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Generalized linearization techniques in electrical impedance
tomography

Nuutti Hyvönen∗ Lauri Mustonen†

February 10, 2018

Abstract
Electrical impedance tomography aims at reconstructing the interior electrical conductivity

from surface measurements of currents and voltages. As the current-voltage pairs depend
nonlinearly on the conductivity, impedance tomography leads to a nonlinear inverse problem.
Often, the forward problem is linearized with respect to the conductivity and the resulting
linear inverse problem is regarded as a subproblem in an iterative algorithm or as a simple
reconstruction method as such. In this paper, we compare this basic linearization approach
to linearizations with respect to the resistivity or the logarithm of the conductivity. It is
numerically demonstrated that the conductivity linearization often results in compromised
accuracy in both forward and inverse computations. Inspired by these observations, we present
and analyze a new linearization technique which is based on the logarithm of the Neumann-
to-Dirichlet operator. The method is directly applicable to discrete settings, including the
complete electrode model. We also consider Fréchet derivatives of the logarithmic operators.
Numerical examples indicate that the proposed method is an accurate way of linearizing the
problem of electrical impedance tomography.

Keywords: electrical impedance tomography, inverse elliptic boundary value problems, lin-
earization, Neumann-to-Dirichlet map, operator logarithm, Fréchet differentiability
AMS subject classifications: 65N21, 47B15, 35R30

1 Introduction
The reconstruction task of electrical impedance tomography (EIT) is undoubtedly one of the
most studied nonlinear inverse boundary value problems [30]. The mathematical foundations of
the problem were introduced by Calderón in [3], which considers the conductivity reconstruction
based on the Dirichlet-to-Neumann operator. As has become a more standard numerical approach,
in this paper we consider the Neumann-to-Dirichlet operator, which maps the boundary currents
to the corresponding boundary potentials for a given interior conductivity. The dependence of
the Neumann-to-Dirichlet operator on the conductivity is nonlinear so that reconstructing the
conductivity from the measurements is a nonlinear, and also illposed, inverse problem.

Nonlinear inverse problems can be straightforwardly approached with nonlinear least squares
minimization algorithms, which rely on successive linearizations of the forward operator. In par-
ticular, the accuracy of the sequential linearizations certainly affects the performance of such an
iterative reconstruction method. In EIT, one-step linearization can also be used to obtain an ap-
proximative reconstruction [1, 4, 15]. It is also worth noting that Calderón’s investigations were
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based on a linearization of the forward problem in his seminal paper [3]. The Fréchet derivatives of
the EIT forward operator with respect to the conductivity can be computed explicitly [4, 20, 26].
By applying the chain rule of Banach spaces, or via direct computation, it is possible to consider
derivatives with respect to the resistivity or the logarithm of the conductivity as well. In this
paper, we compare the linearization errors resulting from these different input parametrizations
of the electrical properties. We also discuss the corresponding methods for the complete electrode
model (CEM), which is an accurate model for practical EIT measurements [5, 29].

As the main novelty, we introduce the logarithm of the Neumann-to-Dirichlet operator and use
its differentiability properties to construct a new linearization method for EIT. Loosely speaking,
the traditional forward operator is replaced by an operator that maps the logarithm of the con-
ductivity to the logarithm of the boundary potentials, the latter being understood in a sense of
linear operators. The corresponding least squares inversion algorithm then fits the computed loga-
rithmic potentials to the logarithm of the measurement matrix. Although this logarithmic forward
operator is still nonlinear, numerical experiments show that the resulting linearization errors are
in most cases smaller than with any other considered linearization method.

This paper is organized as follows. In Section 2, the continuum forward model of EIT and the
related Neumann-to-Dirichlet operator are reviewed. We write the dependence of the Neumann-
to-Dirichlet operator on the electrical properties in three different ways and recall also the cor-
responding Fréchet derivatives. Section 3 presents the formal definition for the logarithm of the
Neumann-to-Dirichlet operator and studies its differentiability and other properties as an un-
bounded operator on the space of square-integrable functions. In Section 4, observations from
Sections 2 and 3 are generalized for the complete electrode model. Numerical experiments con-
cerning linearization errors for both forward and inverse computations are given in Section 5.
Finally, Section 6 offers concluding remarks.

2 Input parametrization in EIT
The continuum forward model of EIT for the electric potential u is written as

∇ · (σ∇u) = 0 in Ω, (1)

σ
∂u

∂ν
= f on ∂Ω,

where Ω ⊂ Rd, d ≥ 2, is a bounded domain with a Lipschitz boundary ∂Ω and a connected com-
plement, the electrical conductivity σ ∈ L∞+ (Ω) is real-valued and isotropic, and f ∈ H−1/2

� (∂Ω)
can be complex-valued. The conductivity is bounded from below by a positive constant, that is,

L∞+ (Ω) := {v ∈ L∞(Ω; R) : v ≥ a a.e. in Ω for some a > 0} ,

and the boundary current density belongs to the mean-free Sobolev space H−1/2
� (∂Ω) defined via

Hr
�(∂Ω) := {v ∈ Hr(∂Ω) : 〈1, v〉 = 0} , r ∈ (−1, 1),

due to the conservation of electric charge. Here and in what follows, the bracket 〈·, ·〉 : H−r(∂Ω)×
Hr(∂Ω) → C denotes the sesquilinear dual pairing that has an interpretation as an extension of
the L2(∂Ω) inner product (·, ·) : L2(∂Ω) × L2(∂Ω) → C. In particular, apart from L∞(Ω) :=
L∞(Ω; R), the multiplier field for all employed function spaces is C.

The variational form of the Neumann problem (1) is to find u ∈ H1(Ω) such that∫
Ω

σ∇u · ∇v dx =
〈
f, v|∂Ω

〉
(2)
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holds for all v ∈ H1(Ω). The standard theory for elliptic partial differential equations states that
there exists a unique solution for (2) in the quotient space H1(Ω)/C for any given current density
f ∈ H−1/2

� (∂Ω). In particular, there is a unique mean-free boundary potential

U := u|∂Ω ∈ H1/2
� (∂Ω)

that depends linearly and boundedly on the corresponding f ∈ H−1/2
� (∂Ω). [12]

The linear map f 7→ U , which obviously depends on σ, is called the Neumann-to-Dirichlet
operator and is denoted by Λ(σ). For any given σ ∈ L∞+ (Ω), the mapping

Λ(σ) : H−1/2
� (∂Ω)→ H

1/2
� (∂Ω)

is a linear isomorphism that is self-adjoint in the sense that

〈f, Λ(σ)g〉 = 〈g, Λ(σ)f〉 for all f, g ∈ H−1/2
� (∂Ω)

and positive,

〈f, Λ(σ)f〉 ≥ c‖f‖2
H−1/2(∂Ω) for all f ∈ H−1/2

� (∂Ω) and some c > 0,

as can be easily deduced from (2) and (Neumann) trace theorems for those elements of H1(Ω)/C
for which the range of ∇ · σ∇(·) is a subspace of L2(Ω) (cf., e.g., [8, p. 381, Lemma 1]). Unless
stated otherwise, we interpret Λ(σ) as a self-adjoint operator from L2

�(∂Ω) to itself, that is, as a
map

Λ(σ) : f 7→ U, L2
�(∂Ω)→ L2

�(∂Ω),

which is compact as are the (dense) embeddings H1/2
� (∂Ω) ↪→ L2

�(∂Ω) ↪→ H
−1/2
� (∂Ω). In partic-

ular, Λ(σ) admits a spectral decomposition

Λ(σ)f =
∞∑
k=1

λk(f, φk)φk, (3)

where the eigenvalues satisfy λk ≥ λk+1 and R+ 3 λk → 0 as k → ∞, and the corresponding
eigenfunctions {φk}∞k=1 form an orthonormal basis for L2

�(∂Ω).
Let us denote by L(L2

�(∂Ω)) the Banach space of bounded linear operators from L2
�(∂Ω) to

itself. The mapping
Λ : σ 7→ Λ(σ), L∞+ (Ω)→ L(L2

�(∂Ω)) (4)

is nonlinear and is called the (continuum model) forward operator of EIT. The inverse problem
of EIT is to find σ from the knowledge of Λ(σ). In practice, this means that the determination
of the conductivity is based on current-voltage pairs measured on the boundary. The following
example shows that by composing the forward operator with an elementary function, one can
obtain another forward operator that in some cases depends more linearly on the electrical input
parameters.

