
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Janiszewski, Mateusz; Siren, Topias; Uotinen, Lauri Kalle Tapio; Oosterbaan, Harm; Rinne,
Mikael
Effective modelling of borehole solar thermal energy storage systems in high latitudes

Published in:
Geomechanics and Engineering

DOI:
10.12989/gae.2018.16.5.503

Published: 10/12/2018

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Janiszewski, M., Siren, T., Uotinen, L. K. T., Oosterbaan, H., & Rinne, M. (2018). Effective modelling of borehole
solar thermal energy storage systems in high latitudes. Geomechanics and Engineering, 16(5), 503-512.
https://doi.org/10.12989/gae.2018.16.5.503

https://doi.org/10.12989/gae.2018.16.5.503
https://doi.org/10.12989/gae.2018.16.5.503


 

 

 
1. Introduction 
 

Globally there is an increasing need to reduce the 

greenhouse gas emissions and increase the use of renewable 

sources of energy. One of the common applications of 

renewable energy is the solar thermal energy, where energy 

from the sun is used to heat up water and air in buildings. 

The seasonal storage of solar thermal energy is a crucial 

aspect for implementing the solar energy for heating 

purposes. This is especially important in high latitudes, 

where the solar insolation is high in the summer but the 

heating demand is low, and in the winter the situation is 

reversed. 

Thermal energy can be stored underground using several 

methods. The most common methods include: Aquifer 

Thermal Energy Storage (ATES), Borehole Thermal Energy 

Storage (BTES), Tank Thermal Energy Storage (TTES), Pit 

Thermal Energy Storage (PTES), and Cavern Thermal 

Energy Storage (CTES), as shown on the conceptual 

drawing in Figs.1(a)-(e) (Pavlov and Olesen 2012, Novo et 

al. 2010). Thermal energy can also be stored using the so-

called HYDROCK method (Fig. 1(f)) that utilises an 

artificially fractured hard rock aquifer (Larson 1984, 

Hellström and Larson 2001). The methods can also be 

combined to enable higher efficiency by using both an  
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underground water tank and boreholes (Reuss et al. 2006) 

or a cavern and boreholes (Nordell et al. 1994). Thermal 

energy can also be stored seasonally in energy piles by 

using heat exchangers installed in foundations of buildings 

(Dupray et al. 2014, Park and Park 2014). Previously the 

authors concluded that the BTES is the recommended 

method for seasonal solar thermal energy storage in 

crystalline rock environment for a small solar community 

(Janiszewski et al. 2016). 

Numerical modelling of borehole heat exchangers 

(BHE) requires much computational power due to the high 

ratio of length (over 100 m) and diameter (around 0.1 m) of 

the borehole. Several approaches exist to model the heat 

transfer in the BHE. The most elaborate use a fully 

discretized three-dimensional model with the direct 

representation of the flow inside the pipes coupled with heat 

transfer to the surrounding rock mass (e.g. finite volume 

m0odel by Rees and He, 2013). The advantage of such 

models is that they can be used to model the thermal 

behaviour of BHE in very short timescales, where the 

dynamic variations of the heat transfer are important. 

However, the fully discretized modelling is memory 

intensive and time-consuming and not necessary for long-

term predictions of seasonal thermal energy storage 

behaviour. 

A more efficient modelling approach with three-

dimensional pipe representation is shown by Oberdorfer et 

al. (2011, 2013), where the mean fluid velocity is assumed, 

and the effective thermal conductivity is calculated based 

on the average flow velocity and constant parameters 

(Oberdorfer 2014). Such simplification can reduce the 

calculation speed and is accurate enough to model the long-

term thermal behaviour of one or several borehole heat 

exchangers. 
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However, BTES facilities may contain an array of over 

150 BHEs, and the number of elements required to mesh all 

BHEs in three-dimensions would be very large, so a faster 

way of calculating their thermal performance is needed.  

A practical approach was first proposed by Al-Khoury et 

al. (2005), where the simplified one-dimensional geometry 

of BHE is embedded into a three-dimensional medium. 

