Antin, Kim-Niklas; Santos, Telmo G.; Vilaça, Pedro

Eddy Current Testing of Unidirectional Carbon Fibre Reinforced Polymer Composites Using Advanced Probe

Published in:
The 20th International Workshop on Electromagnetic Nondestructive Evaluation (ENDE2015), September 21-23, 2015, Sendai, Japan

Published: 01/01/2015

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
Unspecified

Please cite the original version:
Detection of damage in unidirectional carbon fiber composite rods using eddy current probes

Introduction

Carbon fiber composites are high performance materials, but they are very sensitive to damage. Therefore, the condition of composite structures needs monitoring to assure safe operation. However, critical flaws need to be detectable in order to develop a meaningful non-destructive testing method.

Methods

Detection of fiber damage in pultruded UD CFRP products was shown to be difficult using commercial eddy current probes. However, a suitable probe concept and geometry for damage detection was found. The probe is a differential planar eddy current probe as shown in Fig. 1 and complete test setup in Fig. 2. The probe was traversed along the specimen and the impedance of the coils was recorded.

Results

The tested flaw types include notches, holes, slots, voids, damage from impact, fiber breakage from flexural loading and thermal degradation. Distributed damage, such as fiber breakage due to bending, proved to be difficult to detect (Fig.3). Volumetric flaws, however, showed a clear signal (Fig.4).

Conclusions

Damage detection of unidirectionally reinforced carbon fiber composites using eddy currents is possible with the advanced probe concept tested. However, planar and distributed damage is still a challenge for eddy current testing.

The work has been done within the FIMECC HYBRIDS (Hybrid Materials) programme as part of the FIMECC Breakthrough materials Doctoral School. We gratefully acknowledge the financial support from the Finnish Funding Agency for Innovation (Tekes) and the participating companies. T.S. would like to acknowledge Fundação para a Ciência e a Tecnologia (FCT) for funding the project UID/EMS/00667/2013.