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Quadratic detection in linear mesoscopic transport systems produces cross terms that can be viewed as
interference signals reflecting statistical properties of charge carriers. In electronic systems these cross-term
interferences arise from exchange effects due to Pauli principle. Here we demonstrate fermionic Hanbury
Brown and Twiss (HBT) exchange phenomena due to indistinguishability of charge carriers in a diffusive
graphene system. These exchange effects are verified using current-current cross-correlations in combination
with regular shot noise (autocorrelation) experiments at microwave frequencies. Our results can be modeled
using semiclassical analysis for a square-shaped metallic diffusive conductor, including contributions from
contact transparency. The experimentally determined HBT exchange factor values lie between the calculated
ones for coherent and hot electron transport.

DOI: 10.1103/PhysRevB.100.235433

I. INTRODUCTION

Shot noise is a widely used characterization method in
nanophysics, as it can provide more information on the
charge transport than conventional conductance or thermal
noise measurements [1–4]. Multiterminal current-current cor-
relation experiments provide additional insight into intrinsic
characteristics of charge carriers in mesoscopic systems. For
example, they allow one to distinguish bosonic and fermionic
carriers [5–7].

Many of the noise and cross-correlation experiments
probing fundamental properties of the charge carriers have
been performed using edge states in the quantum Hall
regime, in which quantum point contacts with tunable
transparency control the propagation of coherent beams of
electrons or composite fermions [8]. In this setup, one can
perform two-particle scattering experiments and observe
Hanbury Brown and Twiss [9] (HBT) interference effects in
current-current cross-correlation [10], which are not visible
in Aharonov-Bohm conductance experiments. In a regular
mesoscopic conductor the phase-dependent phenomena
in two-particle scattering events are averaged out over
many possible trajectories [11]. However, even after such
averaging current-current cross-correlations in different
terminals are affected by Fermi statistics of electrons in
a nontrivial way. One well-known consequence of Fermi
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statistics is the negative sign of cross-correlations between the
currents in different terminals [2]. In this work we investigate
another interesting consequence—the nonadditive nature of
cross-correlations [11,12]—in a HBT setup [9,10] with two
sources and two detectors attached to a diffusive graphene
flake. Below we will refer to the nonadditivity of the noise
cross-correlations as HBT exchange effect.

To our knowledge, only one experiment has so far
addressed HBT exchange effects in diffusive conductors.
Cross-correlations and HBT exchange were measured in a
cross-shaped graphene conductor in which the charge carrier
density, and thereby the screening of impurities, could be
tuned by the back gate voltage [13]. According to the theory,
in a diffusive conductor with cross geometry the paths of scat-
tering electrons are quite restricted, and the HBT exchange
effect should disappear [11,12]. However, the experiment
showed a finite exchange effect, which was attributed to an
appreciable mean-free path of electrons, comparable to the
size of the crossing.

In charge neutral graphene, ideally, electrical transport
takes place via evanescent waves, the distribution of which
mimics diffusive electron transport [14–17]. Since the evanes-
cent waves may propagate to both measuring terminals,
special cross-correlations are obtained in graphene near the
charge neutrality point (CNP) [18]. According to the tight-
binding calculations of Ref. [18], there is a negative HBT
exchange effect at the Dirac point. Instead of diffusive-like
shot noise due to evanescent waves, experiments have shown
more complex behavior in graphene [19–21]. For graphene
ribbons, Coulomb blockade effects and localization have
been found to influence the shot noise results substantially
[22]. Therefore, also shot noise cross-correlations can be
expected to differ from those appearing in pure diffusive trans-
port and to exhibit features inherent to disordered graphene
samples.
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In this work we study the HBT exchange effect in a coher-
ent square-shaped graphene conductor with a short mean-free
path and diffusive transport of electrons. We measure both
current-current cross-correlations at microwave frequencies
and regular shot noise of the contacts (autocorrelation). We
model our results using semiclassical analysis for a diffusive
coherent conductor, in which the noise arises locally due to
the nonequilibrium distribution of electrons. We repeat the
analysis in the hot electron regime, where the noise is charac-
terized by local temperature distribution. The best agreement
between experiment and theory is obtained in the crossover
regime between the coherent and hot electron models.