While the internal behaviour of a single U-tube borehole 

heat exchanger can be represented analytically through 

three equations (Eq. 1–3), it is not possible to solve them 

directly. However, the solution can be approximated using 

the weak form equations which interact with the external 

Finite Element Method (FEM) through shared node points 

on the BHE edge. This makes the modelling of large 

borehole fields possible in a relatively short time. Such a 

simplified approach has been used extensively in the 

literature (Bauer et al. 2011, Diersch et al. 2011a, Diersch et 

al. 2011b, Wołoszyn and Gołaś, 2013, Holzbecher and 

Räuschel, 2014, Ozudogru et al. 2014, Welsch et al. 2015, 

Wołoszyn and Gołaś, 2016, Janiszewski et al. 2018) as it is 

appropriate for long-term seasonal storage investigations 

and results in drastic improvement of calculation speeds, 

without sacrificing significant accuracy. 

In this study, the methodology given by Al-Khoury et al. 

(2005) is implemented by the authors into COMSOL 

Multiphysics and coupled with heat transfer in the rock 

mass. This allows fast and efficient simulation of large 

BTES systems to investigate their long-term performance, 

and to select the most suitable scenario for a seasonal 

storage of solar thermal energy in high latitudes. 

 

 

 
2. Theoretical framework 

 

The long-term behaviour of an underground thermal 

storage is studied with 196 days charging period and 168 

days discharging period annually. The input temperature is 

changed using continuous function throughout the year, 

averaging daily fluctuations out. Therefore, the steady-state 

heat transfer can be assumed. Eqs. (1)–(3) represent the set 

of strong form differential equations of the steady-state heat 

transfer in a single U-tube as given by Al-Khoury et al. 

(2005): 

−𝜆𝑟
𝑑2𝑇𝑖

𝑑𝑧2 𝑑𝑉𝑖 − 𝜌𝑟𝑐𝑟
𝛼𝑢ℎ

2

𝑑2𝑇𝑖

𝑑𝑧2 𝑑𝑉𝑖 + 𝜌𝑟𝑐𝑟u
𝑑𝑇𝑖

𝑑𝑧
𝑑𝑉𝑖 +

𝑏𝑖𝑔(𝑇𝑖 − 𝑇𝑔)𝑑𝑆𝑖𝑔 = 0  
(1) 

𝜆𝑟
𝑑2𝑇𝑜

𝑑𝑧2 𝑑𝑉𝑜 − 𝜌𝑟𝑐𝑟
𝛼𝑢ℎ

2

𝑑2𝑇𝑜

𝑑𝑧2 𝑑𝑉𝑜 − 𝜌𝑟𝑐𝑟𝑢
𝑑𝑇𝑜

𝑑𝑧
𝑑𝑉𝑜 +

𝑏𝑜𝑔(𝑇𝑜 − 𝑇𝑔)𝑑𝑆𝑜𝑔 = 0  
(2) 

−𝜆𝑔
𝑑2𝑇𝑔

𝑑𝑧2 𝑑𝑉𝑔 − 𝜆𝑔 (
d𝑇𝑔

𝑑z
𝑛𝑧) 𝑑𝑆𝑔 − 𝑏𝑖𝑔(𝑇𝑔 − 𝑇𝑖)𝑑𝑆𝑖𝑔 +

𝑏𝑜𝑔(𝑇𝑔−𝑇𝑜)𝑑𝑆𝑜𝑔 = 0  
(3) 

where the ρr is the density and cr is the heat capacity of the 

refrigerant fluid. The Ti, To, and Tg are the temperatures of 

the flow-in, flow-out, and grout, respectively. The h is the 

characteristic length, α is the diffusion term, λr and λg are 

the thermal conductivity of the fluid and grout, respectively, 

and the big, and bog are the reciprocals of the thermal 

resistance between the pipe-in and grout, and pipe-out and 

grout, respectively. 

