the plate is under consideration. This means that an interior stress field is
used to describe the whole plate domain. In fact, as will be discussed next, the interior solution
represents practically a plate section which has been cut from a complete plate far enough from
the real lateral boundaries at which true boundary conditions could be set. The general solution to
the formulated interior plate problem for stress-free faces will be studied in Section 3. A uniform
distributed load p = p0 will be used as the particular contribution to elucidate some relevant
features of the interior elasticity solution by Piltner (1992a) in more detail.
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Figure 2: Rectangular plate consisting of an interior part and a boundary layer. When only the interior is studied,
the interior stresses (positive directions shown) act as surface tractions and do work on the lateral edges of the plate.

2.2. Boundary layer and implications of the interior definition

Let us consider the rectangular plate with a boundary layer shown in Fig. 2. If pointwise
boundary conditions were to be imposed on the outer edges of the boundary layer, the detailed
distributions of the resulting stresses would bring about edge effects which decay exponentially
towards the interior of the plate. That is to say, the edge effects are significant only in the
boundary layer which, as a rule of thumb in isotropic cases, is as thick as the plate itself – the
thinner the plate is, the weaker the edge effects are. Studying a plate which consists only of an
interior part means that the boundary layer has been removed. This amounts to fully-developed
interior stresses being active all-over the plate at hand, including the lateral plate edges, where
they act as surface tractions as depicted on the right side in Fig. 2.

In terms of energetical considerations, the key feature of the interior plate definition is that the
interior stresses acting as surface tractions on the lateral edges of the plate contribute to the total
potential energy of the plate. In the case p = 0, the total potential energy of the interior plate in
Fig. 1 can be written as (for all general interior solutions, in particular)

Π = U −Ws = U −W (+a)
s −W (−a)

s −W (+b)
s −W (−b)

s , (3)

where the strain energy stored in the interior plate in terms of the stress and strain components is

U =
1

2

∫
V

(σxεx + σyεy + σzεz + τxyγxy + τxzγxz + τyzγyz)dV (4)

and the work Ws due to the interior stresses on the lateral edges of the plate consists of

W (±a)
s = ±

∫ b

−b

∫ h/2

−h/2
[σxUx + τxyUy + τxzUz] (±a, y, z) dzdy,

W (±b)
s = ±

∫ a

−a

∫ h/2

−h/2
[σyUy + τxyUx + τyzUz] (x,±b, z) dzdy,

(5)

where Ux, Uy and Uz are the 3D displacements in the directions of x, y and z, respectively.
According to Clapeyron’s theorem, the strain energy stored in an elastic body is equal to one-half
of the work done by the surface tractions and body forces if they were to move (slowly) through
their respective displacements from an unstressed state to the state of equilibrium (Sadd, 2014). In
the present case, Clapeyron’s theorem leads to 2U −Ws = 0, which can be satisfied only trivially
if the surface work Ws is not accounted for, as will be discussed further in Sections 4 and 5.
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3. General 3D solution in the form of a 2D plate theory

3.1. Displacements, strains and stresses

Following Piltner (1992a) and Wang (1991), the general interior solution for a linearly elastic,
isotropic, homogeneous plate with stress-free upper and lower faces can be written as

2G · Ux = −z ∂Ψ

∂x
− 1

4(1− ν)

[
h2z − 2(2− ν)

z3

3

]
∇2∂Ψ

∂x

+ (1 + ν)
∂H

∂x
− h2

24

[
(3 + 4ν) + 12ν

( z
h

)2]
∇2∂H

∂x
− 2∇2Φx, (6)

2G · Uy = −z ∂Ψ

∂y
− 1

4(1− ν)

[
h2z − 2(2− ν)

z3

3

]
∇2∂Ψ

∂y

+ (1 + ν)
∂H

∂y
− h2

24

[
(3 + 4ν) + 12ν

( z
h

)2]
∇2∂H

∂y
− 2∇2Φy, (7)

2G · Uz = Ψ +
νz2

2(1− ν)
∇2Ψ + νz∇2H, (8)

where G and ν are the shear modulus and Poisson ratio, respectively. Function Ψ(x, y) relates
to bending and transverse shear (Piltner, 1992a), whereas Φx(x, y) and Φy(x, y) are stretching
functions (Wang, 1991). Furthermore, we have

∇2 =
∂2

∂x2
+

∂2

∂y2
, ∇4Ψ = ∇4Φx = ∇4Φy = 0, H =

∂Φx

∂x
+
∂Φy

∂y
. (9)

Every term in the biharmonic functions Ψ, Φx and Φy can be multiplied by an arbitrary constant
to be determined from boundary conditions. We note that Wang’s membrane equations are written
in such a form that they are consistent with Piltner’s equations. In addition, we have made the
correction αC = 2−2ν−2/ν → αC = −2/ν to Wang’s equations. The 3D displacements Ux(x, y, z),
Uy(x, y, z) and Uz(x, y, z) calculated from Eqs. (6)–(8) satisfy the Navier equations of elasticity.

As the first step towards presenting the above 3D displacement solution in the form of a 2D
plate theory, we define the following three deflection and two rotation variables on the mid-surface



ux(x, y)

uy(x, y)

uz(x, y)

φx(x, y)

φy(x, y)


≡



Ux(x, y, 0)

Uy(x, y, 0)

Uz(x, y, 0)
∂Ux
∂z (x, y, 0)
∂Uy

∂z (x, y, 0)


=

1

2G



[
(1 + ν)− h2

24 (3 + 4ν)∇2
]
∂H
∂x − 2∇2Φx[

(1 + ν)− h2

24 (3 + 4ν)∇2
]
∂H
∂y − 2∇2Φy

Ψ

− ∂
∂x

[
Ψ + h2

4(1−ν)∇2Ψ
]

− ∂
∂y

[
Ψ + h2

4(1−ν)∇2Ψ
]


, (10)

where the first two for the membrane solution were also given by Wang (1991). Furthermore, we
find the following important relations

φx = −∂uz
∂x
− h2

4(1− ν)

∂

∂x
∇2uz, φy = −∂uz

∂y
− h2

4(1− ν)

∂

∂y
∇2uz (11)

∂φx
∂y

=
∂φy
∂x

,
∂φx
∂x

+
∂φy
∂y

= −∇2uz. (12)
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By using the mid-surface variables, the 3D displacements given by Eqs. (6)–(8) can be written as

Ux = ux + zφx −
4z3

3h2

(
φx +

∂uz
∂x

)
+

νz2

2(1− ν)

∂

∂x

[
∂ux
∂x

+
∂uy
∂y

+
z

3

(
∂φx
∂x

+
∂φy
∂y

)]
, (13)

Uy = uy + zφy −
4z3

3h2

(
φy +

∂uz
∂y

)
+

νz2

2(1− ν)

∂

∂y

[
∂ux
∂x

+
∂uy
∂y

+
z

3

(
∂φx
∂x

+
∂φy
∂y

)]
, (14)

Uz = uz −
νz

1− ν

(
∂ux
∂x

+
∂uy
∂y

)
− νz2

2(1− ν)

(
∂φx
∂x

+
∂φy
∂y

)
. (15)

Note that the above expressions are valid for any Ψ, Φx and Φy. By neglecting the higher-order
membrane contributions in Eqs. (13) and (14) and then reducing the displacements to a plane
(x − z or y − z) and making the plane strain to plane stress conversion ν → ν/(1 + ν), the exact
interior displacement field for a narrow beam is obtained. For reference, see (Karttunen and von
Hertzen, 2016a,c).