This article is organized as follows. We start with the
theoretical background (Sec. II), and outline the basics of
shot noise, cross-correlations, and the Hanbury Brown and
Twiss exchange effect in fermionic systems. In Sec. II A, we
describe briefly the semiclassical analysis and present our
models for coherent and hot electron regimes. The parameters
for the numerical noise calculations are obtained from the
conductance distribution of our sample, analyzed in Sec. II B,
while the noise calculations are presented in Sec. II C. Our
experimental methods are concisely covered in Sec. III, while
results are presented in Sec. IV. The discussion in Sec. V
includes connections of our work to other noise experiments
and discusses a few theoretical issues relevant for the bias and
gate voltage dependence of our data. Section VI concludes the
paper.

II. THEORETICAL BACKGROUND

A random flow of electrons with charge e can be described
as an uncorrelated Poisson process [23], which gives rise
to the spectral density of the shot noise, SI = 2eI , where I
is the current through the conductor. In contrast to thermal
fluctuations in mesoscopic conductors, shot noise provides
information on the basic transport properties beyond the
linear response theory coefficients such as conductance. In
mesoscopic systems, shot noise can become sub-Poissonian
under the influence of interactions or correlations, for ex-
ample, imposed by the Pauli principle [24–28]. The ensuing
noise spectral density can be written as SI = F2eI , where F
denotes the so called Fano factor. In a tunnel junction with
low transmission, F = 1 because electron tunneling in such a
junction is a Poissonian process [2]. In a ballistic conductor
the shot noise is fully suppressed, while suppression down to
F = 1/3 is found in diffusive conductors [2,29,30].

The Pauli principle also influences the cross-correlations
of current fluctuations in a diffusive system. The cross-
correlation of the fluctuations of the currents entering the
conductor through terminals m and n, Snm, is defined by

Snm =
∫ ∞

−∞
dt〈δĨn(t )δĨm(0)〉, (1)

where we assume the low-frequency limit eV � h̄ω relevant
to our experiments. Our sample, shown in Fig. 1(a), has four
terminals, which are the metallic leads attached to the corners
of the box.

One can derive a very general expression [2] for the cross-
correlation [Eq. (1)] in terms of the scattering matrix of the
device ŝmn. For practical calculations we use an alternative

FIG. 1. (a) Graphene box sample with Cr/Au contacts at the
corners. The scale bar indicates 100 nm. The graphene extends under
each contact by approximately 1 μm. Biasing is applied via ports 2
and 4, while cross-correlation S13 is measured between terminals 1
and 3. S13 is measured in three DC biasing situations: (A) V2 = V
and V1 = V3 = V4 = 0, (B) V4 = V and V1 = V2 = V3 = 0, and (C)
V2 = V4 = V and V1 = V3 = 0, the results of which are marked by
−SA, −SB, and −SC , respectively. The Hanbury Brown and Twiss
exchange effect is observed in the difference �S = SC − SA − SB.
(b), (c) Nonequilibrium distribution functions in coherent regime
described by � [see Eq. (6)] for our diffusive graphene box that is
biased from terminal 2 while the three other terminals are grounded
at two gate voltage values: far from the charge neutrality point (CNP)
(Vg = −10 V) (b) and near it (Vg = +15 V) (c). (d), (e) Equivalent
temperature distribution in the hot electron regime [see Eq. (14)] in
the same bias configuration as at Vg = −10 V (d) and Vg = +15 V
(e). The color scale is relative to the applied bias voltage V .

approach based on the solution of the Boltzmann-Langevin
equation for diffusive electrons inside the box [11,12], which
we outline in the next subsection. The two approaches are
equivalent because the scattering matrix can be expressed
in terms of the electronic retarded (GR) and advanced (GA)
Green’s functions and transmission probabilities of the con-
ducting channels of the terminals [31]. Performing disorder
averaging of the products GRGA in the diffusive conductor
with the aid of the standard rules [32], one can reduce the
evaluation of the cross-correlations [Eq. (1)] to the solution of
the diffusion equation.