 
 

(a) Aquifer Thermal Energy Storage (ATES) (a) Aquifer Thermal Energy Storage (ATES) 

  
(c) Tank Thermal Energy Storage (TTES) (d) Pit Thermal Energy Storage (PTES) 

  
(e) Cavern Thermal Energy Storage (CTES) (f) HYDROCK 

Fig. 1 Underground thermal energy storage methods 
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The strong form equations are converted into a set of weak 

form equations by multiplying with a test function NT, 

integrating by parts, and using the boundary conditions to 

get Eqs. (4)–(6) after Al-Khoury et al. (2005):  

∫ 𝜆𝑟
𝑑𝑁𝑇

𝑑𝑧

𝑑𝑇𝑖

𝑑𝑧
𝑑𝑉𝑖𝑉𝑖

+ ∫ 𝜌𝑟𝑐𝑟𝑢 (
𝛼ℎ

2

𝑑𝑁𝑇

𝑑𝑧
+ 𝑁𝑇)

𝑑𝑇𝑖

𝑑𝑧
𝑑𝑉𝑖𝑉𝑖

+

∫ 𝑏𝑖𝑔𝑁𝑇(𝑇𝑖 − 𝑇𝑔)𝑑𝑆𝑖𝑔 𝑆𝑖𝑔
= 0  

(4) 

∫ 𝜆𝑟
𝑑𝑁𝑇

𝑑𝑧

𝑑𝑇𝑜

𝑑𝑧
𝑑𝑉𝑜𝑉𝑜

+ ∫ 𝜌𝑟𝑐𝑟𝑢 (−
𝛼ℎ

2

𝑑𝑁𝑇

𝑑𝑧
+

𝑉𝑜

𝑁𝑇)
𝑑𝑇𝑜

𝑑𝑧
𝑑𝑉𝑜 + ∫ 𝑏𝑜𝑔𝑁𝑇(𝑇𝑜 − 𝑇𝑔)𝑑𝑆𝑜𝑔 𝑆𝑜𝑔

= 0  
(5) 

∫ 𝜆𝑔
𝑑𝑁𝑇

𝑑𝑧

𝑑𝑇𝑔

𝑑𝑧
𝑑𝑉𝑔𝑉𝑔

− ∫ 𝑏𝑠𝑔𝑁𝑇(𝑇𝑔 − 𝑇𝑠)𝑑𝑆𝑔𝑆𝑔
−

∫ 𝑏𝑖𝑔𝑁𝑇(𝑇𝑔 − 𝑇𝑖)𝑑𝑆𝑖𝑔 −
 𝑆𝑖𝑔

∫  𝑏𝑜𝑔𝑁𝑇(𝑇𝑔 − 𝑇𝑜)𝑑𝑆𝑜𝑔 𝑆𝑜𝑔
= 0  

(6) 

where bsg is the reciprocal of the thermal resistance between 

the grout and surrounding rock. The weak form Eqs. (4)-(6) 

are then implemented in COMSOL Multiphysics® 5.2a as 

weak form edge PDEs. The illustrative example of their 

interactions is shown in Fig. 2. 

In Fig. 2, Eqs. (4)-(5) represent the in- and out-going 

flow temperature at a calculation node, respectively, and 

Eq. (6) the temperature of the grout that interacts both with 

the in and out-going flows and the rock mass through FEM 

mesh. 

The heat transport in the rock mass is calculated using 

the transient heat conduction equation: 

𝜌𝑐
𝜕𝑇

𝜕𝑡
+ ∇ ∙ −𝜆∇𝑇 = 𝑄𝑙  (7) 

where ρ is the density, c is the heat capacity, T is the 

dependent variable of temperature, and λ is the thermal 

conductivity of the rock. The Ql is the line heat source term, 

which couples Eqs. (6) and (11), representing the heat 

transfer from the grout into the rock mass: 

𝑄𝑙 = 𝑏𝑠𝑔 ∙ (𝑇𝑔 − 𝑇) ∙ 𝑆𝑔  (8) 

The analogy between Fourier’s and Ohm’s laws for heat 

flow and current flow is used to find the reciprocals of 

thermal resistance factors according to the methodology 

given by Al-Khoury et al. (2005). The reciprocals of the 

thermal resistance between the pipe-in and grout, and pipe-

out and grout are equal to each other and are calculated 

using Eq. (9): 

