
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Gustafsson, Tom; Stenberg, Rolf; Videman, Juha
Nitsche’s method for the obstacle problem of clamped Kirchhoff plates

Published in:
Numerical Mathematics and Advanced Applications ENUMATH 2017

DOI:
10.1007/978-3-319-96415-7_36

Published: 01/01/2019

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Gustafsson, T., Stenberg, R., & Videman, J. (2019). Nitsche’s method for the obstacle problem of clamped
Kirchhoff plates. In F. A. Radu, K. Kumar, I. Berre, J. M. Nordbotten, & I. S. Pop (Eds.), Numerical Mathematics
and Advanced Applications ENUMATH 2017 (pp. 407-415). (Lecture Notes in Computational Science and
Engineering; Vol. 126). Springer. https://doi.org/10.1007/978-3-319-96415-7_36

https://doi.org/10.1007/978-3-319-96415-7_36
https://doi.org/10.1007/978-3-319-96415-7_36


Nitsche’s method for the obstacle problem of
clamped Kirchhoff plates

Tom Gustafsson1, Rolf Stenberg2, and Juha Videman3

1 Department of Mathematics and Systems Analysis, Aalto University, P.O. Box
11100, 00076 Aalto, Finland, tom.gustafsson@aalto.fi

2 Department of Mathematics and Systems Analysis, Aalto University, P.O. Box
11100, 00076 Aalto, Finland, rolf.stenberg@aalto.fi
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Abstract. The theory behind Nitsche’s method for approximating the obstacle
problem of clamped Kirchhoff plates is reviewed. A priori estimates and residual-
based a posteriori error estimators are presented for the related conforming sta-
bilised finite element method and the latter are used for adaptive refinement in a
numerical experiment.

1 Introduction

Nitsche’s method is widely used for the numerical approximation of contact
problems, cf. [5,9,10,6] and all the references therein. It was first proposed as
a non-standard treatment of boundary conditions [23] and as such is related
to later discovered discontinuous Galerkin methods. Over 20 years ago (cf.
[25]), using a Lagrange multiplier to impose (weakly) the Dirichlet boundary
condition on the Poisson equation, we observed that the Lagrange multiplier
can be eliminated, element by element, from the stabilised finite element
formulation, leading to an optimally conditioned, symmetric and positive
definite system corresponding to a method by Nitsche which was, at that
time, largely forgotten.

There are, however, fundamental issues with Nitsche’s formulation since
its analysis requires an additional smoothness assumption and the a poste-
riori estimates are based on a so-called saturation assumption, cf. [1,20,8].
Recently, by going back to the interpretation of Nitsche’s method as a sta-
bilised formulation, recalling our analysis for the Stokes problem [26] and
using the techniques from [13,15], we were able to give a complete error anal-
ysis (both a priori and a posteriori) for the stabilised/Nitsche’s method when
applied to the membrane obstacle problem [17]. We emphasise that the sta-
bilised form is only needed for the analysis. For the practical implementation,
Nitsche’s formulation is preferable.

In this note, we will review our latest results on conforming stabilised
finite element methods for the plate obstacle problem, cf. [19]. Our method
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is based on a saddle point formulation with the contact force appearing as an
additional unknown (Lagrange multiplier). We present an a priori estimate
with minimal regularity assumptions and introduce the Nitsche’s formulation
with Lagrange multiplier providing an approximation for the contact force
and the unknown contact domain. We will also present an a posteriori error
estimator and use it for adaptive refinement in a numerical experiment.

Numerical approximation of fourth-order variational inequalities has been
previously studied, e.g., in [24,4,3,16,2] but to our knowledge Nitsche’s or
stabilised methods using conforming C1-continuous elements were for the
first time proposed and rigorously analysed in [19].

2 Problem statement

Let Ω ⊂ R2 denote a polygonal domain occupied by (the mid-surface of) a
thin plate of thickness d whose deformation is governed by the Kirchhoff–Love
theory. Assume that the vertical displacement u of the plate, resulting from
an applied load f ∈ L2(Ω), is constrained by a rigid obstacle g ∈ H2(Ω) and
suppose, for simplicity, that the plate is clamped at all edges.

Letting ε(v) = 1
2 (∇v +∇vT ) denote the infinitesimal strain tensor and

K(u) = −ε(∇u) the curvature, the bending moment M is defined by

M(u) =
Ed3

12(1 + ν)

(
K(u) +

ν

1− ν
tr (K(u)) I

)
,

where E and ν are the Young’s modulus and the Poisson ratio (see, e.g., [12]).
Defining the bilinear and linear forms a and l by

a(w, v) =

∫
Ω

M(w) : K(v) dx, l(v) =

∫
Ω

fv dx,

the solution to the clamped plate obstacle problem can be characterised as

u = argminv∈K

[
1

2
a(v, v)− l(v)

]
,

where K = { v ∈ H2
0 (Ω) : v ≥ g in Ω } or, equivalently, as the solution to the

variational inequality: Find u ∈ K such that

a(u, v − u) ≥ l(v − u) ∀ v ∈ K . (1)

Remark 1. The existence of a unique solution to problem (1) follows from
standard theory, see [21]. For smooth data, the solution has been shown to
be in H3

loc(Ω) ∩ C2(Ω), in convex domains in H3(Ω), cf. [14,7], and the
smoothness threshold seems to be H7/2−ε(Ω), ε > 0, see Example 1 in [3].