The membrane part of solution (6)–(8) will not be discussed further in this section, as it plays
a relatively minor role in the bending of isotropic interior plates, or flat shells, when only small
transverse deflections are of interest. With that said, alternative expressions considering only the
bending of the plate read

Ux = zφx −
z3

6

(
2− ν
1− ν

)
∂

∂x

(
∂φx
∂x

+
∂φy
∂y

)
, (16)

Uy = zφy −
z3

6

(
2− ν
1− ν

)
∂

∂y

(
∂φx
∂x

+
∂φy
∂y

)
, (17)

Uz = uz +
νz2

2(1− ν)
∇2uz. (18)

By introducing

λ =
νE

(1 + ν)(1− 2ν)
and e = εx + εy + εz (19)

the strains and stresses of the plate, with the exclusion of the membrane part, can be written as

εx =
∂Ux
∂x

= z
∂φx
∂x
− z3

6

(
2− ν
1− ν

)
∂2

∂x2

(
∂φx
∂x

+
∂φy
∂y

)
, σx = λe+ 2Gεx,

εy =
∂Uy
∂y

= z
∂φy
∂y
− z3

6

(
2− ν
1− ν

)
∂2

∂y2

(
∂φx
∂x

+
∂φy
∂y

)
, σy = λe+ 2Gεy,

εz =
∂Uz
∂z

= − νz

1− ν

(
∂φx
∂x

+
∂φy
∂y

)
, σz = λe+ 2Gεz,

γxy =
∂Ux
∂y

+
∂Uy
∂x

= z

(
∂φx
∂y

+
∂φy
∂x

)
− z3

3

(
2− ν
1− ν

)
∂2

∂x∂y

(
∂φx
∂x

+
∂φy
∂y

)
, τxy = Gγxy,

γxz =
∂Ux
∂z

+
∂Uz
∂x

=

(
1− 4z2

h2

)(
φx +

∂uz
∂x

)
, τxz = Gγxz,

γyz =
∂Uy
∂z

+
∂Uz
∂y

=

(
1− 4z2

h2

)(
φy +

∂uz
∂y

)
, τyz = Gγyz.

(20)
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3.2. Stress resultants and equilibrium equations

By the aid of Eq. (20), the calculation of the stress resultants in Eq. (2) leads to

Mx = D

(
∂φx
∂x

+ ν
∂φy
∂y

)
− Dh2

40

(
2− ν
1− 2ν

)[
(1− ν)

∂2

∂x2
+ ν

∂2

∂y2

](
∂φx
∂x

+
∂φy
∂y

)
, (21)

My = D

(
ν
∂φx
∂x

+
∂φy
∂y

)
− Dh2

40

(
2− ν
1− 2ν

)[
(1− ν)

∂2

∂y2
+ ν

∂2

∂x2

](
∂φx
∂x

+
∂φy
∂y

)
, (22)

Mxy =
D

2
(1− ν)

(
∂φx
∂y

+
∂φy
∂x

)
− Dh2

40
(2− ν)

∂2

∂x∂y

(
∂φx
∂x

+
∂φy
∂y

)
, (23)

Qx =
2

3
Gh

(
φx +

∂uz
∂x

)
, (24)

Qy =
2

3
Gh

(
φy +

∂uz
∂y

)
, (25)

where

D =
Eh3

12(1− ν2) with E = 2G(1 + ν). (26)

The equilibrium equations for the interior plate are obtained as follows. After integrated with
respect to the thickness coordinate z, the stress equilibrium equations obtained by considering the
stresses acting on an infinitesimal parallelepiped element take the form (see, Vinson, 2006)

∂Mx

∂x
+
∂Mxy

∂y
= Qx,

∂My

∂y
+
∂Mxy

∂x
= Qy,

∂Qx
∂x

+
∂Qy
∂y

= 0. (27)

3.3. Uniform distributed load

In lack of a suitable general solution for pressure loading, only the solution of the homogeneous
problem (p = 0) was considered above. However, to elucidate some features related to loaded
plates in the next section, we consider a particular solution for a uniformly distributed load p = p0
acting on the upper face of the plate (see Fig. 1). Piltner’s (1992a) solution for such a load is

2G · Ux =
p0x

4h3

[
(2− ν)(4z3 − 3h2z)− 3(1− ν)(x2 + y2)z +

2νh2

1 + ν

]
, (28)

2G · Uy =
p0y

4h3

[
(2− ν)(4z3 − 3h2z)− 3(1− ν)(x2 + y2)z +

2νh2

1 + ν

]
, (29)

2G · Uz =
p0

16h3

[
24ν(x2 + y2)z2 − 8(1 + ν)z4 + 12h2(1 + ν)z2

+ 3(1− ν)(x2 + y2)2 − 6h2ν(x2 + y2)− 8h3

1 + ν
z

]
. (30)

In order to study interior plates under uniform pressure, the 3D displacements given by Eqs. (28)–
(30) are added to the homogeneous solution given by Eqs. (6)–(8). The particular solution then
contributes to the mid-surface variables (10) by polynomials (see Appendix A). We note that the
uniform load adds to the right-hand side of displacement Uz given by Eq. (15) the term

Upz = − p0z

4Eh3

(
1 + ν

1− ν

)[
(2− 4ν)h3 − (3− 6ν)h2z + 2(1− ν2)z3

]
, (31)

whereas Eqs. (13) and (14) retain their forms. In addition, the right-hand side of Eq. (27)3 changes
so that 0 is substituted by −p0.
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3.4. Connection to approximate theories

Finally, we take a look at how the Kirchhoff, Mindlin (1951) and Levinson (1980) plate theories
are related to the presented elasticity-based 2D plate theory. Membrane contributions are not
considered. The equilibrium equations (27) hold for all theories. If we neglect the Poisson effect
(ν = 0) in the displacements (13)–(15), the displacement field is exactly of the same form as that
used by Levinson (1980) and Reddy (1984). Furthermore, when the third-order contributions z3 are
eliminated, the kinematic description for the Mindlin plate theory is obtained. Finally, in the limit
h → 0, Eqs. (11) give φx = −∂uz/∂x and φy = −∂uz/∂y, which bring us to the Kirchhoff plate
theory. Comparison between the strains and stresses is best done through the stress resultants.
By neglecting the higher-order contributions in Eqs. (21)–(25), the stress resultants of the Mindlin
plate theory with the shear coefficient κ = 2/3 are obtained. Furthermore, by setting h = 0, but
retaining Eq. (26), the moments of the Kirchhoff plate theory are obtained.