 

 

 

 

 

𝑏𝑖𝑔 = 𝑏𝑜𝑔 =
1

𝑅𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛+𝑅𝑝𝑖𝑝𝑒
=

1

1

ℎ𝑐𝑜𝑛𝑣∙(
𝑟𝑜
𝑟𝑖

)
+

𝑟𝑜∙𝑙𝑛(
𝑟𝑜
𝑟𝑖

)

𝜆𝑝

  
(9) 

where ro and ri are the outer and inner radii of the pipes, 

respectively. The λp is the thermal conductivity of the pipe 

material, and the hconv is the convective heat transfer 

coefficient assuming turbulent flow conditions inside the 

pipe and is calculated using Eq. (10): 

ℎ𝑐𝑜𝑛𝑣 =
𝑁𝑢∙𝜆𝑟

2∙𝑟𝑖
=

(0.023∙𝑅𝑒0.8∙𝑃𝑟0.4)∙𝜆𝑟

2∙𝑟𝑖
=

(0.023∙(
𝑢∙2∙𝑟𝑖

𝜈𝑟
)

0.8
∙(

𝜌𝑟𝜈𝑟𝑐𝑟
𝜆𝑟

)
0.4

)∙𝜆𝑟

2∙𝑟𝑖
  

(10) 

where Nu is the dimensionless Nusselt number, Re is the 

Reynolds number, Pr is the Prandtl number, u is the fluid 

flow velocity, and vr is the fluid kinematic viscosity. 

The reciprocal of the thermal resistance between the 

grout and surrounding rock is calculated using Eq. (11): 

𝑏𝑠𝑔 =
1

2∙(𝑅𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛+𝑅𝑝𝑖𝑝𝑒)+𝑅𝑔𝑟𝑜𝑢𝑡
=

1

2∙(
1

ℎ𝑐𝑜𝑛𝑣∙(
𝑟𝑜
𝑟𝑖

)
+

𝑟𝑜∙𝑙𝑛(
𝑟𝑜
𝑟𝑖

)

𝜆𝑝
)+

𝑟𝑔∙𝑙𝑛(
𝑟𝑒𝑞
𝑟𝑔

)

𝜆𝑔

  (11) 

where rg is the borehole radius, and req is the equivalent 

pipe radius (Eq. (12)) found by creating an equivalent area 

equal to the sum of the area of both pipes. The equivalent 

radius is then calculated as: 

𝑟𝑒𝑞 = √𝑟𝑖
2 + 𝑟𝑜

2  (12) 

The input parameters for the weak form numerical 

modelling are given in Table 1. 

 
2.1 Comparison with other modelling approaches 
 

The weak form modelling approach (WE) based on Al-

Khoury et al. (2005) used in this paper is compared with 

other finite element models to validate the modelling 

approach and quantify the amount of calculation time that 

can be saved by using the weak form equations. For this 

purpose, a single borehole of 10 m length is simulated. The 

borehole is embedded into a rock cylinder of 5 m radius. 

 

 
Fig. 2 An illustrative example of the interactions of the implemented heat transfer equations 
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The borehole is equipped with a single U-tube BHE and 

fluid with input properties from Table 1, except the fluid 

velocity, which is kept constant at 0.6 m/s to ensure 

turbulent flow conditions inside the pipes. Additionally, the 

heat capacity of 730 J/kg·K and density of 1680 kg/m3 is set 

for the grout material. The pipes have heat capacity equal to 

2400 J/kg·K and density equal to 970 kg/m3. The initial 

temperature of the rock and the fluid is set to 10 °C. A 

constant temperature boundary condition of 10 °C is 

prescribed on the outer and bottom surface of the model. 

The top surface is made adiabatic. The BHE is charged with 

a 50°C fluid continuously for 30 days. 

First, the BHE is simulated with a Quasi 3D 

methodology (Q3D) described by Oberdorfer et al. (2011), 

where the BHE geometry is modelled explicitly as a fully 

three-dimensional object with assumed mean fluid velocity 

and an effective thermal conductivity of the pipes to 

calculate the heat transfer through the pipe wall and grout. 