Example 1 (Constant conductivity). If σ ≡ inv(ρ) := ρ−1 for ρ ∈ R+, then the potential u
from (1) solves the Laplace equation ∆u = 0 with the normal derivative ρf on the boundary. In
particular, the mapping ρ 7→ Λ(σ) = (Λ ◦ inv)(ρ) is linear when restricted to spatially constant
functions.

Of course, the example above is nothing but the Ohm’s law, stating that in a homogeneous
medium the potential depends linearly on the resistivity ρ. Motivated by the example, we denote

Λinv := Λ ◦ inv : ρ 7→ Λ(ρ−1), L∞+ (Ω)→ L(L2
�(∂Ω)). (5)
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Similarly, the logarithm of the conductivity is denoted by κ := log(σ) and the corresponding
composite forward operator is defined as

Λexp := Λ ◦ exp: κ 7→ Λ(eκ), L∞(Ω)→ L(L2
�(∂Ω)). (6)

The advantage of considering the logarithm of the conductivity is that the domain of Λexp is
the natural L∞-space without positivity constraints, simplifying many optimization schemes in
numerical computations. On the other hand, the advantage of using the standard conductivity
parametrization with the operator Λ is the simplicity of the corresponding sesquilinear forms, for
example in the context of stochastic Galerkin methods [27]. Note that considering the logarithm
of the resistivity would not add anything new compared to (6), except for a sign change.

It is well known that the map σ 7→ Λ(σ) is Fréchet differentiable, i.e., that the bounded
derivative

DΛ(σ; η) : L2
�(∂Ω)→ L2

�(∂Ω)
exists for every σ ∈ L∞+ (Ω) and depends linearly and boundedly on the perturbation η ∈ L∞(Ω)
in the topology of L(L2

�(∂Ω)) (see, e.g., [26, Section 3]). In fact, the derivative can be obtained
from the equation (

f,DΛ(σ; η)g
)

= −
∫
Ω

η∇uf · ∇ug dx, f, g ∈ L2
�(∂Ω), (7)

where uf ∈ H1(Ω) denotes the solution to the forward problem (1) with the conductivity σ and
current density f . By using the chain rule of differentiation for Banach spaces and (7), it easily
follows that the alternative parametrizations of the forward operator (5) and (6) are also Fréchet
differentiable and the corresponding derivatives can be characterized by(

f,DΛinv(ρ; η)g
)

=
∫
Ω

η

ρ2∇uf · ∇ug dx (8)

and (
f,DΛexp(κ; η)g

)
= −

∫
Ω

η eκ∇uf · ∇ug dx (9)

for f, g ∈ L2
�(∂Ω).

3 Logarithmic forward operator
In this section, we first introduce the logarithm of the Neumann-to-Dirichlet map Λ(σ) as an
unbounded operator on L2

�(∂Ω) and subsequently consider its differentiability with respect to the
conductivity.

3.1 Formal definition
The spectral representation (3) allows a simple way of defining a logarithm for the Neumann-to-
Dirichlet operator:

logΛ(σ) : f 7→
∞∑
k=1

log(λk)(f, φk)φk, (10)

where log denotes the principal branch of the natural logarithm. As the eigenvalues {λk}∞k=1 ⊂ R+
accumulate at zero, logΛ(σ) is not bounded as an operator from L2

�(∂Ω) to itself. We define the
domain of logΛ(σ) to simply be

D
(

logΛ(σ)
)

=
{
g ∈ L2

�(∂Ω) : ‖ logΛ(σ)g‖2
L2(∂Ω) =

∞∑
k=1

log2(λk)|(g, φk)|2 <∞
}
. (11)
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It is obvious that D(logΛ(σ)) is a dense linear subspace of L2
�(∂Ω) and logΛ(σ)f ∈ L2

�(∂Ω) for any
f ∈ D(logΛ(σ)).

Proposition 1. The logarithmic Neumann-to-Dirichlet operator logΛ(σ) defined by (10) and (11)
is a self-adjoint (unbounded) operator on L2

�(∂Ω).

Proof. Since D(logΛ(σ)) is dense in L2
�(∂Ω), the adjoint operator

logΛ(σ)∗ : D(logΛ(σ)∗)→ L2
�(∂Ω)

is well defined [31, p. 196, Thm. 1]. With the help of the Cauchy–Schwarz inequality, it is easy to
check that

(logΛ(σ)f, g) = (f, logΛ(σ)g) (12)

is finite for all f, g ∈ D(logΛ(σ)). In other words, logΛ(σ) is symmetric, that is, logΛ(σ)∗ = logΛ(σ)
on D(logΛ(σ)) ⊂ D(logΛ(σ)∗).

Let V := N (logΛ(σ)) ⊂ D(logΛ(σ)) be the nullspace of logΛ(σ). Note that V is either finite-
dimensional or the trivial subspace, depending on whether λ = 1 is an eigenvalue of Λ(σ). In
consequence, L2

�(∂Ω) = V ⊕W , where W := V ⊥ is the orthogonal complement of V . It follows
from (10) and (11) that the range of logΛ(σ) is exactly W , and thus logΛ(σ) is self-adjoint as an
operator from D(logΛ(σ)) ∩W to W [31, p. 199, Corollary].

Let g ∈ D(logΛ(σ)∗) be arbitrary, i.e., there exists g∗ ∈ L2
�(∂Ω) such that

(logΛ(σ)f, g) = (f, g∗) for all f ∈ D(logΛ(σ)).

Decompose g = g0 + g1, with g0 ∈ V ⊂ D(logΛ(σ)) and g1 ∈W , and observe that

(f, g∗) = (logΛ(σ)f, g0) + (logΛ(σ)f, g1) = (logΛ(σ)f, g1)

for all f ∈ D(logΛ(σ)) due to (12). Since logΛ(σ) is self-adjoint on D(logΛ(σ)) ∩ W , g1 must
belong to D(logΛ(σ)) ∩W , and altogether we have g = g0 + g1 ∈ D(logΛ(σ)) ⊂ D(logΛ(σ)∗). In
other words, D(logΛ(σ)∗) = D(logΛ(σ)), which completes the proof.

Because any self-adjoint operator is also closed [31], D(logΛ(σ)) becomes a Hilbert space if
equipped with the graph norm

‖g‖G(logΛ(σ)) =
(
‖g‖2

L2(∂Ω) + ‖ logΛ(σ)g‖2
L2(∂Ω)

)1/2
,

with respect to which logΛ(σ) is trivially a bounded operator.