Nitsche’s method for approximating the plate obstacle problem can be
regarded as a stabilised finite element method for the Lagrange multiplier
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formulation of problem (1) with the stabilisation term arising from its strong
form. Associating a Lagrange multiplier λ to the constraint v ≥ g, the strong
form reads as follows:

A(u)− λ = f

λ ≥ 0, u− g ≥ 0, λ(u− g) = 0

}
in Ω, (2)

u = 0 and
∂u

∂n
= 0 on ∂Ω, (3)

where

A(u) =
Ed3

12(1− ν2)
∆2u .

The Lagrange multiplier λ corresponds to a reaction force exerted on the
plate by the obstacle and it belongs to the space

Λ = {µ ∈ Q : 〈v, µ〉 ≥ 0 ∀v ∈ V s.t. v ≥ 0 a.e. in Ω},

where V = H2
0 (Ω), Q = H−2(Ω) = [H2

0 (Ω)]′ and 〈·, ·〉 : V ×Q → R denotes
the duality pairing.

Let us define a bilinear form B : (V × Q) × (V × Q) → R and a linear
form L : V ×Q→ R through

B(w, ξ; v, µ) = a(w, v)− 〈v, ξ〉 − 〈w, µ〉,
L(v, µ) = (f, v)− 〈g, µ〉.

Problem (2)-(3) can now be written as the following variational inequality:

Find (u, λ) ∈ V × Λ such that

B(u, λ; v, µ− λ) ≤ L(v, µ− λ) ∀(v, µ) ∈ V × Λ. (4)

The bilinear form B is continuous and stable (cf. [19]) with respect to the
norm

|||(w, ξ)||| =
(
‖w‖22 + ‖ξ‖2−2

)1/2
,

where ‖ · ‖2 and ‖ · ‖−2 are the usual norms in H2(Ω) and H−2(Ω). The
saddle-point formulation (4) and formulation (1) are equivalent, cf. [11].

3 Stabilised finite element method

Let Ch be a conforming shape-regular triangulation of Ω into triangles K and
let Vh ⊂ V and Qh ⊂ Q be finite element subspaces. Defining

Λh = {µh ∈ Qh : µh ≥ 0 in Ω} ⊂ Λ
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and introducing stabilised bilinear and linear forms Bh and Lh by

Bh(w, ξ; v, µ) = B(w, ξ; v, µ)− α
∑
K∈Ch

h4K(A(w)− ξ,A(v)− µ)K ,

Lh(v, µ) = L(v, µ)− α
∑
K∈Ch

h4K(f,A(v)− µ)K ,

where α > 0 is a stabilisation parameter, the stabilised finite element method
becomes: Find (uh, λh) ∈ Vh × Λh such that

Bh(uh, λh; vh, µh − λh) ≤ Lh(vh, µh − λh) ∀(vh, µh) ∈ Vh × Λh. (5)

The stabilised formulation is consistent and, assuming that α ∈ (0, CI)
where CI > 0 is the constant from the inverse inequality

CI
∑
K∈Ch

h4K‖A(wh)‖20,K ≤ a(wh, wh) ∀wh ∈ Vh,

it is stable which leads to a quasi-optimal a priori error estimate (see [19]):

|||(u− uh, λ− λh)||| . inf
vh∈Vh,
µh∈Λh

(
|||(u− vh, λ− µh)|||+

√
〈u− g, µh〉

)
+ osc(f).

Above osc(f) denotes the data oscillation defined by

osc(f)2 =
∑
K∈Ch

h2K‖f − fh‖0,K ,

with fh ∈ Vh standing for the L2-projection of f .

4 Nitsche’s method

Assume that the finite element spaces consist of a C1-element for the displace-
ment field (in our example, the Argyris element) coupled with a piecewise
polynomial and discontinuous approximation of the Lagrange multiplier. The
Lagrange multiplier can thus be eliminated elementwise from the stabilised
formulation (5) leading to the Nitsche’s method:

Find uh ∈ Vh such that

ah(uh, vh;uh) = lh(vh;uh) ∀vh ∈ Vh, (6)

where

ah(uh, vh;wh) = a(uh, vh) +
(

1
αH4uh, vh

)
ΩC(wh)

− (A(uh), vh)ΩC(wh)

− (uh,A(vh))ΩC(wh)
−
(
αH4A(uh),A(vh)

)
Ω\ΩC(wh)

,

lh(vh;wh) = (f, vh) +
(

1
αH4 g, vh

)
ΩC(wh)

− (g,A(vh))ΩC(wh)

− (f, vh)ΩC(wh)
− (αH4f,A(vh))Ω\ΩC(wh).
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Above, H ∈ L2(Ω) is defined as H|K = hK , ∀K ∈ Ch, and the contact set
ΩC(wh) = {(x, y) ∈ Ω : F (wh) > 0}, where

F (wh) =
1

αH4

(
g − wh + αH4(A(wh)− f)

)
+
, w+ = max(w, 0),

is the reaction force (Lagrange multiplier), is approximated iteratively using
the previous displacement field to linearise problem (6).