Next, the Heat Transfer in Pipes (HTiP) methodology 

given by Ozudogru et al. (2014) is used to simulate the 

BHE simplified as linear elements that are coupled with the 

surrounding three-dimensional rock. The so-called pseudo-

pipes proposed by the authors are used to account for the 

heat capacity of pipes. 

 

 

3. Performance of the weak form modelling 
approach 

 

The results of the comparison are shown in Fig. 3. The 

behaviour (shape function) of the fluid temperature is the 

same for all three models, but the temperature drop of the 

fluid is different. The two modelling approaches with 

simplified linear elements (WE and HTiP) predict the 

highest temperature with the HTiP being lower than WE by 

0.26 °C. The Q3D model gives the lowest temperature 

compared to the other two models (0.53 °C lower than WE). 

The difference between the models is observed because the 

weak form assumes a single temperature for the grout, so 

the grout surrounding the two pipes have the same 

temperature, even though the two pipes have different 

temperature. Also, the steady-state formulation of the weak 

form neglects the heat capacity of the grout. Another 

explanation is that the linear elements in WE are producing 

an estimation error due the coupling of grout temperature to  

the temperature field of the rock mass domains located at 

the linear element axis and not at the actual outer wall of the  

grout. The HTiP model introduces a correction approach 

with “pseudo-pipes” to account for that difference. Hence it 

gives less error compared to the WE model. 

It is also observed that the calculation times are 

significantly reduced. Although the temperature predicted 

by the WE model is slightly higher at the outlet compared 

to other approaches, it takes only 26 s to calculate compared 

to 518 s for HTiP and 1038 s for Q3D (Fig. 4(a)). The other 

two methods require much more numerical elements and 

the number of degrees of freedom solved for (Fig. 4(b)). 

Also, the virtual memory consumption is much greater as 

shown in Fig. 4(c). 

As long as the behaviour is the same, the weak form 

modelling can be used for comparison of different scenarios 

and finding optimum qualitatively and not quantitatively. 

Hence, the use of WE modelling approach for comparison 

of large borehole arrays is justified. 

 

 

4. BTES case study and numerical model set-up 
 

In this paper, the implementation of a weak form edge 

element is presented with the modelling results of a 

borehole storage layout using COMSOL Multiphysics® 

software. The models can be used for the design of the 

thermal energy borehole storage concept for a small solar 

community. A set of models was created to study the effects 

of different storage volumes (20000, 30000, and 40000 

m3), height-width (H:W) ratio of the storage (0.5, 1.0, and 

3.0) and the number of boreholes connected in series (3 and 

6). 

Table 1 Input parameters for the numerical model 

Parameter Value Unit Reference 

rb Borehole radius 55 mm Al-Khoury et al. (2005) 

ri Inner pipe radius 16 mm Al-Khoury et al. (2005) 

ro Outer pipe radius 19 mm  

λp Pipe thermal conductivity 0.3 W/(m·K) Al-Khoury et al. (2005) 

λs Ground thermal conductivity 3.2 W/(m·K) Kukkonen and Peltoniemi (1998) 

ρs Ground density 2635 kg/m3 Kukkonen et al. (2011) 

cs Ground heat capacity 840 J/(kg·K) Kukkonen and Peltoniemi (1998) 

λg Grout thermal conductivity 1.7 W/(m·K) Chiasson (2016) 

λr Fluid thermal conductivity 0.5 W/(m·K) Al-Khoury et al. (2005) 

ρr Fluid density 1336 kg/m3 Al-Khoury et al. (2005) 

cr Fluid heat capacity 2830 J/(kg·K) Al-Khoury et al. (2005) 

νr Fluid kinematic viscosity 4.2·10-6 m2/s Al-Khoury et al. (2005) 

u Fluid flow velocity 0.35 m/s  
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The cases with the parameters varied in the study and 

the resulting borehole metres, the spacing between 

boreholes, the storage depths, and the diameters are 

presented in Table 2. 