Corollary 1. The logarithmic Neumann-to-Dirichlet map logΛ(σ) defined by (10) and (11) can
be interpreted as a compact operator

logΛ(σ) : Hε
�(∂Ω)→ L2

�(∂Ω), ε > 0,

that coincides with its L2
�(∂Ω)-adjoint on Hε

�(∂Ω).

Proof. The proof is based on Lemma 1 in Appendix A, where an equivalent norm ‖·‖s is introduced
for Hs

�(∂Ω), 0 ≤ s ≤ 1/2, with the help of (negative) powers of Λ(σ) defined in the natural way.
By virtue of Lemma 1 and the asymptotic dominance of λ−εk over log2(λk) as k tends to infinity,

‖ logΛ(σ)f‖L2(∂Ω) ≤ ‖f‖G(logΛ(σ)) ≤ C‖f‖G(Λ−ε/2(σ)) ≤ C‖f‖ε/2 ≤ C‖f‖Hε/2
� (∂Ω)

for any ε > 0 and f ∈ Hε/2
� (∂Ω), with C = C(ε) > 0 that may change between different occurrences.

Since logΛ(σ) : L2
�(∂Ω) ⊃ D(logΛ(σ)) → L2

�(∂Ω) is self-adjoint and the embedding Hε
�(∂Ω) ↪→

H
ε/2
� (∂Ω) is compact, the assertion follows.
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So far we have discussed the logarithm of the linear Neumann-to-Dirichlet operator. A natural
way to define the corresponding nonlinear forward operator is as follows (cf. (4) and (6)):

Definition 1. The logarithmic forward operator of EIT is

L := logΛ ◦ exp: κ 7→ logΛ(eκ), L∞(Ω)→ L(Hε
�(∂Ω), L2

�(∂Ω))

for some ε > 0.

Considering the conductivity logarithm κ instead of σ affords the same convenience as with
the non-logarithmic forward operator Λexp in (6). Moreover, the linear nature of Λinv in (5) with
constant conductivities (see Example 1) becomes now available as well, as shown next.

Example 2 (Constant conductivity revisited). If σ ≡ eκ is constant in Ω, then the mapping
κ 7→ L(κ) is affine.

Proof. As in Example 1, the potential u from (1) solves the Laplace equation with the normal
derivative e−κf . Thus, the Neumann-to-Dirichlet operator satisfies

Λ(σ)f =
∞∑
k=1

λke−κ(f, φk)φk,

where the eigensystem corresponds to the unit conductivity. Taking the logarithm results in

L(κ)f = logΛ(σ)f =
∞∑
k=1

log(λk)(f, φk)φk − κ
∞∑
k=1

(f, φk)φk = (L(0)− κ id)f,

which proves the claim.

The following example shows that the logarithmic forward operator depends “almost linearly”
on the conductivity logarithm of a certain interior inclusion.

Example 3 (Nested concentric disk). Let Ω ⊂ R2 be the unit disk and let ΩR ⊂ Ω be an origin-
centered disk with radius 0 < R < 1. Define the conductivity via its logarithm κ = log(σ) as

κ =
{

0 in Ω \ΩR,
κ̃ in ΩR

for some κ̃ ∈ R. Now the logarithmic forward operator satisfies L(κ) = L(0) + κ̃ L′(0) +O(κ̃3) for
some L′(0) ∈ L(L2

�(∂Ω)) and with O(κ̃3) referring to the topology of L(L2
�(∂Ω)).

Proof. It is shown in [19] that in this rotationally symmetric case the eigenfunctions of Λ(σ) do
not depend on κ̃ (they are the standard Fourier basis with respect to the polar angle, excluding
the constant function), and the eigenvalues are

λ2k−1 = λ2k = 1
k

gk(κ̃)
gk(−κ̃) , k = 1, 2, 3, . . . ,

where
gk(κ̃) := 1− eκ̃ − 1

eκ̃ + 1R
2k.

The logarithm of the eigenvalue λ2k satisfies

log(λ2k) + log(k) = log(gk(κ̃))− log(gk(−κ̃)), (13)

which is an analytic, odd function with respect to κ̃. In particular, the second derivative of log(λ2k)
with respect to κ̃ vanishes at the origin, and it is also straightforward, yet tedious to check that
the corresponding first and third derivatives are uniformly bounded over k ∈ N in a neighborhood
of the origin. The claim thus follows by plugging (13) in (10) and using Taylor’s theorem.
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3.2 Fréchet differentiability
Let us next consider the differentiability of logΛ(σ) with respect to the conductivity. Since logΛ(σ)
has not itself been introduced as a boundary operator corresponding to some (elliptic) partial dif-
ferential equation, but its definition directly involves an eigensystem for Λ(σ), the natural way
to start would be to consider the differentiability of {λk, φk}∞k=1 ⊂ R+ × L2

�(∂Ω). Indeed, the
Gateaux differentiability of (a suitable parametrization for) individual eigenvalues and eigenfunc-
tions with respect to the conductivity could be proven by considering the corresponding eigen-
system {λ−1

k , φk}∞k=1 of the (unbounded) Dirichlet-to-Neumann operator Λ−1(σ) and utilizing its
analyticity with respect to perturbations in the conductivity; see, e.g., [3] for the analyticity of
Λ−1( · ) and [23, p. 392, Theorem 3.9] or [25] for more information about the differentiability of
an eigensystem for a self-adjoint, unbounded operator with respect to a real parameter that does
not affect the domain of definition. However, due to the singularity of the logarithm at the origin
and the infiniteness of the sum in (10), (the natural sense of) the differentiability of logΛ(σ) is
not trivial to establish. Moreover, as our main motivation for differentiating logΛ(σ) with re-
spect to the conductivity is numerical computing as in Section 5, we only consider derivatives for
finite-dimensional approximations of σ 7→ logΛ(σ) in what follows.

To be more precise, we investigate a finite-dimensional, positive and self-adjoint mapping

Λ(n)(σ) := P (n)Λ(σ)P (n) : L2
�(∂Ω)→ L2

�(∂Ω), n ∈ N, (14)

where

P (n) =
n∑
k=1

Pk : L2
�(∂Ω)→ span{ψ1, . . . , ψn} (15)

is an L2(∂Ω)-orthogonal projection composed of individual projections Pk onto fixed orthonormal
basis functions ψk ∈ L2

�(∂Ω), k = 1, . . . , n, respectively. Furthermore, let

Λ(n)(σ) : f 7→
n∑
k=1

µk(f, ϕk)ϕk

be a spectral representation for Λ(n)(σ), with {µk}nk=1 ⊂ R+ and {ϕk}nk=1 ⊂ span{ψ1, . . . , ψn}
being orthonormal. Take note that {µk}nk=1 and {ϕk}nk=1 depend on σ, but the basis for the
discretization {ψk}nk=1 does not. The logarithm of Λ(n)(σ) is defined in the same way as for its
infinite-dimensional counterpart:

logΛ(n)(σ) : f 7→
n∑
k=1

log(µk)(f, ϕk)ϕk,

which is obviously a bounded, linear map from L2
�(∂Ω) to itself.