Based on an a posteriori error analysis of the stabilised method, the local
error estimator used in an adaptive refinement strategy is defined as

E2K = η2K +
1

2

∑
E⊂K

η2E + ((uh − g)+, λh)K + ‖(g − uh)+‖22,K ,

where E are the (interior) edges of K ∈ Ch and

η2K = h4K‖A(uh)−λh−f‖20,K , η2E = h3E‖JVn(uh)K‖20,E+hE‖JMnn(uh)K‖20,E ,

with JVn(uh)K and JMnn(uh)K denoting the jumps over interior edges of the
Kirchhoff shear force and the normal moment, see [18,19] for more details.

5 Numerical results

We will consider the problem from [2, Example 7.4] where the domain Ω is
given by Ω = (−0.5, 0.5)2 \ [0, 0.5]2 and the obstacle and load function are

g(x) = − sin(2π(x+ 0.5)(y + 0.5)) sin(4π(x− 0.5)(y − 0.5))− 0.35

f(x) =


500 e(x+0.25)2+(y+0.25)2 , x ≤ 0, y > 0
0, x ≤ 0, y ≤ 0

1000
(
0.5 + (x− 0.25)2 + (y + 0.25)2

)3/2
, x > 0, y ≤ 0

The stabilisation parameter is chosen as α = 10−5, and the marking and
adaptive refinement strategies are as in [19]. For this problem the contact
set is one-dimensional. The discrete solution and the discrete contact set are
visualised in Fig. 1. The adaptive meshes and the total error are given in
Fig. 2. Note that due to the re-entrant corner, the exact solution belongs
to H2.54(Ω) (cf. [22]) which corresponds to the convergence rate N−0.27 ob-
tained with uniform refinement, with N denoting the number of degrees of
freedom, and that the adaptive meshing strategy recovers the optimal rate
of convergence N−2 for fifth order elements.
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Fig. 1. The discrete solution uh and the discrete contact set, ΩC(uh), after two
adaptive mesh refinements.

References

1. R. Becker, P. Hansbo, and R. Stenberg, A finite element method for do-
main decomposition with non-matching grids, ESAIM: Math. Model. Numer.
Anal. 37 (2003), 209–225.

2. S. Brenner, J. Gedicke, L.-Y. Sung, and Y. Zhang, An a posteriori analy-
sis of C0 interior penalty methods for the obstacle problem of clamped Kirchhoff
plates, SIAM J. Numer. Anal. 55 (2017), 87–108.

3. S. Brenner, L.-Y. Sung, H. Zhang, and Y. Zhang, A Morley finite element
method for the displacement obstacle problem of clamped Kirchhoff plates, J.
Comput. Appl. Math. 254 (2013), 31–42.

4. S. Brenner, L.-Y. Sung, and Y. Zhang, Finite element methods for the
displacement obstacle problem of clamped plates, Math. Comp. 81 (2012), 1247–
1262.

5. E. Burman, A penalty-free nonsymmetric Nitsche-type method for the weak
imposition of boundary conditions, SIAM J. Numer. Anal. 50 (2012), 1959–
1981.

6. E. Burman, P. Hansbo, and M.G. Larson, The penalty-free Nitsche’s
method and non-conforming finite elements for the Signorini problem, SIAM
J. Numer. Anal 55 (2017), 2523-2539.

7. L.A. Caffarelli and A. Friedman, The obstacle problem for the biharmonic
operator, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (1979), 151–183.

8. F. Chouly, M. Fabre, P. Hild, J. Pousin, and Y. Renard, Residual-based
a posteriori error estimation for contact problems approximated by Nitsche’s
method, IMA J. Numer. Anal. (to appear).

9. F. Chouly and P. Hild, A Nitsche-based method for unilateral contact prob-
lems: Numerical analysis, SIAM J. Numer. Anal. 51 (2013), 1295–1307.



Nitsche’s method for the plate obstacle problem 7

103 104

Number of degrees of freedom

101

102

103

104

S
u
m

 o
f 

e
rr

o
r 

e
st

im
a
to

rs

2

1

0.27
1

Adaptive
Uniform

Fig. 2. A sequence of adaptively refined meshes and the total error as a function
of the number of degrees of freedom. The upper-left panel depicts the initial mesh.
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