Here our main focus is the HBT exchange effect which
is probed by measuring the cross-correlation of the currents
in terminals 1 and 3, denoted by S13. The correlations are
measured in three DC biasing configurations, namely A, B,
and C. In the A (B) configuration terminal 2 (4) is biased
with voltage V while the other three terminals are grounded.
In the C configuration both terminals 2 and 4 are biased,
while 1 and 3 are grounded. The measured current-current
cross-correlations S13 are negative, but we follow the notation
S = −S13 used in Ref. [2] which has a positive sign. Finally,
we consider the difference

�S = SC − SA − SB. (2)

By obtaining the exchange correction factor �S from the
measured electronic shot noise, our measurement essentially
repeats the original HBT experiment performed with photons
[9]. For distinguishable noninteracting particles the noises
coming from different sources are additive and the com-
bination [Eq. (2)] equals zero (�S = 0). However, since
the electrons are indistinguishable and obey Fermi statistics
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one finds that �S �= 0. In theory the cross-correlation S13

is given by the sum of partial contributions Sαβ

13 containing
the combinations of the distribution functions in the leads
of the form fα (1 − fβ ) + (1 − fα ) fβ , S13 = ∑4

α,β=1 Sαβ

13 . The
nonzero HBT exchange correction in Eq. (2) originates from
the contribution S24

13 having the form [11]

S24
13 = 2e2

π h̄

∫
dE Re(Tr[ŝ†

41ŝ12ŝ†
23ŝ34])

× [(1 − f2) f4 + f2(1 − f4)]. (3)

Bias configurations A and B produce the same value for
S24

13 , while it vanishes in the bias configuration C and at
zero temperature due to the Pauli principle. Indeed, in this
case one finds (1 − f2) f4 + f2(1 − f4) = 0 since f2 = f4 =
θ (eV − E ), where θ (x) is the Heaviside step function. Thus,
at zero temperature one obtains [11]

�S = 2S24
A,13 = 4e2

π h̄
〈Re(Tr[ŝ†

41ŝ12ŝ†
23ŝ34])〉eV. (4)

Here the angular brackets denote averaging over disorder
in the diffusive conductor. The HBT exchange correction
[Eqs. (2) and (4)] can be either positive or negative depending
on the system parameters.

As we have mentioned earlier, after disorder averaging
quantum interference effects vanish from the HBT exchange
noise [Eq. (4)]. However, from a mathematical point of view
one can still consider it as a classical interference effect for
the distribution function of electrons. Indeed, the distribution
function inside the graphene box f0 is the linear combination
of the distribution functions in the terminals, see Eq. (5), while
the noise cross-correlation is the quadratic function of it. It
is well known that the original HBT experiment [9] can also
be interpreted in terms of the interference of classical waves.
The interpretation of our experiment as an analogy to optical
interference is discussed further in Sec. VI.

A. Semiclassical analysis

The nonequilibrium electron transport can be described by
the Boltzmann-Langevin approach [12,33], which provides
a simple and transparent interpretation of the theory. In this
section we provide a brief summary of this approach and
derive explicit expressions for the noise cross-correlations in
terms of measurable parameters. We account for the effect of
finite contact resistances and consider the two regimes: the
regime of the elastic transport and the hot electron regime,
in which electron-electron interaction leads to thermalization
of the electrons and a local electronic temperature can be
defined.

Considering the elastic transport regime, in which the
electron-electron Coulomb interaction can be ignored, one
obtains the solution of the Boltzmann equation for the electron
distribution function in the form

f0(ε, r) =
∑

n

φn(r) fT (ε − eVn), (5)

where φn(r) denotes the potential distribution in a diffusive
multiterminal conductor corresponding to the bias condition
Vm = δmn.

The noise correlations can be expressed in terms of a
function � which describes the nonequilibrium state of the
biased multiterminal conductor:

�(r) = 2
∫

dε f0(ε − eVk, r)[1 − f0(ε − eVl , r)]. (6)

If only one terminal is biased, the function simplifies to � =
eφk (1 − φk )|V | in the limit T → 0. With two bias voltages,
for example at terminals 2 and 4, one obtains � = e(φ2 +
φ4)[1 − (φ2 + φ4)]|V |. Note that the nonlinear dependence of
the distribution function ( f0) is carried over to dependence
on the characteristic function (�). Figures 1(b) and 1(c)
display the numerically calculated � functions for a graphene
box where the contacts are placed in the corners of the box
and their effective width is taken as 20% of the side length
L. The shape of the � function characterizes the diffusion of
electrons governed by quantum statistics of fermions.

The noise currents in each terminal can be obtained by
integrating the � function. For example, the expression for
the noise cross-correlations in a graphene box with perfect
contacts reads

Si j = 1

R�

∫
d2r �(r)∇φi(r)∇φ j (r), (7)

where R� is the sheet resistance of graphene. In our ex-
perimental configuration with finite contact resistances φn(r)
exhibit jumps across the contacts, which reflect finite voltage
drops on them. The effect of the contacts on the noise cross-
correlations is discussed below.