Theorem 1. The mapping

L∞+ (Ω) 3 σ 7→ logΛ(n)(σ) ∈ L(L2
�(∂Ω)) (16)

is Fréchet differentiable. The derivative at σ ∈ L∞+ (Ω) in the direction η ∈ L∞(Ω) is the element
of L(L2

�(∂Ω)) defined via

D logΛ(n)(σ; η) : f 7→
n∑
j=1

n∑
k=1

log(µj)− log(µk)
µj − µk

(f, ϕk)
(
DΛ(σ; η)ϕk, ϕj

)
ϕj (17)

where DΛ(σ; η) : L2
�(∂Ω)→ L2

�(∂Ω) is the Fréchet derivative of Λ(σ) and the divided difference is
extended for recurrent eigenvalues in the standard limit sense, i.e.,

log(µj)− log(µk)
µj − µk

= 1
µj

if µj = µk.
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Proof. Obviously, the finite-dimensional approximation σ 7→ Λ(n)(σ) inherits Fréchet differentia-
bility from σ 7→ Λ(σ). In fact, the derivative of the former at σ ∈ L∞+ (Ω) is simply

L∞(Ω) 3 η 7→ P (n)DΛ(σ; η)P (n) ∈ L(L2
�(∂Ω)). (18)

The principal branch of a logarithm of a matrix (or of a finite-dimensional linear operator given in
a fixed basis) is also Fréchet differentiable over the set of matrices that do not have eigenvalues on
the closed negative real axis in the complex plain [17]. The Fréchet differentiability of the mapping
(16) thus follows from the chain rule for Banach spaces, which also gives the representation (17)
when combined with [17, Theorem 3.11 & Corollary 3.12] and (18).

The computational cost of evaluating the full eigensystem of Λ(n), required in (17), is O(n3)
since Λ(n) is positive-definite [9]. The number of the basis functions, or input currents ψk, k =
1, . . . , n, is typically so low that this causes no computational difficulties. In particular, practical
EIT devices often only employ tens, e.g. M = 16 [24], or at most around a hundred of electrodes,
which means that the eigensystem of a resistance matrix, which belongs to C(M−1)×(M−1), can
be easily computed; consult Section 4 below for more information on electrode measurements.
Moreover, the number of degrees of freedom in the parametrization of the conductivity, say, N ∈ N
is usually higher than n2, making the numerical evaluation of the relevant integrals (7), (8) or (9)
for all f = ψj and g = ψk the most time consuming task when employing (17). This step is
required in the linearization even if no logarithm is taken of the Neumann-to-Dirichlet operator.
Finally, the matrix arising from the linearization of any of the above introduced forward operators
of EIT belongs to Cn2×N because in the resulting linear system the elements of the measured
Λ(n)(σ) are the data and the unknowns are the degrees of freedom in the parametrization of
the conductivity. The computational complexity of solving such a problem in a regularized least
squares sense (cf. (32) below) by resorting to a straightforward QR factorization is O(N2n2) [9],
which reduces to O(n6) if one underestimates N ∼ n2. To summarize, the computation of the
eigensystem for Λ(n) needed in (17) does not usually reduce the computational efficiency of any
reconstruction algorithm for EIT based on linearizations of a forward map.

If one chooses the discretization frame to be ψk = φk ∈ H1/2
� (∂Ω), k = 1, . . . , n, i.e., the first

n orthonormal eigenfunctions of Λ(σ) for a particular, fixed σ ∈ L∞+ (Ω), then

logΛ(n)(σ) = P (n) logΛ(σ)P (n) : f 7→
n∑
k=1

log(λk)(f, φk)φk, (19)

that is, logΛ(n)(σ) inherits its eigenvalues and eigenfunctions from logΛ(σ). In this case,

D logΛ(n)(σ; η) : f 7→
n∑
j=1

n∑
k=1

log(λj)− log(λk)
λj − λk

(f, φk)
(
DΛ(σ; η)φk, φj

)
φj . (20)

Recall that here the basis for the discretization is fixed. In other words, the projection P (n) in (19)
is considered invariable when the Fréchet derivative is computed, that is, it corresponds all the
time to the first n orthonormal eigenfunctions of the unperturbed Λ(σ), not to those of Λ(σ + η).

Remark 1. The derivative of the finite-dimensional logarithmic forward operator of EIT,

L(n) := logΛ(n) ◦ exp: κ 7→ logΛ(n)(eκ), L∞(Ω)→ L(L2
�(∂Ω))

is obtained by simply replacing DΛ(σ; η) with DΛexp(κ; η) of (9) in (17).

We complete this section with a continuation of Example 3. It numerically studies the lin-
earization error of the discrete logarithmic forward operator L(n) with respect to the logarithm of
the conductivity in a generic discoidal inclusion embedded in the unit disk.
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Example 4 (Nested non-concentric disk). Let Ω ⊂ R2 be the unit disk and let ΩR,c ⊂ Ω be a
disk of radius 0 < R < 1− |c| centered at c ∈ Ω. As in Example 3, we define the conductivity via
its logarithm κ = log(σ) as

κ =
{

0 in Ω \ΩR,c,
κ̃ in ΩR,c

(21)

for some κ̃ ∈ R. According to the Riemann mapping theorem for doubly connected domains
(see, e.g., [16]), there exists a unique 0 < R′ = R′(R, c) < 1 and a Möbius transformation Φ: Ω →
Ω, unique up to rotations of the image disk, such that Φ(Ω \ΩR,c) = Ω \ΩR′,0. The explicit forms
of Φ and R′ are given, e.g., in [13].

By the change of variables induced by Φ, it is straightforward to deduce that the Neumann-to-
Dirichlet map corresponding to the piecewise constant conductivity defined by (21) is characterized
by (see, e.g., [11])

Λ(σ) :
∣∣Φ′|∂Ω∣∣(φk ◦ Φ|∂Ω

)
7→ λk

(
φk ◦ Φ|∂Ω − ck

)
, k = 1, 2, 3, . . . ,

where λk = λk(κ̃, R′) and φk are, respectively, the eigenvalues and (Fourier) eigenfunctions intro-
duced in Example 3 for the concentric case. Moreover, |Φ′| is the absolute value of the complex
derivative of Φ, i.e., the square root of the Jacobian determinant of Φ, and ck ∈ C is the mean
of φk ◦ Φ|∂Ω over ∂Ω. By numerically expanding the non-orthogonal bases {|Φ′|

(
φk ◦ Φ

)
}∞k=1 and

{φk ◦ Φ − ck}∞k=1 of L2
�(∂Ω) in the orthonormal basis {φk}∞k=1, it is possible to accurately and

efficiently form matrix representations for finite-dimensional approximations Λ(n)(σ) of the type
(14) with respect to the Fourier basis ψk = φk, k = 1, 2, . . . , in the considered simple geometry.

Let us study the linearization errors for Λ(n)
exp := Λ(n)◦exp and L(n) with respect to the parameter

κ̃ ∈ R in (21) around κ̃ = 0. To be more precise, we define the ‘symmetrized’ relative errors via

eexp(κ̃) :=
∥∥Λ(n)

exp(0)− Λ(n)
exp(−κ̃)−DΛ(n)

exp(0; κ̃)
∥∥

2 +
∥∥Λ(n)

exp(κ̃)− Λ(n)
exp(0)−DΛ(n)

exp(0; κ̃)
∥∥

2

2
∥∥Λ(n)

exp(0)
∥∥

2

and

eL(κ̃) :=
∥∥L(n)(0)− L(n)(−κ̃)−DL(n)(0; κ̃)

∥∥
2 +

∥∥L(n)(κ̃)− L(n)(0)−DL(n)(0; κ̃)
∥∥

2
2
∥∥L(n)(0)

∥∥
2

,

where ‖ · ‖2 denotes the spectral matrix norm. Observe that we have here abused the notation by
interpreting Λ(n)

exp, DΛ(n)
exp( · ; · ), L(n) and DL(n)( · ; · ) as functions of the logarithmic conductivity

level of the inclusion in an obvious manner. (The needed derivatives DΛ(n)
exp(0; κ̃) and DL(n)(0; κ̃)

with respect to κ̃ at κ̃ = 0 are actually approximated using the central difference rule with a fine
enough step size.)