We study the equilibrium equations (27) of the plates in terms of the mid-surface variables,
see Eqs. (A.1). The homogeneous case yields ∇4uz = 0, but with the constant load included, we
obtain the relation

D∇4uz = −p0, (32)

which is the same as the differential equation for the transverse deflection of a Kirchhoff plate
subjected to a uniformly distributed load. However, the most remarkable aspect in this comparison
between the different plate theories is that the elasticity solution (6)–(8) is also a general homo-
geneous solution to the Mindlin and Levinson plate equations. To elaborate on this, Levinson’s
equations for a plate under a uniformly distributed load as the particular contribution can be
written as (Levinson, 1980)

2D

5

[
(1− ν)∇2φx + (1 + ν)

∂

∂x

(
∂φx
∂x

+
∂φy
∂y

)
− 1

2

∂

∂x
∇2uz

]
=

2

3
Gh

(
φx +

∂uz
∂x

)
, (33)

2D

5

[
(1− ν)∇2φy + (1 + ν)

∂

∂y

(
∂φx
∂x

+
∂φy
∂y

)
− 1

2

∂

∂y
∇2uz

]
=

2

3
Gh

(
φy +

∂uz
∂y

)
, (34)

2

3
Gh

(
∇2uz +

∂φx
∂x

+
∂φy
∂y

)
= −p0, (35)

It is easy to verify that Eqs. (33)–(35) are satisfied by Eqs. (A.1). We obtain Mindlin’s plate
equations from Eqs. (33)–(35) by the replacements 2D/5 → D/2 and (2/3)Gh → κGh and by
neglecting the term ∇2uz in Eqs. (33) and (34). In the dynamic case, Levinson (1980) showed
that his equations were equivalent to Mindlin’s for κ = 5/6. Further comparisons between the
discussed plate theories are provided in Section 5 by using the same mid-surface solution for all
shear deformation theories. In order to calculate and compare the stresses, the mid-surface variables
are expanded according to the 3D displacement field of each shear deformation theory.

In their study on boundary layers and interior equations for plates, Nosier and Reddy (1992)
showed that the governing equations of the Mindlin and Levinson plate theories may be presented
in terms of a second-order edge-zone equation and a fourth-order interior equation. Their potential
function describing the edge-zone was defined as Φ = ∂φx/∂y− ∂φy/∂x. However, in the isotropic
case we have ∂φx/∂y = ∂φy/∂x according to Eq. (12)1 and, thus, the edge-zone potential vanishes
(Φ = 0). In conclusion, the linearly elastic, isotropic, homogeneous Kirchhoff, Mindlin and Levinson
plate theories are interior theories, as will be demonstrated further in the next sections.
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4. Variational interior formulation of the Levinson plate theory

In this section, we carry out a variational interior formulation for the Levinson plate theory
to shed light on 2D engineering plate theories from an energetical point of view. The formulation
is based on the principle of virtual displacements and accounts for the virtual work done by the
interior stresses acting as surface tractions on the lateral edges of the plate. By employing the
obtained natural interior boundary conditions, higher-order stress resultants are eliminated from
the equilibrium equations. Variational interior formulations for a Levinson beam and circular plates
have been presented earlier by Karttunen and von Hertzen (2015, 2016b). In light of this, we note
that the current derivation extends the variational interior framework from 1D to 2D systems.

4.1. Equilibrium equations and interior boundary conditions

In the following formulation of the Levinson plate theory we assume that the mid-surface
variables uz(x, y), φx(x, y) and φy(x, y) are sufficiently smooth but otherwise arbitrary functions.
For the sake of brevity, we write the kinematic description of the rectangular Levinson plate (1980)
in the form

Ux = zφx − αz3 (φx + uz,x) , (36)

Uy = zφy − αz3 (φy + uz,y) , (37)

Uz = uz. (38)

where α = 4/3h2, and x and y in the subscripts after the comma denote partial differentiation with
respect to coordinates x and y, respectively. Assuming plane stress constitutive relations (σz = 0),
the nonzero strains and stresses calculated using the displacements (36)–(38) are

εx = zφx,x − αz3(φx,x + uz,xx), σx =
E

1− ν2 (εx + νεy) ,

εy = zφy,y − αz3(φy,y + uz,yy), σy =
E

1− ν2 (νεx + εy) ,

γxy = z (φx,y + φy,x)− αz3 (φx,y + φy,x + 2uz,xy) , τxy = Gγxy,

γxz =
(
1− 3αz2

)
(φx + uz,x) , τxz = Gγxz,

γyz =
(
1− 3αz2

)
(φy + uz,y) , τyz = Gγyz.

(39)

The internal virtual work (virtual strain energy) of the plate is

δU =

∫
V

(σxδεx + σyδεy + τxyδγxy + τxzδγxz + τyzδγyz)dV

=

∫ b

−b

∫ a

−a

[
Mxδφx,x +Myδφy,y +Mxy (δφx,y + δφy,x)

− αPx (δφx,x + δuz,xx)− αPy (δφy,y + δuz,yy)− αPxy (δφx,y + δφy,x + 2δuz,xy)

+ (Qx − 3αRx) (δφx + δuz,x) + (Qy − 3αRy) (δφy + δuz,y)

]
dxdy,

(40)
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where the classical stress resultants read

Mx =

∫ h/2

−h/2
σxzdz =

D

5
[4 (φx,x + νφy,y)− (uz,xx + νuz,yy)] , (41)

My =

∫ h/2

−h/2
σyzdz =

D

5
[4 (νφx,x + φy,y)− (νuz,xx + uz,yy)] , (42)

Mxy =

∫ h/2

−h/2
τxyzdz =

D

5

(
1− ν

2

)
[4 (φx,y + φy,x)− 2uz,xy] , (43)

Qx =

∫ h/2

−h/2
τxzdz =

2

3
Gh (φx + uz,x) , (44)

Qy =

∫ h/2

−h/2
τyzdz =

2

3
Gh (φy + uz,y) (45)

and the higher-order stress resultants are

Px =

∫ h/2

−h/2
σxz

3dz =
Dh2

140
[16 (φx,x + νφy,y)− 5 (uz,xx + νuz,yy)] , (46)