One can use the elastic approximation for the electron
transport if the escape time of an electron out of the graphene
quantum dot, τesc, is much shorter than the electron-electron
energy relaxation time τee, i.e., if τesc � τee. In the opposite
case, τesc � τee, the hot electron regime becomes relevant.
The time τesc is given by the expression

1

τesc
= δd

4π h̄

(
Rq

R�
+

4∑
k=1

Rq

Rk

)
, (8)

where Rq = h/e2 is the resistance quantum, Rk are the contact
resistances, and δd is the level spacing in the square graphene
dot,

δd = π h̄v0

L2kF
. (9)

Here v0 ≈ 106 m/s is the speed of electrons in graphene and
kF is the Fermi wave vector. The electron-electron relaxation
time is estimated as [34],

1

τee
= 2R�

Rq

kBTe

h̄
ln

[
R3

q

64R3
�

e4kF

h̄v0kBTe

]
, (10)

where Te is the average effective temperature of electrons
inside the graphene box. The temperature Te equals the bath
temperature at low bias voltages applied to the contacts
and may grow to higher values Te ∼ eV in the hot electron
regime. For the parameters of our sample listed in Table I
we find that the times [Eqs. (8) and (10)] weakly depend on
the gate voltage. The escape time approximately takes the
value τesc ≈ 1 ps, while the electron-electron relaxation time
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TABLE I. Contact resistances (Ri) and graphene sheet resistivity
(R�) used in the numerical calculations far from CNP (Vg = −10 V)
and near it (Vg = +15 V).

Vg R1 R2 R3 R4 R�
(V) (k) (k) (k) (k) (k)

−10 1.39 1.50 1.66 5.38 1.65
+15 1.59 4.47 8.00 36.4 3.70

[Eq. (10)] may change from τee ∼ 50 ps at the bath temper-
ature Te = 20 mK to much shorter values τee � τesc at high
bias. Thus we expect our sample to be in an intermediate
regime between ballistic and hot electron transport.

In presence of the inelastic electron-electron scattering
the shape of the � function changes. The kinetic equation
for the distribution function can be relatively easily found
in the hot electron regime τee � τesc � τe−ph, where τe−ph

is the electron-phonon relaxation time. In this regime the
electron distribution function has the equilibrium Fermi-Dirac
form with coordinate-dependent electron temperature, which
differs from the temperature of the substrate.

The function � [Eq. (6)] can be expressed in terms of the
characteristic functions φ j (r) both in the elastic and the hot
electron regimes. Performing this analysis and generalizing
the expression [Eq. (7)] to the case of finite contact resis-
tances, we derive explicit expressions for the cross-correlation
of the noises in terms of the experimentally measurable pa-
rameters. Assuming that the electron transport is fully elas-
tic and considering the low-temperature (or high-bias) limit
kBT0 � eV relevant to our experiment, we find

Si j =
4∑

k=1

GikGjkR2
kSk

+
4∑

k,l=1

e|Vk − Vl |
R�

∫
d2r φk (r)φl (r)∇φi(r)∇φ j (r). (11)

Here Gik are the elements of the conductance matrix, which
describe the combined effect of all contact resistances and the
inner part of the graphene box, Rk are contact resistances, and
Sk are the local noise sources of the contacts evaluated under
the assumption of fixed potential of the graphene box. The
latter have the form

Sk = −e
4∑

l=1

Gkl |Vk − Vl |

+ e(1 − Fk )Rk

2

4∑
p,l=1

GklGkp|Vp − Vl |. (12)

Here Fk is the Fano factor of the kth contact. The integral in the
last term of Eq. (11) runs over the inner part of the graphene
box excluding the corner areas, to which the metallic leads are
attached.