Figure 1 shows the errors eexp and eL for four combinations of R and c. After an initial brief
cubic behavior, the relative error related to Λexp seems to decay asymptotically as O(κ̃2) for all
parameter combinations. On the other hand, eL decays initially as O(κ̃3), but the convergence rate
seems to gradually decrease as κ̃ approaches zero — in particular, one cannot exclude the possibility
that the asymptotic rate is only O(κ̃2). The closer the inclusion is to the exterior boundary ∂Ω,
the earlier the change of rate begins. However, in all cases considered in Figure 1 the value of the
relative error eL is already less than 10−4 at this stage. Moreover, eL is significantly smaller than
eexp for all considered inclusions and plotted values of κ̃.

According to additional numerical studies not documented here, the linearization error of Λ(n)

with respect to the conductivity and that of Λ(n)
inv with respect to the resistivity of an embedded

discoidal inclusion are quadratic and do not seem to exhibit a preliminary cubic convergence rate.
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Figure 1: Relative linearization errors for n = 36 and four discoidal inclusions with respect to their
logarithmic conductivity levels: c = (0.1, 0) and R = 0.1 (solid), c = (0.2, 0) and R = 0.2 (dashed),
c = (0.3, 0) and R = 0.3 (dash-dotted), c = (0.4, 0) and R = 0.4 (dotted). Left: eexp(κ̃). Right:
eL(κ̃).

4 Complete electrode model
Practical EIT measurement setups are characterized by M ∈ N \ {1} electrodes that are attached
to the surface of the imaged object. Let Em ⊂ ∂Ω, m = 1, . . . ,M , denote these nonempty, open,
connected, well-separated sets. In the CEM, the Neumann boundary condition in (1) is replaced
by [5]

σ
∂u

∂ν
= 0 on ∂Ω \

M⋃
m=1

Em, (22)

σ
∂u

∂ν
= ζm(Um − u) on Em, m = 1, . . . ,M,∫

Em

σ
∂u

∂ν
dS = Im, m = 1, . . . ,M,

where ζ = [ζm]Mm=1 ∈ RM
+ denote the (constant) contact conductances at the electrode-object

interfaces. The current pattern I = [Im]Mm=1 is prescribed, whereas the electrode potentials U =
[Um]Mm=1 are part of the solution. Both of these vectors belong to the mean-free subspace CM

� ⊂
CM , the current pattern due to the conservation of electric charge and the electrode potentials
as a result of our specific choice for the ground level of potential. The variational formulation
corresponding to the conductivity equation from (1) with the boundary conditions (22) is to find
(u, U) ∈ H1(Ω) := H1(Ω)⊕CM

� such that∫
Ω

σ∇u · ∇v dx+
M∑
m=1

ζm

∫
Em

(Um − u)(V m − v) dS = I · V (23)

holds for all (v, V ) ∈ H1(Ω). The problem (23) is uniquely solvable [29].
For simplicity, we use the same notations for the forward operators of CEM as introduced

previously for the continuum model in Section 2. However, as a disparity, the CEM forward
operators depend on the contact conductances in addition to the conductivity. As an example,
the CEM forward operator that takes the conductivity and contact conductances as its inputs is
of the form

Λ : (σ, ζ) 7→ Λ(σ, ζ), L∞+ (Ω)×RM
+ → C(M−1)×(M−1), (24)
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where the output is called the resistance matrix (regardless of the used input parametrization),
which is given with respect to a fixed orthonormal basis for CM

� . In other words, if α ∈ CM−1

carries the coordinates of an electrode current pattern I ∈ CM
� with respect to the employed

basis, then Λ(σ, ζ)α gives the coordinates of the resulting electrode potentials U ∈ CM
� in that

same basis. Since σ and ζ are real-valued and positive, it follows easily from (23) that Λ(σ, ζ) is
Hermitian and, in particular, positive-definite. Similarly,

Λinv : (ρ, z) 7→ Λ(ρ−1, z−1), L∞+ (Ω)×RM
+ → C(M−1)×(M−1),

and
Λexp : (κ, υ) 7→ Λ(eκ, eυ), L∞(Ω)×RM → C(M−1)×(M−1),

where we have abused the notation by defining z−1 = [z−1
m ]Mm=1 and eυ = [eυm ]Mm=1 as vectors of

RM . Finally, the logarithmic forward operator is defined in accordance with Definition 1, that is,

L : (κ, υ) 7→ logΛexp(κ, υ), L∞(Ω)×RM → C(M−1)×(M−1),

where logΛexp(κ, υ) is the principal logarithm of the positive-definite matrix Λexp(κ, υ).
The Fréchet derivative of the basic forward operator (24) with respect to σ ∈ L∞+ (Ω) in the

direction η ∈ L∞(Ω) is characterized by [20]

βTDσΛ(σ, ζ; η)α = −
∫
Ω

η∇uβ · ∇uα dx, α, β ∈ CM−1, (25)

where (uβ , Uβ) and (uα, Uα) are the solutions of (23) corresponding to the current patterns with
the coordinates α and β, respectively, in the employed orthonormal basis for CM

� . Analogously,
the derivative of ζ 7→ Λ(σ, ζ) in the direction ξ ∈ RM can be assembled via

βTDζΛ(σ, ζ; ξ)α = −
M∑
m=1

ξm

∫
Em

(
(Uβ)m − uβ

)(
(Uα)m − uα

)
dS, α, β ∈ CM−1. (26)

Furthermore, the Fréchet derivatives of Λinv and Λexp can be easily obtained by utilizing the
chain rule and the above two formulas for Λ (cf. (8) and (9)), and those of the logarithmic forward
operator L can be deduced by writing an eigendecomposition for Λ(σ, ζ) and mimicking Theorem 1
and Remark 1.

Remark 2. Applying the three basic operations id, inv and exp to the conductivity and the contact
conductances, one could come up with nine different parametrizations for the forward operator of
the CEM. Here we only consider three of them, although it is probable that in some cases one of
the other options is optimal from the standpoint of the linearization error.

Remark 3. When the contact conductances are perfect, i.e., in the limit ζm → ∞ for all m =
1, . . . ,M , the resulting model is called the shunt model [5, 7]. On the other hand, when σ/ζm
approaches infinity for all m = 1, . . . ,M , meaning that the contacts at the electrodes are extremely
bad compared to the resistivity of the imaged body, the model formally approaches a resistor network
for which the resistance between electrodes El and Em is Rlm = (ζl|El|)−1 + (ζm|Em|)−1. In other
words, the resistance observed when feeding current between two electrodes can be modelled as the
sum of the resistances at the considered electrodes. In particular, the elements of the resistivity
matrix R depend in the limit linearly on the pair (ρ, z) = (σ−1, ζ−1), since they depend linearly
on the contact resistances ζ−1 := [ζ−1

m ]Mm=1 and not at all on the resistivity ρ of Ω. As R(σ, ζ)
is essentially just a representation of Λ(σ, ζ) with respect to certain non-orthonormal current and
potential basis, for high contact resistances z and low resistivity ρ it is reasonable to expect that of
the different forward operators Λinv, which is parametrized by (ρ, z), is closest to being linear.
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5 Numerical experiments
In this section, we study the accuracies of different linearization techniques by performing numer-
ical experiments in the unit disk Ω ⊂ R2. The elliptic forward problems for both the continuum
model and the CEM are solved with the finite element method (FEM) on meshes with approxi-
mately 30 000 nodes and piecewise linear basis functions. These meshes and corresponding FEM
solutions are also employed when evaluating derivatives of forward maps (cf., e.g., (7)–(9)). The
discretization errors of the FEM solutions can be regarded to be small. Throughout this section,
the notation E[·] is used to denote the sample mean. The size of the sample is 50 000 in each
considered case and the random realizations of involved parameters are mutually independent.