The connectivity of the boreholes is significant for 

efficient thermal energy storage. Usually, hexagonal 

borehole pattern is considered as optimal, however, to 

simplify the modelling a rectangular borehole pattern was 

used. The two used borehole patterns are illustrated in Figs. 

5(a)-(b). 

The thermal performance of each scenario is calculated 

using a quarter symmetric 3D model. In the charging mode, 

the hot water is inserted from the centre of the borehole 

field, and it exits at the perimeter. In discharging mode, cold 

water is injected from the perimeter and exits at the centre. 

The amount of charged and discharged energy is 

calculated based on the following equation: 

𝐸 = ∫ 𝛥𝑇(𝑡) ∙ 𝑞 ∙ 𝑐𝑟 ∙ 𝜌𝑟  𝑑𝑡  (13) 

where ΔT is the temperature difference between the inlet 

and outlet in each of the BHE loop, q is the volumetric flow 

rate, cr is the fluid heat capacity and ρr is the fluid density. 

The energy is summed up for the given amount of BHE 

loops. 

To simplify the model, the average monthly  

 

 

charge/discharge temperatures recorded by Finnish 

Meteorological Institute (FMI, 2017) are used and the only 

discharge cycle during the year is used in winter. The 

assumed charge/discharge temperature function fitted to 

average outside temperature and taken into account the 

solar radiation is as follows: 

𝑇(𝑡) = sin ((𝑡 + 40)
𝜋

191
− 1) 30 + 37  (14) 

where t is the time in days from beginning of the each year 

cycle on 1st of April (in range from 0 to 364 days). The 

used borehole field charge/discharge cycle includes 196 

days charging period and 168 days discharging period 

visualised in Fig. 6. 

The temperature boundary condition on the top surface 

and the outer walls follows the sinusoidal surface 

temperature variation given by Carslaw and Jaeger (1959). 

The ground temperature varies during the year according to 

the annual ground surface temperature and attenuates with 

depth according to the thermal diffusivity of the ground. 

The temperatures at depth are calculated using Eq. (15): 

𝑇(𝑧, 𝑡) =  𝑇𝑧,0 + ∆𝑇𝑧,0𝑒
−𝑧∙√

𝜋

𝑃𝛼 ∙ cos (
2𝜋𝑡

𝑃
− 𝑧 ∙ √

𝜋

𝑃𝛼
)  (15) 

 

  

(a) Full time range 0–30 days (b) Data points at day 0 omitted for better visibility 

Fig. 3 Comparison of the weak form modelling approach (WE) by Al-Khoury et al. (2005) with Quasi 3D (Q3D) 

numerical model proposed by Oberdorfer et al. (2011) and Heat Transfer in Pipes (HTiP) model by Ozudogru et al. 

(2014) 

   
(a) Calculation time (b) Degrees of freedom (c) Virtual memory 

Fig. 4 Comparison of the computational requirements of different modelling approaches 
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Fig. 6 The charge/discharge and outside temperatures 

 

 

 

where T(z,t) is the ground temperature at depth z (calculated 

from the ground surface) and time t. Tz,0 is the annual mean 

ground surface temperature (6.1 °C) calculated from the 

annual mean surface air temperature using the following 

relationship 𝑇𝑧,0 = 0.71 ∙ 𝑇𝐴 + 2.93  proposed by 

Kukkonen (1986) to account for the temperature differences 

of ground and air due to snow cover. The ∆Tz,0 is the 

amplitude of annual ground surface temperatures (8.3 °C), 

P is the period equal to one year (given in seconds), and α is 

the thermal diffusivity of the ground. Furthermore, a 

constant geothermal heat flux hf equal to 37 mW/m2 is 

prescribed on the bottom surface of the model (see Fig. 7). 