In the hot electron regime and for kBT0 � eV the cross-
correlation takes the form

Si j =
4∑

k=1

GikGjkR2
kSk + 2

R�

∫
d2r Te(r)∇φi(r)∇φ j (r). (13)

 
 

FIG. 2. (a), (b) Ratio of measured current and bias voltage at con-
tacts 1 (a) and 3 (b) in bias configurations A, B, and C. (c) Schematic
illustrating the division of the system into contacts and uniformly
conducting graphene. The geometry used in our diffusive model
yields Gn = 1.6 Gf and R� = 0.165 G−1

f . (d) Measured conductance
as a function of gate voltage at contact 1 (G1 = I1/V1) with other
contacts grounded (red curve) and with contact 3 grounded and
the other two floating (I2 = I4 = 0, blue curve). The dotted black
line shows the fit to theoretical conductance of two constrictions
[Eq. (17)] and the central region (with R1 + R3 = 0.5Rtot) in series
with W = 50 nm, c0 = 0.90, and kF set to its theoretical value (Vg,CNP

set to +20 V).

Here Te(r) is the coordinate-dependent electronic temperature
inside the graphene box given by the expression

Te(r) =
√√√√ 3e2

2π2

4∑
p,l=1

φp(r)φl (r)(Vp − Vl )2, (14)

Sk are again the local junction noise sources, which now take
the form

Sk = FkTk

Rk
ln

[
2 + 2 cosh

(
eRk

∑4
l=1 Gkl |Vk − Vl |

Tk

)]

+ (1 − Fk )Tk

Rk
, (15)

and Tk are the electronic temperatures inside the box close to
the contacts,

Tk =
√

3eRk√
2π

×
√√√√ 4∑

p,l=1

GkpGkl (Vk − Vl )2 −
4∑

l=1

2Gkl

Rk
(Vk − Vl )2. (16)

B. Conductance

As described above, the conductances of graphene and
contacts are parameters in our numerical noise model. There-
fore, we use the measured conductances shown in Figs. 2(a),
2(b), and 2(d) as a starting point for the numerical noise
calculations.

The measured conductances are used to construct a
4 × 4 conductance matrix for the whole system (G) which is
then divided into the central graphene part (G̃) with uniform
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conductivity and contact resistances (diagonal matrix R),
satisfying G = G̃(G̃ + R−1)−1R−1. The division is illustrated
in Fig. 2(c). Since the magnitude of graphene resistance in this
division is largely arbitrary, the graphene resistance value is
based on theoretical sheet conductivity at given gate voltage
value. The resistances are listed in Table I.

It can be seen that the contacts 1–3 have comparable
resistances far from the CNP while contact 4 has higher
resistance. The differences between the contacts become more
significant when approaching the CNP.

The relatively high contact resistances (Ri) are to a large
extent explained by narrow regions in the graphene, which can
be thought as graphene nanoconstrictions [35–37]. Therefore,
their effect is briefly studied below. The conductance of such
nanoconstriction is given by

GGNC = 4e2

h

c0W kF

π
, (17)

where c0(� 1) is related to edge roughness (c0 < 1 for rough
edges), W is the width of the constriction, and kF = √

πn
is the Fermi wave vector in graphene. For a 300 nm gate
oxide n ≈ |Vg − Vg,CNP| × 7.2 × 1010 cm−2, where Vg,CNP is
the gate voltage corresponding to the charge neutrality point
[38].

The blue curve in Fig. 2(d) shows the measured con-
ductance as a function of gate voltage between terminals 1
and 3 (with 2 and 4 floating, i.e., I2 = I4 = 0) and fitted
to the constriction model [Eq. (17)] as G1 = (R1 + Rc +
R3)−1 = GGNC/4, where the resistance of the central region,
Rc = (G f + Gn)−1, contributes by 50% to the total resistance
(far from the CNP) according to our conductance model.
In the calculation we use W = 50 nm (estimated from a
SEM image) and set the value of kF to its theoretical value.
Good agreement is found by setting the edge roughness pa-
rameter c0 ≈ 0.90, which is close to the previously reported
experimental values 0.56 [35] and 0.74 [37]. One may also
deduce the number of conduction channels in the contacts (=
W kF/π ), which becomes ∼7 far from the CNP (Vg = −10 V)
and ∼3 near it (Vg = +15 V) in our device. However, it should
be noted that the presence of increased carrier density due
to proximity of metallic contacts can increase kF, leading to
smaller c0, and therefore the obtained parameter values are
only estimates. Also, here we assume Ri = G−1

GNC, ignoring
possible other contributions to contact resistance. We note
that the nonzero conductance near the CNP is most probably
caused by doping from contacts and impurities.