5.1 Forward accuracy
We study the linearization errors of the EIT forward problem with discrete lognormal random
conductivity fields. To this end, the domain Ω is divided into N = 1800 subdomains Ωi, each
having approximately the same area, and the piecewise constant conductivity is written as

σ(x) =
N∑
i=1

σ̂iχi(x), (27)

where χi is the indicator function of Ωi and the vector σ̂ ∈ RN
+ contains the corresponding

conductivity values. The resistivity ρ = σ−1 and the logarithm of the conductivity κ = log(σ) are
defined similarly via vectors ρ̂ ∈ RN

+ and κ̂ ∈ RN , respectively. Furthermore, let x̂i ∈ Ωi denote
the center of a subdomain. The random conductivities are drawn via their logarithms such that
the vectors κ̂ follow a Gaussian distribution with the probability density

p(κ̂) = 1√
(2π)N |Γ |

exp
(
−1

2(κ̂− κ̂0)>Γ−1(κ̂− κ̂0)
)
,

where κ̂0 ∈ RN specifies the discrete mean field and

Γi,j = ς2 exp
(
−‖x̂i − x̂j‖

2
2

2`2

)
, i, j = 1, . . . , N (28)

defines the covariance matrix for some variance parameter ς2 > 0 and correlation length ` > 0.
Table 1 lists the used values for four different distributions.

First we consider the continuum model. For the purpose of numerical computations, the finite-
dimensional approximation Λ(n)(σ) in (14) is considered with n = 16 trigonometric basis functions

ψ2k−1(θ) = 1√
π

cos(kθ), ψ2k(θ) = 1√
π

sin(kθ), k = 1, . . . , 8, (29)

where θ denotes the polar angle. In order to obtain a fully discrete forward operator, the conduc-
tivity σ is replaced by σ̂, resulting in

Λ̂ : σ̂ 7→ Λ̂(σ̂), RN
+ → Rn×n, (30)

where Λ̂(σ̂) is the matrix representation of P (n)Λ(σ)P (n) for the conductivity (27); see (15). This
nonlinear matrix-valued function is linearized around the unit conductivity σ0 ≡ 1 as

Λ̂(σ̂) ≈ Λ̂lin(σ̂) := Λ̂(σ̂0) + Λ̂′(σ̂0)(σ̂ − σ̂0),
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Table 1: Parameters defining the discrete random conductivity fields F1–F4 and the random
contact conductances C1–C2 used in the numerical experiments.

N κ̂0 ς2 ` E[‖κ‖L2(Ω)]
F1 1800 0 1/4 1/3 0.86
F2 1800 0 1/4 2/3 0.84
F3 1800 0 1 1/3 1.74
F4 1800 0 1 2/3 1.66

M υ0 γ2

C1 16 log(10) 1
C2 16 log(1000) 1

where Λ̂′(σ̂)η̂ is the Fréchet derivative of the mapping (30) in the direction η̂ ∈ RN . To be more
precise,

Λ̂′(σ̂)η̂ =
N∑
i=1

η̂iP
(n)DΛ(σ;χi)P (n), (31)

which can be evaluated with the help of (7); see also (18). The alternative fully discrete forward
operators ρ̂ 7→ Λ̂inv(ρ̂) and κ̂ 7→ Λ̂exp(κ̂) are defined analogously, as are their linearizations around
ρ0 ≡ 1 and κ0 ≡ 0, respectively, with the appropriate derivative from (8) or (9) replacing DΛ(σ;χi)
in (31). The same conclusions also apply to the fully discrete logarithmic forward operator κ̂ 7→
L̂(κ̂); cf. Definition 1, Theorem 1 and Remark 1 with η = χi. Note that for a rotationally
symmetric conductivity, (29) are eigenfunctions of the Neumann-to-Dirichlet operator, meaning
that ϕk = φk = ψk in the notation of Section 3 (cf. [19] as well as Examples 3 and 4). In
particular, (19) and (20) hold.

The error indicator for the linearized Λ̂ is

e(Λ̂) := E
[
‖Λ̂lin(σ̂)− Λ̂(σ̂)‖F

‖Λ̂(σ̂)‖F

]
,

where ‖·‖F is the Frobenius norm. The corresponding definitions of indicators for Λ̂inv and Λ̂exp
should be obvious. For the logarithmic forward operator, the error is computed as

e(L̂) := E
[
‖exp(L̂lin(κ̂))− Λ̂(σ̂)‖F

‖Λ̂(σ̂)‖F

]
,

where exp is just the ordinary matrix exponential, i.e., the inverse of (the principal branch of) the
matrix logarithm.

The left-hand side of Table 2 lists the mean errors for the four linearization approaches and
for the four different random fields defined in Table 1. It can be seen that linearizing with respect
to the conductivity results in the worst accuracy in each case, whereas the novel logarithmic
linearization method is clearly the best. Increasing the correlation length in the random field
deteriorates the performance of the conductivity and log-conductivity linearizations, whereas Λ̂inv
and L̂ perform better with the smoother fields. An intuitive explanation for the latter phenomenon
is that increasing the correlation length in our random model makes the corresponding realizations
of the conductivity to be closer to constants, for which Λ̂inv and L̂ are linear and affine, respectively;
see Examples 1 and 2. It is not surprising that increasing the pointwise variance ς2 leads in every
case to a higher sample mean for the linearization error.

For the CEM experiments we employ the same lognormal conductivity fields F3–F4 as with
the continuum model, but now the contact conductances ζm are also random. The conductances
are drawn independently and for each of the M = 16 electrodes the conductance distribution is
lognormal with the underlying Gaussian distribution having mean υ0 and variance γ2 as listed on
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Table 2: Linearization errors e for the continuum forward model (left) and for the CEM (right)
with the different random distributions defined in Table 1. The forward operators parametrized
with respect to conductivity, resistivity and log-conductivity are denoted by Λ̂, Λ̂inv and Λ̂exp,
respectively, whereas the logarithmic forward operator is L̂.

e(Λ̂) e(Λ̂inv) e(Λ̂exp) e(L̂)
F1 0.237 0.076 0.095 0.039
F2 0.294 0.043 0.123 0.027
F3 0.989 0.288 0.327 0.142
F4 1.481 0.146 0.434 0.094

e(Λ̂) e(Λ̂inv) e(Λ̂exp) e(L̂)
F3/C1 0.916 0.175 0.390 0.270
F4/C1 1.012 0.090 0.418 0.269
F3/C2 1.003 0.272 0.345 0.132
F4/C2 1.420 0.139 0.430 0.090

the right in Table 1. Of these two statistical models for the contact conductances, C2 is in better
correspondence with the electrode contacts documented for water tank experiments in, e.g., [5, 6];
note that when comparing contact conductances documented in different works and dimensions,
one needs to take into account the size of the imaged domain as well as its approximate conductivity
level as explained in [18, Section 3.1]. However, bad contacts described by the scenario C1 cannot
be excluded in, e.g., imaging of concrete [22].