Py =

∫ h/2

−h/2
σyz

3dz =
Dh2

140
[16 (νφx,x + φy,y)− 5 (νuz,xx + uz,yy)] , (47)

Pxy =

∫ h/2

−h/2
τxyz

3dz =
Dh2

70

(
1− ν

2

)
[8 (φx,y + φy,x)− 5uz,xy] , (48)

Rx =

∫ h/2

−h/2
τxzz

2dz =
Gh3

30
(φx + uz,x) , (49)

Ry =

∫ h/2

−h/2
τyzz

2dz =
Gh3

30
(φy + uz,y) . (50)

The external virtual work due to the interior stresses acting as surface tractions on the lateral
edges of the plate is calculated using Eqs. (5). As an example, according to the positive and
negative directions of the displacements and stresses (see Fig. 2), the virtual work contribution by
the normal stress σx on edges x = ±a is as follows∫ b

−b

∫ h/2

−h/2
( +σxδUx︸ ︷︷ ︸

(+a,y,z)

−σxδUx︸ ︷︷ ︸
(−a,y,z)

)dzdy =

∫ b

−b
[(Mx − αPx)δφx − αPxδuz,x]a−a dy. (51)

The full expression for the external virtual work due to the interior stresses is

δWs =

∫ b

−b
[(Mx − αPx)δφx − αPxδuz,x + (Mxy − αPxy)δφy − αPxyδuz,y +Qxδuz]

a
−a dy

+

∫ a

−a
[(My − αPy)δφy − αPyδuz,y + (Mxy − αPxy)δφx − αPxyδuz,x +Qyδuz]

b
−b dx.

(52)
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By applying the principle of virtual displacements, δU = δWs, we arrive at the following interme-
diate equilibrium equations

Mx,x +Mxy,y −Qx = α (Px,x + Pxy,y − 3Rx) , (53)

My,y +Mxy,x −Qy = α (Py,y + Pxy,x − 3Ry) , (54)

Qx,x +Qy,y = −α [Px,xx + 2Pxy,xy + Py,yy − 3 (Rx,x +Ry,y)] . (55)

By combining the boundary terms of Eq. (52) with those produced by integration by parts of
Eq. (40) we obtain

[α (Px,x + Pxy,y − 3Rx) δuz]
a
−a = 0, (56)

[α (Py,y + Pxy,x − 3Ry) δuz]
b
−b = 0. (57)

Consequently, we require that the virtual displacement δuz or the expressions multiplying it above
must vanish at the edges. It follows from the interior problem definition in Section 2 that the
virtual displacement δuz is free in the whole interior plate region. Therefore, the (natural) interior
boundary conditions become

α (Px,x + Pxy,y − 3Rx) (±a, y) = 0, (58)

α (Py,y + Pxy,x − 3Ry) (x,±b) = 0. (59)

At this point, it may be verified that the equilibrium equations (53)–(55) and the interior boundary
conditions (58) and (59) are satisfied by Eqs. (10). That is to say, the variational formulation is
in line with the general 3D interior elasticity problem and its solution. Note that a variational
formulation equivalent to the above could be carried out by adhering to Clapeyron’s theorem
C = 2U −Ws = 0 so that δC = 0. This way the importance of the virtual work contribution
(52) becomes more apparent because one sees that the strain energy needs to be balanced by the
surface tractions for the formulation to be on a nontrivial basis.

4.2. Elimination of higher-order stress resultants

We introduce the following two variables

f1(x, y) = α (Px,x + Pxy,y − 3Rx) , (60)

f2(x, y) = α (Py,y + Pxy,x − 3Ry) . (61)

Now the interior boundary conditions (58) and (59) can be written in the form

f1(±a, y) = 0, (62)

f2(x,±b) = 0, (63)

respectively. Moreover, using Eqs. (44), (49), (53) and (60) we can write

f1 = − D

210
[2(uz,xxx + uz,xyy) + 2φx,xx + (1− ν)φx,yy + (1 + ν)φy,xy] . (64)

Furthermore, by the aid of Eqs. (45), (50), (54) and (61), we obtain

f2 = − D

210
[2(uz,yyy + uz,xxy) + 2φy,yy + (1− ν)φy,xx + (1 + ν)φx,xy] . (65)
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On the other hand, a look at the equilibrium equations (53)–(55) and shear forces (44) and (45)
gives us

f1,x + f2,y = −Qx,x −Qy,y = −2

3
Gh (φx,x + φy,y + uz,xx + uz,yy) . (66)

By applying relation (12)1 (φx,y = φy,x), which stems from the general solution, to Eqs. (64) and
(65) and taking into account Eq. (66), we arrive at the coupled partial differential equations

f1,xx + f2,xy − β2f1 = 0, (67)

f2,yy + f1,xy − β2f2 = 0, (68)

where

β2 = 70
Gh

D
=

420(1− ν)

h2
(69)

We consider our solution to Eqs. (67) and (68) to be of the separable form

f1 = X1(x)Y1(y), (70)

f2 = X2(x)Y2(y). (71)

Now Eqs. (67) and (68) can be written as(
X1,xx

X1
− β2

)
X1

X2,x
= −Y2,y

Y1
= α2

1, (72)(
Y2,yy
Y2
− β2

)
Y2
Y1,y

= −X1,x

X2
= α2

2, (73)

where α1 and α2 are nonzero constants. Furthermore, we have

X1,xx − ζ21X1 = 0, (74)

Y2,yy − ζ22Y2 = 0, (75)

where

ζ21 =
β2α2

2

α2
1 + α2

2

and ζ22 =
β2α2

1

α2
1 + α2

2

. (76)

The general solutions to Eqs. (74) and (75) are

X1(x) = A1e
ζ1x +A2e

−ζ1x, (77)

Y2(y) = B1e
ζ2y +B2e

−ζ2y, (78)

respectively. By using the separated forms (70) and (71), the interior boundary conditions (62)
and (63) become

X1(±a)Y1(y) = 0→ X1(a) = X1(−a) = 0, (79)

X2(x)Y2(±b) = 0→ Y2(b) = Y2(−b) = 0. (80)

Application of the above boundary conditions to Eqs. (77) and (78) gives us X1(x) = 0 and
Y2(y) = 0 (for all separable solutions), which through Eqs. (70) and (71) lead to

f1(x, y) = f2(x, y) = 0. (81)

Substitution of result (81) into the equilibrium equations (53)–(55) gives

Mx,x +Mxy,y = Qx, My,y +Mxy,x = Qy, Qx,x +Qy,y = 0, (82)

which are the same as Eqs. (27), but are repeated here for the sake of completeness.
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4.3. Remarks on variational formulations

The above result (82), which implies that the Levinson plate equilibrium equations are always
ultimately of the given form, is merely a manifestation of the fact that the differences between
Newtonian and Lagrangian approaches are mathematical, not physical. The equilibrium equations
(53)–(55) containing higher-order stress resultants are meaningful only if they are associated with
the interior boundary conditions (58) and (59). The boundary conditions eliminate artificial,
exponentially decaying edge effects kin to those seen in Eqs. (77) and (78), or equivalently, they
rid us of the higher-order stress resultants. The correct interior boundary conditions (58) and (59)
are obtained only if the virtual work contribution (52) due to the interior stresses is accounted for.