Other input parameters for the model are given in Table 1. 
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Table 2 Parameters varied in BTES case study consisting of 18 models in total 

Case 
No of 

BHEs 

BHEs in 

series 
H:W ratio 

Total borehole 

length, m 

Storage 

volume, m3 
Spacing between 

boreholes, m 

Storage depth, 

m 

Storage 

diameter, m 

48_20000_0.5 48 3 0.5 (wide) 890 20 000 4.6 18.5 37.1 

48_20000_1.0 48 3 1.0 1 412 20 000 3.7 29.4 29.4 

48_20000_3.0 48 3 3.0 (deep) 2 937 20 000 2.5 61.2 20.4 

48_30000_0.5 48 3 0.5 1 018 30 000 4.6 21.2 42.4 

48_30000_1.0 48 3 1.0 1 617 30 000 3.7 33.7 33.7 

48_30000_3.0 48 3 3.0 3 363 30 000 2.5 70.1 23.4 

48_40000_0.5 48 3 0.5 1 121 40 000 5.8 23.4 46.7 

48_40000_1.0 48 3 1.0 1 779 40 000 4.6 37.1 37.1 

48_40000_3.0 48 3 3.0 3 701 40 000 3.2 77.1 25.7 

168_20000_0.5 168 6 0.5 2 854 20 000 2.5 18.5 37.1 

168_20000_1.0 168 6 1.0 4 531 20 000 2.0 29.4 29.4 

168_20000_3.0 168 6 3.0 9 424 20 000 1.4 61.2 20.4 

168_30000_0.5 168 6 0.5 3 267 30 000 2.8 21.2 42.4 

168_30000_1.0 168 6 1.0 5 186 30 000 2.2 33.7 33.7 

168_30000_3.0 168 6 3.0 10 788 30 000 1.6 70.1 23.4 

168_40000_0.5 168 6 0.5 3 596 40 000 3.1 23.4 46.7 

168_40000_1.0 168 6 1.0 5 708 40 000 2.5 37.1 37.1 

168_40000_3.0 168 6 3.0 11 874 40 000 1.7 77.1 25.7 

 

  

(a) 3 boreholes in series b) 6 boreholes in series 

Fig. 5 The two borehole arrays used in the modelling 
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5. Results 

 

The amount of charged and discharged energy in 5 years 

of operation is presented in Fig. 8. The seasonal storage 

efficiency is calculated as the ratio of discharged to charged 

energy. From Fig. 8 it can be seen that the scenarios with 48 

boreholes reach a maximum of 57% of seasonal storage 

efficiency for the storage with 30 000 m3 volume and 3.0 

H:W ratio after 5 years of operation (566 MWh recovered  

 

 

energy). The scenarios with 168 boreholes reach a 

maximum of 69% of seasonal storage efficiency for the 

storage with 40 000 m3 volume and 1.0 H:W ratio after 5 

years of operation (971 MWh recovered energy). The 

increase in the total amount of charged and discharged 

energy is proportional to the increase in height-to-width 

(H:W) ratio and the increase in the storage volume. 

Interestingly, for 48 BHE the 3.0 ratio gives the highest 

efficiency, but for 168 BHE the 1.0 ratio is more efficient. 

 

Fig. 7 Description of the boundary conditions in the BTES model 

 

Fig. 8 Comparison of charged and discharged energy during five years of operation, and the seasonal storage efficiency 

in the 5th year of each scenario 
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Also, the seasonal performance in the 5th year is 

directly proportional to the total borehole length and 

inversely proportional to the borehole spacing as shown in 

Figs. 9(a)-(b). Such result can be explained by the increase 

in the total length of borehole heat exchangers (as shown in 

Table 2) as they provide more surface area for heat transfer 

to take place. It should be noted that the increase in total 

borehole length will directly influence the installation costs, 

so the relatively small increase in storage efficiency will 

result in a drastic increase in the installation cost (Fig. 10). 

 

 

 

 

Assuming an installation cost of 65 €/m (drilling and 

BHE cost) a 4% increase in the storage efficiency of the 

most efficient scenario (168_40000_1.0) compared to the 

scenario with lower H:W ratio (168_40000_0.5) would cost 

59% more. 

An example of the fluid temperatures measured at the 

borehole series outlets (on the perimeter in the charging 

cycle and in the centre in the discharging period) and the 

average storage temperature is shown in Fig 11. After 5 

years the thermal energy storage is balanced, and there is no 

more increase in the performance. 