The identical electrodes are positioned uniformly and they cover approximately 46% of the
boundary ∂Ω. The orthonormal electrode current basis for RM

� , employed when forming the
resistance matrices, is the discrete counterpart of the Fourier basis (29), that is,

I(2k−1) =
√

2
M

[cos(kθm)]Mm=1, I(2k) =
√

2
M

[sin(kθm)]Mm=1, k = 1, . . . ,M/2− 1,

and I(M−1) = [(−1)m−1]Mm=1/
√
M . Here, θm = 2π(m− 1)/M is the central polar angle of the mth

electrode. The definitions of the fully discrete CEM forward operators, their linearizations and
the corresponding error indicators should be obvious. In particular, the forward operators are now
mappings from RN+M

+ or RN+M to R(M−1)×(M−1) and their derivatives can be assembled using
the appropriate variants of (25), (26) and (20).

For the contact conductance distribution C1 with the lower expected value, the resistivity-based
operator Λinv results in the best linearization accuracy, as can be seen on the right in Table 2.
This is in line with Remark 3. On the other hand, when the contact conductance is high (i.e., the
setting is close to the shunt model), the errors almost coincide with the corresponding values for
the continuum model. That is, the rows corresponding to C2 are similar to the adjacent rows on
the left-hand side of Table 2. In particular, the logarithmic forward operator L̂ gives the best and
the conductivity-based parametrization the worst linearization accuracy for the CEM as well.

5.2 Inverse accuracy
Regarding the accuracy of linearizations when solving the inverse problem of EIT, we only con-
sider the forward operators Λ̂exp and L̂ that are based on the logarithmic input parametrization.
One reason for this is the fact that non-logarithmic parametrizations may lead to conductivity
reconstructions that are not positive. In addition, it would be problematic to design equivalent
regularizations for different input parametrizations, and thus the error indicators would not be
directly comparable to each other. In the following, we give all definitions for the logarithmic
forward operator L̂, but the corresponding definitions for Λ̂exp should be obvious.

The simulated finite-dimensional Neumann-to-Dirichlet operators are denoted by Λ̃(σ̂). They
are also computed with FEM, but in order to avoid inverse crimes, the matrices Λ̃(σ̂) are contami-
nated with Gaussian noise. More precisely, realizations of independent, zero-mean normal random
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variables with standard deviation

δ := 10−3E
[
max
i,j

Λ̂(σ̂)i,j
]

are added to each element of a matrix Λ̂(σ̂), and the matrix is subsequently symmetricized. The
simulated CEM measurements are obtained in the same way and they are denoted by Λ̃(σ̂, ζ).

For a regularization parameter t > 0, the reconstruction κ̂t based on the logarithmic continuum
model forward operator L̂ is

κ̂t(L̂) = arg min
ŷ∈RN

{∥∥L̂lin(ŷ)− log(Λ̃(σ̂))
∥∥2
F

+ t2
∥∥G(ŷ − κ̂0)

∥∥2
2

}
, (32)

where G ∈ RN×N is a ‘Bayesian regularization matrix’ satisfying Γ−1 = G>G. Here, Γ is the
covariance matrix (28) of the distribution from which the logarithm of the vector σ̂ is drawn,
and the expected log-conductivity κ̂0 is as in Section 5.1. The reconstruction obtained from (32)
approximates a maximum a posteriori (MAP) estimate under the assumption that the linearization
error is negligible and the elements of the matrix log(Λ̃(σ̂)) are contaminated by independent
realizations of zero-mean Gaussian noise with standard deviation t > 0 [21]. (Notice that the latter
is not true for any t due to the application of the matrix logarithm after adding the measurement
noise.) Naturally, for Λ̂exp the minimization does not involve a logarithm, but the linearized
operator is compared directly to the matrix Λ̃(σ̂) in the Frobenius norm. For the CEM forward
operators, the reconstructions are computed according to(

κ̂t(L̂), υt(L̂)
)

= arg min
ŷ∈RN , w∈RM

{∥∥L̂lin(ŷ, w)− log(Λ̃(σ̂, ζ))
∥∥2
F

+ t2
∥∥G(ŷ − κ̂0)

∥∥2
2

}
(33)

or by replacing L̂lin(ŷ, w) with (Λ̂exp)lin(ŷ, w) and deleting the logarithm. In particular, no regu-
larization is applied to the contact conductances since their estimation is a relatively stable task
(cf, e.g., [14, (4.8)]). Observe that (32) and (33) correspond to minimizing quadratic Tikhonov
functionals, which is a simple task.

The average reconstruction error for a fixed regularization parameter t > 0 is

ιt(L̂) := E
[∥∥κt(L̂)− κ

∥∥
L2(Ω)

]
,

where κ = log(σ) is the (random draw of a) true log-conductivity corresponding to the vector σ̂
in (32); see (27). For a given conductivity/conductance distribution, the optimal regularization
parameter is obtained by solving a one-dimensional optimization problem,

τ(L̂) := arg min
t∈R+

ιt(L̂),

and the corresponding error indicator is simply denoted by ι(L̂) := ιτ(L̂)(L̂). (Naturally, such an
optimal regularization parameter cannot be found in practice when the true conductivity is not
known, but the idea here is to compare upper bounds for the performances of the two considered
one-step reconstruction algorithms.) In addition, for the CEM we denote the contact conductance
reconstruction error by

d(L̂) := E
[
‖υτ(L̂)(L̂)− υ‖2

]
,

where υ = log(ζ) is defined componentwise, but it should be emphasized that the optimal reg-
ularization parameter τ(L̂) is still chosen so that it minimizes the L2(Ω) reconstruction error
corresponding to the mere log-conductivity. Once again, the corresponding definitions for Λexp are
analogous.
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Table 3: Conductivity reconstruction errors ι for the linearized continuum model (left) and for
the linearized CEM (right), together with the conductance errors d for the CEM. The considered
random fields and parameters are described in Table 1.

ι(Λ̂exp) ι(L̂)
F1 0.329 0.204
F2 0.296 0.058
F3 1.204 0.580
F4 1.128 0.134

ι(Λ̂exp) ι(L̂) d(Λ̂exp) d(L̂)
F3/C1 1.042 0.833 8.266 3.404
F4/C1 1.053 0.437 8.034 2.889
F3/C2 1.097 0.759 421.3 164.6
F4/C2 1.061 0.320 359.4 79.98
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Figure 2: Mean reconstruction errors ιt as functions of the regularization parameter t for the
linearization methods based on the continuum forward operators Λ̂exp (dashed) and L̂ (solid). The
plots correspond to the random fields F3 (left) and F4 (right).

Table 3 reveals that the new logarithmic method is more accurate in each test case, and the
difference is highlighted with the smoother fields F2 and F4, as could have been predicted based on
the forward accuracy observations in Table 2. In practice, the choice of regularization parameter
may well be suboptimal. However, Figure 2 demonstrates that the new method results in a smaller
average error with almost any choices for the regularization parameters.

In order to illustrate the difference in the one-step inversion accuracies for Λ̂exp and L̂, some
example reconstructions, with regularization parameters that are optimized as described above,
are shown in Figures 3 and 4. The first example, which is based on a realization of the random con-
ductivity field F3 and the CEM with high contact conductances, demonstrates that the traditional
linearization method is not capable of recovering the high contrast of the target conductivity. On
the other hand, the new method reproduces the conductivity levels far more accurately and also
recovers the resistive area close to the northwest boundary of the unit disk. The second example
presented in Figure 4 considers a realization of the random conductivity field F4 with twice as
long correlation length. The superiority of the new logarithmic method is even more clearly visible
with this smoother conductivity field, as was expected based on the statistical evidence in Tables
2 and 3.