A large number of different displacement-based third- and other higher-order plate theories can
be found in the literature. For a recent comprehensive listing, see the paper by Nguyen et al. (2016).
A typical variational formulation of a higher-order 2D plate theory is based on a displacement field
that satisfies stress-free face conditions but makes no reference to the lateral boundaries of the
plate. Such a field is exclusively an interior field. Furthermore, virtually all engineering plate
formulations adhere to Saint Venant’s principle not only by using an interior kinematic description
for the whole plate but also by relying on stress resultants instead of detailed stress distributions on
the plate edges so that physically plausible edge effects are eliminated. However, because the work
done by the interior stresses acting as surface tractions on the lateral plate edges is usually not
accounted for in energy-based formulations of higher-order theories, the derived equations produce
artificial edge effects which reside in a boundary layer built upon interior displacements. In short,
a flaw in the formulation materializes as a logical fallacy in the end result. If a proper boundary
layer is desired, the elasticity solutions for linearly elastic, isotropic, homogeneous plates that deal
with Papkovich-Fadle functions may be used as the starting point, see the work of Piltner (1992a).

Nevertheless, all higher-order engineering plate theories are not completely without merit. It
is well-known that they provide good results for many practical problems far enough from the
lateral plate edges regardless of their variational crimes chaining them to artificial edge effects.
However, the higher-order theories are unnecessarily complicated in comparison to the theory by
Levinson because when the external virtual work due to the interior stresses is not accounted
for in a variational formulation, the total differential order of the resulting governing equations
increases, as suggested by the exponential functions describing the artificial boundary behavior, cf.
Eqs. (74)–(78). For the application of the simple Levinson plate theory, see the works of Levinson
and Cooke (1983; 1983), Bert (1984) and Reddy et al. (2001) in addition to Levinson (1980).

Finally, we note again that the Levinson plate does not have a boundary layer and, thus, a
variational formulation does not produce any more information than a vectorial formulation on
how to apply boundary conditions in practical engineering problems. Interestingly, if a variational
interior formulation is carried out for a Mindlin plate, not even the interior boundary conditions (cf.
Eqs. (56) and (57)) appear in the theory because the boundary terms that stem from the virtual
strain energy and the external virtual work cancel each other completely and the equilibrium
equations are automatically of the correct form (82). The conditions on the edges of an interior
plate may be chosen only so as to imitate true, pointwise boundary conditions. This is the standard
practice also in the context of 2D linear elasticity when interior plane beam problems are studied
using Airy stress functions (see, Timoshenko and Goodier, 1970). Methods to determine optimal
boundary conditions for elasticity-based plates have been studied by Gregory and Wan (1985) and
Barrett and Ellis (1988). However, in the next section the application of constraints on the edges
of interior plates in practical plate problems is done in a more straightforward manner.
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5. Case studies from Clapeyron to plate bending

Motivated by the fact that the particular solution (28)–(30) for the uniform load is given in
polynomial form, the biharmonic function Ψ in the homogeneous solution (6)–(8) for our calcula-
tion examples that consider the accuracy of the discussed interior plate theories is taken to be a
polynomial of the form

Ψ(x, y) = c1 + c2x+ c3y + c4x
2 + c5xy + c6y

2 + c7x
3 + c8y

3 + c9x
2y + c10xy

2

+ c11x
3y + c12xy

3 + c13(x
4 − 3x2y2) + c14(y

4 − 3x2y2) + c15(x
5 − 5x3y2)

+ c16(y
5 − 5x2y3) + c17(x

4y − x2y3) + c18(xy
4 − x3y2) + P (x, y),

(83)

where P (x, y) includes higher-order biharmonic polynomials and is given in Appendix B. By using
Eq. (83), it is easy to verify that the full general solution, which is the sum of the homogeneous
(6)–(8) and particular (28)–(30) contributions, satisfies Clapeyron’s theorem, that is,

2U −Ws −Wp = 0 , (84)

where U and Ws are given by Eqs. (4) and (5), and the work due to the uniform load is

Wp = −
∫ b

−b

∫ a

−a
σz(x, y,−h/2)Uz(x, y,−h/2)dxdy =

∫ b

−b

∫ a

−a
p0Uz(x, y,−h/2)dxdy. (85)

The Levinson plate (1980) also satisfies Eq. (84) when Eqs. (A.1) with (83) are used. To summarize
our energy considerations, when interior equations are derived in a Newtonian way, the total
potential energy is captured as a by-product, whereas a Lagrangian approach requires that each
work and energy contribution, some of which may be elusive, is individually accounted for.

In the following we study mainly rectangular plates subjected to a uniformly distributed load.
The biharmonic polynomial in Eq. (83) includes forty-eight arbitrary constants to be determined
from constraint conditions set at a limited number of points along the plate edges. The acquired
plate solutions are exact in the sense that they satisfy the interior stress boundary conditions
(Section 2) and the Navier equations of elasticity. Although the solutions are not complete, forty-
eight constants are enough to obtain very accurate results for many cases. To facilitate the use
of solutions (6)–(8) and (28)–(30), a supplementary Mathematica file Simply48 is provided online
(see the end of the Manuscript for PDF version). The file solves the case of a simply-supported
plate under a uniform load presented in Section 5.3 using the biharmonic polynomial of Eq. (83).

5.1. All edges clamped

As our first example, we study a square plate with all of its four edges clamped. In order to
solve the arbitrary constants in Eq. (83), we form the constraint conditions uz = φx = φy = 0
in the plate corners and at equally spaced points along the plate edges using Eqs. (A.1). For
numerical calculations, the parameter values are taken to be the same as those used by Piltner
(1992b). In more detail, we have a = b = 5, h = 0.01, E = 10.92, ν = 0.3 and p0 = 1. Figure 3
shows the transverse deflection uz(x, y) on the mid-surface for two different cases. In Fig. 3(a), the
first twenty-four terms of the polynomial in Eq. (83) have been used to clamp the plate at eight
points, including the plate corners, whereas in Fig. 3(b) all forty-eight terms have been used to
enforce the displacement constraints at sixteen equally spaced points. In Fig. 3(a), we can see that
the plate edges display a waviness suggesting that eight points are not enough to clamp the plate
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Figure 3: Transverse deflection on the mid-surface of a square plate under a uniform load with all edges clamped
using a) 24 first terms of the biharmonic polynomial (83) and b) all 48 terms.