C. Numerical calculations

We base our numerical calculations on the coherent and hot
electron models described above. While the contact contribu-
tions are readily obtainable from the first terms of Eqs. (11)
and (13), the graphene terms are calculated numerically. We
find the four characteristic functions φk by numerically solv-
ing [39] the diffusion equation ∇ · σ̂∇φk = 0 in a 2D ge-
ometry representing the graphene box. The chamfered corner
terminals (width 20% of the box edge) have a constant voltage
by setting Vm = δmnV0 (for φn) for the whole system, and sub-
tracting the voltage drop in each contact, calculated using G
and R. Thus the corner terminals have the Dirichlet boundary

FIG. 3. Calculated integrands of �S (top row) and �� probed
at terminal 1 on the right [see Fig. 1(a) for terminal numbering]
(bottom row) at Vg = −10 V (left half) and Vg = +15 V (right half)
with coherent [(a), (c), (e), (g)] and hot electron models [(b), (d),
(f), (h)]. The plots show cube roots of the data to enhance the visual
clarity. All values are scaled with their respective integrated SA + SB

(or �A + �B) for comparison.

condition while the box edges have zero perpendicular flux
(Neumann boundary). The values of φk (for k = {2, 4}) and
∇φk (for k = {1, 3}) are evaluated in a ∼670 × 670 grid for
numerical integration.

We obtain the noise cross-correlations S13 in bias configu-
rations A, B, and C (denoted by SA,B,C) and equivalently the
autocorrelations S11 and S33, which are denoted by �A,B,C . To
compare the calculated and measured results more easily we
introduce a dimensionless scaled exchange factor �Sscaled =
�S/(SA + SB) (and similarly ��scaled). Both quantities are
calculated far from the CNP (at Vg = −10 V) and near it
(at Vg = +15 V, while Vg,CNP ≈ +20 V). The contact Fano
factors turn out to have only little effect on the end result,
and hence we set Fi = 1/3; equivalent results are obtained
even with values approaching the quantum point contact limit
(Fi = 0). Since the applied bias is relatively large, we can use
the assumption kBT0 � eV in the hot electron regime.

The calculated distributions of the � function in bias
configuration A (and equivalent temperature T for hot electron
regime) are presented in Figs. 1(b)–1(e). It can be seen that the
distribution concentrates near the biasing terminal in the co-
herent regime [(b), (c)] while more uniform distributions are
observed in the hot electron regime [(d), (e)]. The increased
asymmetry of contact resistances near the CNP [(c), (e)] is
also reflected to the noise distributions.

The distributions of the exchange factors �S and �� are
shown in Fig. 3. The integrated values of the these quantities
are negative, although the distributions of �S have a pos-
itive contribution near the biasing contacts 2 and 4, where
∇φ1 · ∇φ3 < 0. The low conductance of contact 4 reduces the
size of the positive region near it, and increased conductance
asymmetry at Vg = +15 V also clearly increases the asymme-
try in the distributions. In general, the difference between the
coherent and hot electron regimes appears as a small change
in the overall level, although the integrated values show larger
difference. The values of �� are negative over the whole
box, and the distributions are slightly concentrated toward the
probing terminal 1 (on the right).

The calculated �Sscaled and ��scaled including the con-
tact and graphene contributions in coherent and hot electron
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FIG. 4. Calculated scaled exchange factors �Sscaled (blue circles)
and ��scaled (red circles) for coherent and hot electron models
at (a) Vg = −10 V and (b) Vg = +15 V. The solid lines indicate
approximate experimental results (see Fig. 7). The dashed curves
connecting the two regimes are calculated from linearly interpolated
SA,B,C and �A,B,C between the coherent and hot electron values.

regimes are plotted in Figs. 4(a) and 4(b) for far and near
the CNP, respectively. The exchange factors are plotted as a
function of hot electron proportion: the coherent result is on
the left end and the hot electron result on the right with a
crossover regime between the two extremes. It can be seen
that the coherent model results in too weak exchange factors
compared to the experiment, while the hot electron regime
produces too strong �Sscaled. Since the experimental results
fall between the two regimes, we approximate the coherent–
hot electron crossover regime by applying linear interpolation
as a function of the hot electron contribution to calculated
cross- and autocorrelations (SA,B,C and �A,B,C) individually
and calculate the resulting exchange factors which are shown
as dashed lines in Fig. 4. A relatively good agreement is
obtained at ∼60% hot electron contribution at Vg = −10 V
and ∼50% at Vg = +15 V. It should be noted, however,
that such interpolation only provides a rough estimate of the
behavior in the crossover regime.