Our final numerical example, presented in Figure 5, considers a single piecewise constant target
conductivity, which is not in good correspondence with the employed ‘prior model’ characterized
by the pair F4/C2. The new logarithmic linearization technique is still slightly more accurate, but
neither method is able to capture the high contrast of the inhomogeneity. This is not very surprising
taking into account that the regularization matrix G in (33) promotes smooth conductivities. On
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Figure 3: Example reconstructions for the CEM and a realization of the random conductiv-
ity/conductances F3/C2. Left: target log-conductivity with ‖κ‖L2(Ω) ≈ 1.526. Middle: recon-
struction based on a single linearization of Λ̂exp with L2(Ω)-error 1.051. Right: reconstruction
based on a single linearization of L̂ with L2(Ω)-error 0.729.
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Figure 4: Example reconstructions for the CEM and a realization of the random conductiv-
ity/conductances F4/C2. Left: target log-conductivity with ‖κ‖L2(Ω) ≈ 1.372. Middle: recon-
struction based on a single linearization of Λ̂exp with L2(Ω)-error 0.924. Right: reconstruction
based on a single linearization of L̂ with L2(Ω)-error 0.310.

the other hand, both of the one-step reconstruction methods are able to approximately locate the
support of the inclusion, which is in line with [15]. The reconstructions in Figure 5 are the best
possible in the sense that the regularization parameter t appearing in (33) is in each case chosen so
that the reconstruction error for the considered target is minimized. This is naturally an unrealistic
approach in practice, but it enables a relatively fair comparison between the optimal performance
levels of the two linearization methods for a single, fixed target conductivity.

6 Discussion
We have reviewed existing linearization approaches for EIT and proposed a new logarithmic tech-
nique that seems to be the most accurate linearization method amongst those studied here. Al-
though the EIT forward operator is somewhat frequently linearized with respect to the conductivity,
it was numerically demonstrated that the linearization error in the measurement matrix becomes
smaller if the linearization is based on the resistivity or the logarithm of the conductivity. In a
sense, this is just a consequence of the Ohm’s law, and the conclusion applies to both the contin-
uum model and to the CEM. Our novel method, which maps the logarithm of the conductivity
to the logarithm of the Neumann-to-Dirichlet operator or the measurement matrix, produces the
smallest linearization error in almost all tested cases.
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Figure 5: Example reconstructions for the CEM, a piecewise constant target conductivity and
a realization of the random conductances C2. The Tikhonov functional (33) is formed as if the
conductivity were a realization of the random model described by F4. Left: target log-conductivity
with ‖κ‖L2(Ω) ≈ 3.179 (the log-conductivity level of the inclusion is log(100) ≈ 4.605, which
is slightly outside the color scale). Middle: reconstruction based on a single linearization of Λ̂exp
with L2(Ω)-error 2.533. Right: reconstruction based on a single linearization of L̂ with L2(Ω)-error
2.351.

Regarding the inverse problem of EIT, the proposed logarithmic method retains the positivity
property of the log-conductivity parametrization, while preserving the accuracy of the resistivity
linearization in the case of, e.g., constant conductivities. Numerical studies and example recon-
structions demonstrate that when comparing to the traditional log-conductivity linearization ap-
proach, the proposed method is clearly more accurate, regardless of the parameters defining the
lognormal random models for the conductivity and the contact conductances.

The above conclusions are valid if the measurements are modelled by the Neumann-to-Dirichlet
map or its counterparts for electrode measurements. If the Dirichlet-to-Neumann map were em-
ployed, one would expect conductivity parametrizations to prevail over those based on the resistiv-
ity (cf. Ohm’s law). However, such a change would not affect the performance of the novel method
since the logarithms of the Neumann-to-Dirichlet and Dirichlet-to-Neumann operators only differ
by their sign.
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A An equivalent norm for Hs
�(∂Ω)

This appendix is based on the assumptions and definitions of Sections 2 and 3. The proof of
Corollary 1 requires the following lemma. Observe that the lemma could be extended (with obvious
modifications) for−1/2 ≤ s ≤ 1/2 by duality and for a wider scale of smoothness indices by utilizing
some integer power of Λ(σ)−1 in place of Λ(σ)−1/2 in the following proof, assuming ∂Ω is smooth
enough.

Lemma 1. For any fixed σ ∈ L∞+ (Ω), it holds that

Hs
�(∂Ω) =

{
g ∈ L2

�(∂Ω) : ‖g‖s <∞
}
, 0 ≤ s ≤ 1

2 ,
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where

‖g‖s :=
( ∞∑
k=1

1
λ2s
k

|(g, φk)|2
)1/2

defines an equivalent norm for Hs
�(∂Ω).

Proof. Let us introduce the positive powers of Λ(σ) : L2
�(∂Ω) → L2

�(∂Ω) in the natural way, that
is,

Λs(σ) : f 7→
∞∑
k=1

λsk(f, φk)φk, L2
�(∂Ω)→ L2

�(∂Ω),

which defines a compact, injective, self-adjoint operator with a dense range for any s > 0. The
negative powers are the corresponding inverse operators:

Λ−s(σ) : f 7→
∞∑
k=1

1
λsk

(f, φk)φk, D
(
Λ−s(σ)

)
→ L2

�(∂Ω), s > 0,

where (cf., e.g., [10, Theorem 2.8])

D
(
Λ−s(σ)

)
:= R

(
Λs(σ)

)
=
{
g ∈ L2

�(∂Ω) : ‖Λ−s(σ)g‖L2(∂Ω) = ‖g‖s <∞
}
.

Using the same arguments as for logΛ(σ) in Section 3.1, it is easy to show that Λ−s(σ) : D(Λ−s(σ))→
L2
�(∂Ω) is self-adjoint and becomes an isomorphism between Hilbert spaces if its domain is equipped

with the graph norm defined via

‖g‖s ≤ ‖g‖G(Λ−s(σ)) :=
(
‖g‖2

L2(∂Ω) + ‖Λ−s(σ)g‖2
L2(∂Ω)

)1/2
≤ C‖g‖s (34)

for g ∈ D(Λ−s(σ)) and with C > 0.
Since Λ(σ) : H−1/2

� (∂Ω) → H
1/2
� (∂Ω) is positive and self-adjoint, the (positive) square root

Λ1/2(σ) is, in fact, an isomorphism from L2
�(∂Ω) to H

1/2
� (∂Ω); see, e.g., [2, Lemma 3.4] for a

simple proof. In particular, D(Λ−1/2(σ)) = H
1/2
� (∂Ω). According to [28, p. 10, Definition 2.1 &

Remark 2.3] and the definition of Hs(∂Ω) as a (complex) interpolation space (see, e.g., [28, p. 36,
Theorem 7.7]), we thus have

Hs
�(∂Ω) =

[
H

1/2
� (∂Ω), L2

�(∂Ω)
]

1−2s = D
(
Λ(1−(1−2s))/2(σ)

)
= D

(
Λ−s(σ)

)
, 0 ≤ s ≤ 1/2,

with the graph norm of D(Λ−s(σ)) being equivalent to that of Hs
�(∂Ω). The claim now follows

from (34).
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