-3

-2

-1

0

1

2

3

-3

-2

-1

0

1

2

3

Figure 4: Rotations a) φx and b) φy on the mid-surface of a square plate under a uniform load with all edges clamped
using the polynomial (83) with 48 terms.

properly. By doubling the number of constraint points, a notable improvement in clamping the
plate is achieved as indicated by Fig. 3(b). Figure 4 shows the rotation variables on the mid-surface
calculated using the full polynomial in Eq. (83). We see that the rotations are zero along the edges.

An analytical series solution can be obtained for a Kirchhoff plate with all edges clamped (Tim-
oshenko and Woinowsky-Krieger, 1959). The series solution can be viewed as an exact elasticity
solution for a thin plate because the Kirchhoff theory is a special case of the exact interior elasticity
solution at hand [cf. Eq. (32)]. With the current parameter values the maximum deflection given
by the series solution is uz = 12.64 (Piltner, 1992b), whereas the polynomial in Eq. (83) leads
to uz = 11.84 and uz = 12.66 for the cases in Figs. 3(a) and 3(b), respectively. In conclusion,
the series solution and the polynomial in Eq. (83) with all its forty-eight terms accounted for give
practically the same result and, thus, the polynomial approach satisfying constraint conditions
only at a rather limited number of points is found valid in this case.
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Figure 5: a) Transverse deflection on the mid-surface of a square plate under a uniform load with two opposite edges
simply-supported (y = ±b) and the other two clamped (x = ±a). b) Moment My of the same plate.
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Figure 6: Rotations a) φx and b) φy on the mid-surface of a square plate under a uniform load with two opposite
edges simply-supported (y = ±b) and the other two clamped (x = ±a).

5.2. Two edges simply-supported, two clamped

Next we take a look at a plate with two opposite edges simply-supported and the other two
clamped. The full polynomial in Eq. (83) with forty-eight constants is used. For the clamped edges
x = ±a we have the conditions uz = φx = φy = 0, whereas for the simply-supported edges y = ±b
we use uz = φx = My = 0. The corner conditions are not without some ambiguity. In more detail,
we may choose either φy = 0 or My = 0 for each corner in addition to uz = φx = 0. Using the
same parameter values as in the previous example, we obtain for the maximum displacement at
the plate center uz = 19.176 and uz = 19.178 for the former and latter cases, respectively. The
well-known series solution for a Kirchhoff plate gives uz = 19.2 (Timoshenko and Woinowsky-
Krieger, 1959). The differences between the three solutions are nominal. In Fig. 5, we have chosen
to use the conditions uz = φx = φy = 0 in the corners. It seems more straightforward to set only
displacements constraints in the corners instead of a mixed set of displacements and a moment.
Figure 5(a) displays the transverse deflection of the plate on the mid-surface and Fig. 5(b) shows
the distribution of moment My. Figures 6(a) and 6(b) present rotations φx and φy on the mid-
surface, respectively. Figs. 5 and 6 indicate that the constraint conditions are fulfilled satisfactorily.
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Figure 7: Transverse deflection on the mid-surface of a simply-supported rectangular plate under a uniform load
using the biharmonic polynomial in Eq. (83) with 48 arbitrary constants.

5.3. All edges simply-supported

As a more comprehensive example we study a simply-supported plate under a uniform load.
The parameter values are taken from the work of Piltner (1992b). In this case, we have a = 3, b = 2,
E = 1, ν = 0.3 and p0 = 1. The thickness of the plate is varied in the calculations. The obtained
results are compared to those of Piltner (1988, 1992b). As already mentioned, the calculations
and additional figures for the studied case are given in the Supplementary online Mathematica file
Simply48 provided both in NB and PDF formats. Figure 7 shows the transverse deflection on the
mid-surface of the plate for h = 0.4. In addition to the corner constraints uz = φx = φy = 0, we
have used the conditions uz = φy = Mx = 0 for edges x = ±a and uz = φx = My = 0 for edges
y = ±b.

Table 1 and Fig. 8(a) show a comparison between the present solution and Piltner’s exact 3D
solution (1988; 1992b) in terms of maximum transverse deflections for different plate thicknesses.
In Fig. 8(a) the relative difference between the solutions is calculated from

∆uz,rel = 100× uz,Piltner − uz,Present
uz,Present

. (86)

Figure 8(a) shows that the differences between Piltner’s exact 3D solution and the present solution
(48 constants) are very small (0.1%− 0.3%). When only the first twenty-four terms are accounted
for in Eq. (83), the differences are larger.

The stresses of the Mindlin, Levinson and the exact interior plates are studied in Table 1 and
Fig. 8(b). Although the mid-surface displacement solution based on Eqs. (A.1) is the same for
all three cases as discussed in Section 3.4, the differences between the plates become evident by a
closer look at stress σx at point (0, 0,−h/2). Figure 8(b) shows the relative differences between
Piltner’s exact 3D solution and the other ones. For thin plates the differences are small but as
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Table 1: Comparison of displacements and stresses between different solutions. Stresses for the Mindlin and Levin-
son plates were calculated by expanding the exact mid-surface solution (48 constants) through the plate thickness
according to the respective kinematic and constitutive assumptions of the Mindlin and Levinson plates.

24 const. 48 const. Piltner Mindlin Levinson Present Piltner (1992b)

h uz(0, 0) uz(0, 0) uz(0, 0) σx(0, 0,−h/2) σx(0, 0,−h/2) σx(0, 0,−h/2) σx(0, 0,−h/2)

0.1 21471 21662 21637 -478.3 -478.5 -478.5 -479.0

0.2 2703.2 2724.9 2721.4 -119.6 -119.7 -119.8 -120.0

0.4 347.50 349.05 348.53 -29.90 -30.03 -30.10 -30.27

0.6 107.62 107.56 107.38 -13.29 -13.42 -13.50 -13.66

0.8 48.109 47.814 47.721 -7.474 -7.607 -7.683 -7.845

1.0 26.393 26.086 26.016 -4.783 -4.917 -4.993 -5.153

the plate thicknesses increase, so do the differences. The present exact plate takes into account
only the interior bending solution, whereas Piltner’s exact 3D solution is not exclusively an interior
solution. As Piltner’s plate becomes thicker, interior bending no longer dominates in his solution,
that is, the boundary layer solution also starts to play a role. In other words, the differences
between the present interior-only solution and Piltner’s full solution increase for thicker plates due
to the presence of the boundary layer in Piltner’s solution. Figure 8(b) also gives a sense of the
accuracy of the approximate Mindlin and Levinson plate theories.
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Figure 8: a) Relative difference between the present solution and Piltner’s 3D solution (1988; 1992b) in terms of
maximum transverse deflection. The relative difference between Kirchhoff and Piltner solutions is also given for three
plate thicknesses. b) Relative difference for different plates in terms of σx(0, 0,−h/2) with Piltner’s 3D solution as
the reference.
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5.4. All edges simply-supported – edge moments