  

(a) (b) 

Fig. 9 The relationship between the seasonal performance in the 5th year to borehole spacing (a) and the total borehole 

length (b) 

 

Fig. 10 Comparison of the seasonal storage efficiency and the BHE installation cost of each scenario 

 

Fig. 11 Average fluid temperatures measured at the series outlets (black) and the average storage temperature (red) of the 

model with 48 boreholes, 30000 m3 volume, and 3.0 H:W ratio 
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(a) 20000 m3, H:W ratio 0.5 (b) 20000 m3, H:W ratio 1.5 (c) 20000 m3, H:W ratio 3.0 

   
(d) 30000 m3; H:W ratio 0.5 (e) 30000 m3, H:W ratio 1.0 (f) 30000 m3, H:W ratio 3.0 

 
 

 

(g) 40000 m3; H:W ratio 0.5 (h) 40000 m3, H:W ratio 1.0 (i) 40000 m3, H:W ratio 3.0 

Fig. 12 Rock temperature of the storage with 48 boreholes after the 5th charging cycle 
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The maximum storage temperature during 5 year 

modelling period increases up to 55.4 °C for the storage 

with 48 boreholes (see Figs. 12 (c)-(f)) and up to 57.6 °C 

for storage with 168 boreholes (see Fig. 13(d)). The bigger 

the storage volume, the lower the maximum storage  

 

temperature, and the more slender shape (high H:W ratio), 

the higher the maximum temperature. 

The maximum relative error of the numerical 

approximation given by COMSOL is 0.9 % (the last 

scenario) during the change of the flow direction, caused by 

the use of steady-state functions. However, the total error is 

less, as there are only two flow direction changes during 

   
(a) 20000 m3, H:W ratio 0.5 (b) 20000 m3, H:W ratio 1.5 (c) 20000 m3, H:W ratio 3.0 

   

(d) 30000 m3; H:W ratio 0.5 (e) 30000 m3, H:W ratio 1.0 (f) 30000 m3, H:W ratio 3.0 

   
(g) 40000 m3; H:W ratio 0.5 (h) 40000 m3, H:W ratio 1.0 (i) 40000 m3, H:W ratio 3.0 

Fig. 13 Rock temperature of the storage with 168 boreholes after the 5th charging cycle 
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each modelled year. The total calculation time for the five-

year simulation using Intel Xeon E3-1230 v5 3.4 GHz 

processor ranges from 28 min for the first scenario to 9 h 15 

min for the last scenario. This confirms that computing the 

last scenario with other modelling approaches described in 

section 3 would be extremely demanding, if not impossible. 

 

 

5. Conclusions 
 

In this study, the thermal performance of seasonal solar 

thermal energy storage is successfully simulated using the 

weak form equations of the heat transfer in a single U-tube. 

The implementation of weak form equations reduces the 

computing time significantly to reasonable for running 

multiple calculations of large borehole arrays. The highest 

performance was achieved with the scenario containing 168 

BHEs in 40 000 m3 storage volume with equal height and 

width, where 69% of the stored seasonal thermal energy 

(971 MWh) was recovered after 5 years of operation. 

However, this scenario costs 59% more than the same 

scenario with a decreased height-to-width ratio of 0.5, 

which sacrifices only 4% of the storage efficiency. 

The simulations showed that the most efficient storage 

shape in terms of the seasonal storage efficiency is the 

height-to-width ratio of 3.0 for the system with 48 BHEs 

and of 1.0 for the system with 168 BHEs. Also, the seasonal 

storage efficiency after five years of operation is directly 

proportional to the total borehole length and inversely 

proportional to the borehole spacing. 

In future research, the weak form approach will be 

improved by incorporating the specific heat of the grout and 

improving the thermal resistance network of the borehole 

heat exchanger by dividing the grout into multiple zones. 

The transient equations will also be implemented into the 

weak form edge PDEs to allow better resolution when the 

flow direction is reversed or the fluid temperature is altered. 
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