As our final example, we consider a simply-supported rectangular plate subjected to uniformly
distributed bending moments M0 = 1 along edges x = ±a (p0 = 0). For parameter values
a = 3, b = 2, E = 1, ν = 0.3, h = 0.2, we obtain at the center of the plate Mx/M0 = 0.0465
and My/M0 = 0.2641. Corresponding values obtained for a Kirchhoff plate by a series solution
procedure are practically the same, i.e., Mx/M0 = 0.0465 and My/M0 = 0.2635 (Reddy, 2006).
Figure 9 shows the displacement uz(x, y) for a/b = 2. Different types of concentrated line loads
can be applied on the plate edges via the constraint conditions.
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Figure 9: Simply-supported rectangular plate subjected to uniformly distributed bending moments along edges
x = ±a (p0 = 0).

6. Concluding remarks

In this paper, we presented a general 3D elasticity solution for a rectangular, isotropic, homoge-
neous plate in the conventional form of 2D plate theories. This was done by using 2D mid-surface
variables formed from the 3D solution. The study was carried out in an interior framework without
considering edge effects. The interior aspect allowed us to establish a clear connection between
well-known 2D plate theories and 3D interior elasticity solutions. For one thing, the 2D interior
plate equations developed from the 3D elasticity solution were shown to include the Kirchhoff,
Mindlin and Levinson plate theories and their exact general solutions as special cases. We stress
the salient feature of conventional 2D plates that they consist only of an interior part and, thus, do
not have boundary layers. This amounts to interior stresses being active all-over of a conventional
plate, including the lateral plate edges where the stresses act as surface tractions and contribute to
the total potential energy of the plate. It is crucial to account for this property in all energy-based
considerations. The literature is abundant with plate studies founded on interior kinematics that
neglect the work contribution due to the interior stresses along the plate edges causing the studied
plates to suffer from a number of unpleasant features such as interconnected artificial edge effects
and governing differential equations of unnecessary complexity.
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We considered only a rectangular interior plate. However, the general interior solution in
Eqs. (6)–(8) may be transformed to other coordinate systems to investigate, for example, circular
or elliptic interior plates. Furthermore, shell structures may be studied by taking into account
the membrane part of the solution in all developments. The general solution may also be used
to develop nodally-exact finite elements in the same way as in the case of elasticity-based interior
beams (cf. Karttunen and von Hertzen, 2016a,c). The finite element approach also provides the
exact shape functions for the interior structure at hand and the shape functions may be used, for
example, as optimal first approximations in refined finite element formulations which include the
nonlinear von Kármán strains. In addition, the presented theoretical plate considerations provide
a starting point for the formulation of accurate isoparametric interior plate finite elements, and
also facilitate the development of other numerical solution methods for interior plates such as
isogeometric analysis (for reference, see the works of Kiendl et al. (2009) and Thai et al. (2014)).
To sum it all up, formulation of structural problems within a clearly defined interior framework
paves way for a multitude of refined analytical and numerical approaches for beams, plates and
shells.

Appendix A. Mid-surface variables with uniform load p = p0



ux(x, y)

uy(x, y)

uz(x, y)

φx(x, y)

φy(x, y)


=

1

2G



[
(1 + ν)− h2

24 (3 + 4ν)∇2
]
∂H
∂x − 2∇2Φx + p0νx

2E[
(1 + ν)− h2

24 (3 + 4ν)∇2
]
∂H
∂y − 2∇2Φy + p0νy

2E

Ψ− p0(1+ν)
16Eh3

[
3(ν − 1)(x2 + y2)2 + 6νh2(x2 + y2)

]
− ∂
∂x

[
Ψ + h2

4(1−ν)∇2Ψ
]

+ 3p0x(1+ν)
4Eh3

[
h2(ν − 2) + (ν − 1)(x2 + y2)

]
− ∂
∂y

[
Ψ + h2

4(1−ν)∇2Ψ
]

+ 3p0y(1+ν)
4Eh3

[
h2(ν − 2) + (ν − 1)(x2 + y2)

]


. (A.1)

Eqs. (A.1) satisfy relations (11) and (12)1 but not Eq. (12)2, i.e.,

∂φx
∂x

+
∂φy
∂y

+∇2uz = −3p0(1 + ν)

Eh
. (A.2)

Appendix B. Biharmonic polynomial P (x, y)

In Eq. (83), we have

P (x, y) = P6 + P7 + P8 + P9 + P10 + P11 + P12 + P13, (B.1)

where
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P6(x, y) = c19(3x
5y − 5x3y3)

+ c20(3xy
5 − 5x3y3)

+ c21(x
6 − 10x4y2 + 5x2y4)

+ c22(5x
4y2 − 10x2y4 + y6),

P7(x, y) = c23(x
7 − 35x3y4 + 14xy6)

+ c24(y
7 − 35y3x4 + 14yx6)

+ c25(x
7 − 21x5y2 + 35x3y4 − 7xy6)

+ c26(7x
6y − 35x4y3 + 21x2y5 − y7),

P8(x, y) = c27x(x7 − 21x5y2 + 35x3y4 − 7xy6)

+ c28y(x7 − 21x5y2 + 35x3y4 − 7xy6)

+ c29(x
8 − 28x6y2 + 70x4y4 − 28x2y6 + y8)

+ c30(8x
7y − 56x5y3 + 56x3y5 − 8xy7),

P9(x, y) = c31x(x8 − 28x6y2 + 70x4y4 − 28x2y6 + y8)

+ c32y(x8 − 28x6y2 + 70x4y4 − 28x2y6 + y8)

+ c33(x
9 − 36x7y2 + 126x5y4 − 84x3y6 + 9xy8)

+ c34(9x
8y − 84x6y3 + 126x4y5 − 36x2y7 + y9),

P10(x, y) = c35x(x9 − 36x7y2 + 126x5y4 − 84x3y6 + 9xy8)

+ c36y(x9 − 36x7y2 + 126x5y4 − 84x3y6 + 9xy8)

+ c37(x
10 − 45x8y2 + 210x6y4 − 210x4y6 + 45x2y8 − y10)

+ c38(10x9y − 120x7y3 + 252x5y5 − 120x3y7 + 10xy9),

P11(x, y) = c39x(x10 − 45x8y2 + 210x6y4 − 210x4y6 + 45x2y8 − y10)
+ c40y(x10 − 45x8y2 + 210x6y4 − 210x4y6 + 45x2y8 − y10)
+ c41(11x10y − 165x8y3 + 462x6y5 − 330x4y7 + 55x2y9 − y11)
+ c42(x

11 − 55x9y2 + 330x7y4 − 462x5y6 + 165x3y8 − 11xy10),

P12(x, y) = c43x(11x10y − 165x8y3 + 462x6y5 − 330x4y7 + 55x2y9 − y11)
+ c44y(11x10y − 165x8y3 + 462x6y5 − 330x4y7 + 55x2y9 − y11)
+ c45(x

12 − 66x10y2 + 495x8y4 − 924x6y6 + 495x4y8 − 66x2y10 + y12)

+ c46(12x11y − 220x9y3 + 792x7y5 − 792x5y7 + 220x3y9 − 12xy11),

P13(x, y) = c47(x
13 − 78x11y2 + 715x9y4 − 1716x7y6 + 1287x5y8 − 286x3y10 + 13xy12)

+ c48(13x12y − 286x10y3 + 1287x8y5 − 1716x6y7 + 715x4y9 − 78x2y11 + y13).

(B.2)
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Kiendl, J., Bletzinger, K.-U., Linhard, J., Wüchner, R., 2009. Isogeometric shell analysis with Kirchhoff–Love ele-

ments. Comput. Method. Appl. M. 198 (49), 3902–3914.
Levinson, M., 1980. An accurate, simple theory of the statics and dynamics of elastic plates. Mech. Res. Commun.

7 (6), 343–350.
Levinson, M., 1985. The simply supported rectangular plate: An exact, three dimensional, linear elasticity solution.

J. Elast. 15 (3), 283–291.
Levinson, M., Cooke, D. W., 1983. Thick rectangular plates-I: The generalized Navier solution. Int. J. Mech. Sci.

25 (3), 199–205.
Mindlin, R. D., 1951. Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. J. App.

Mech. 18, 31–38.
Nguyen, T., Thai, C. H., Nguyen-Xuan, H., 2016. On the general framework of high order shear deformation theories

for laminated composite plate structures: A novel unified approach. Int. J. Mech. Sci. 110, 242–255.
Nosier, A., Reddy, J. N., 1992. On boundary layer and interior equations for higher-order theories of plates. ZAMM-Z.

Angew. Math. Me. 72 (12), 657–666.
Piltner, R., 1988. The application of a complex 3-dimensional elasticity solution representation for the analysis of a

thick rectangular plate. Acta Mech. 75 (1-4), 77–91.
Piltner, R., 1991. Three-dimensional stress and displacement representations for plate problems. Mech. Res. Commun.

18 (1), 41–49.
Piltner, R., 1992a. The derivation of a thick and thin plate formulation without ad hoc assumptions. J. Elast. 29 (2),

133–173.

23



Piltner, R., 1992b. A quadrilateral hybrid-Trefftz plate bending element for the inclusion of warping based on a
three-dimensional plate formulation. Int. J. Numer. Met. Eng. 33 (2), 387–408.

Reddy, J. N., 1984. A simple higher–order theory for laminated composite plates. J. Appl. Mech. 51 (4), 745–752.
Reddy, J. N., 1990. A general nonlinear 3rd–order theory of plates with moderate thickness. Int. J. Nonlin. Mech.

25 (6), 677–686.
Reddy, J. N., 2003. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd Edition. CRC

Press, Boca Raton, Florida.
Reddy, J. N., 2006. Theory and analysis of elastic plates and shells. CRC press.
Reddy, J. N., Kim, J., 2012. A nonlinear modified couple stress-based third-order theory of functionally graded

plates. Compos. Struct. 94 (3), 1128–1143.
Reddy, J. N., Wang, C. M., Lim, G. T., Ng, K. H., 2001. Bending solutions of Levinson beams and plates in terms

of the classical theories. Int. J. Solids Struct. 38 (26), 4701–4720.
Sadd, M. H., 2014. Elasticity – Theory, Applications and Numerics, 3rd Edition. Academic Press, Oxford.
Savoia, M., Reddy, J. N., 1992. A variational approach to three-dimensional elasticity solutions of laminated com-

posite plates. J. Appl. Mech. 59 (2S), S166–S175.
Srinivas, S., Rao, A. K., 1970. Bending, vibration and buckling of simply supported thick orthotropic rectangular

plates and laminates. Int. J. Solids Struct. 6 (11), 1463–1481.
Srinivas, S., Rao, A. K., 1973. Flexure of thick rectangular plates. J. App. Mech. 40 (1), 298–299.
Srinivas, S., Rao, A. K., Joga Rao, C. V., 1969. Flexure of simply supported thick homogeneous and laminated

rectangular plates. ZAMM-Z. Angew. Math. Me. 49 (8), 449–458.
Szilard, R., 2004. Theories and applications of plate analysis: classical numerical and engineering methods. John

Wiley & Sons.
Thai, C. H., Kulasegaram, S., Tran, L. V., Nguyen-Xuan, H., 2014. Generalized shear deformation theory for

functionally graded isotropic and sandwich plates based on isogeometric approach. Comput. Struct. 141, 94–112.
Timoshenko, S. P., Goodier, J. N., 1970. Theory of Elasticity, 3rd Edition. McGraw-Hill, Singapore.
Timoshenko, S. P., Woinowsky-Krieger, S., 1959. Theory of Plates and Shells, 2nd Edition. McGraw-Hill, New York.
Vinson, J. R., 2006. Plate and panel structures of isotropic, composite and piezoelectric materials, including sandwich

construction. Springer, New York.
Vlasov, B. F., 1957. On equations of bending of plates (in Russian). Dokla Ak. Nauk Azerbeijanskoi SSR 3, 955–959.
Wang, F. Y., 1990. Two-dimensional theories deduced from three-dimensional theory for a transversely isotropic

body. I: Plate problems. Int. J. Solids Struct. 26 (4), 455–470.
Wang, F. Y., 1991. Two-dimensional theories deduced from three-dimensional theory for a transversely isotropic

body. II: Plane problems. Int. J. Solids Struct. 28 (2), 161–177.
Wang, M. Z., Zhao, B. S., 2003. The decomposed form of the three-dimensional elastic plate. Acta Mech. 166 (1-4),

207–216.
Zhao, B., Wu, D., Wang, M., 2013. The refined theory and the decomposed theorem of a transversely isotropic elastic

plate. Eur. J. Mech. A-Solid. 39, 243–250.

24