III. EXPERIMENTAL METHODS

The sample [see Fig. 1(a)] is fabricated from microme-
chanically cleaved graphene on a heavily p-doped substrate
with 300 nm gate oxide. The graphene extends under the
Cr/Au contact electrodes. The bonding pads are sufficiently
small (150 × 150 μm2) so that only 10% of noise is shunted
capacitively to the back-gate electrode.

A schematic of the experimental setup is shown in Fig. 5.
The experiments are conducted on a BlueFors dry dilution
refrigerator at 20 mK. The sample is connected to two high-
frequency measurement channels with bias tees separating the
DC and RF paths. Both channels have homemade HEMT
low-noise amplifiers (LNA) mounted at the 4 K stage [40]
reaching system noise temperatures of ∼10 K for channel

FIG. 5. Schematic of the measurement configuration.
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FIG. 6. (a) HBT exchange contribution �S = SC − SA − SB

measured on the bias vs gate voltage plane. The linear negative slope
at small bias indicates an approximately constant HBT exchange
effect �S/(SA + SB ) as a function of Vb. (b) Measured noise cross-
correlations SA and SB (in arbitrary units) at Vg = −10 V (top) and
Vg = +15 V (bottom). The dashed vertical lines denote the ranges
Vb = −20 . . . + 20 mV (for Vg � 0 V) and Vb = −27 . . . + 27 mV
(for Vg > 0 V), which are used for linear fits.

1 and ∼15 K for channel 3. After additional amplification
and band-pass filtering (BPF) at room temperature the RF
signal is mixed down with a local oscillator (LO) at 750 MHz
and digitized at 180 megasamples per second (MS/s) with
an AlazarTech ATS9642 digitizer connected to PCI-E bus
of a desktop computer. The cross- and autocorrelations are
calculated from the digitized data using graphics processing
unit (GPU) acceleration. Noise power coupling issues were
treated along the lines given in Ref. [41].

IV. RESULTS

Our cross-correlation results for the HBT exchange term
�S = SC − SA − SB are displayed in Fig. 6(a) on the plane
spanned by the gate (Vg) and bias (Vb) voltages; the Dirac
point is located around Vg = +20 V. At small bias, we ob-
serve a clear negative HBT effect; as expected for fermionic
diffusion, the �S signal grows linearly with the bias voltage
Vb. A suppression of noise due to the interference of mutually
incoherent electrons has been observed in an experiment with
a ballistic electron beam splitter [5]. Our results demonstrate
that this effect is also observable in mesoscopic diffusive
conductors.

The value for scaled �S was calculated by making linear
fits to the measured noise cross-correlation SA,B,C versus bias
voltage at Vb = −20 . . . 0 and 0 . . . + 20 mV for Vg � 0 V.
The lower conductance near the CNP increases the variance of
the data, and therefore a wider range of Vb between ±27 mV is
used for Vg > 0 V. The data are linear within those intervals,
as shown in Fig. 6(b), although some deviation emerges when
approaching the Dirac point due to lower conductance. The
use of smaller intervals in fitting increased the variance of the
resulting �S due to statistical errors, but the average values
remained the same. Therefore, our fits can be considered
as small-bias extrapolation to zero bias. We calculate the
exchange factors for negative and positive Vb separately to see
the scattering of the data.

The determined �Sscaled as a function of gate voltage is
shown in Fig. 7(a) together with numerical results of the
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FIG. 7. (a) Scaled cross-correlation HBT exchange effect
�S/(SA + SB ) with blue (red) markers corresponding to negative
(positive) Vb. The black lines dotted with circles and squares denote
the results of diffusive calculation in coherent and hot electron
regimes, respectively (see Fig. 4), while the solid black lines are
interpolations in the crossover regime between coherent and hot
electron regimes. (b) Scaled autocorrelation HBT exchange effect
measured at terminals 1 and 3. For the linear interpolations, the hot
electron contributions are taken as 60% for Vg = −10 V and 50% for
Vg = +15 V.

coherent and hot electron models (Vg ≈ −10 V) and close to
(Vg ≈ +15 V) the CNP. The data are scattered mainly due to
statistical errors, although a clear trend in �Sscaled can be seen:
the effect stays rather constant between −20 V � Vg � +5 V
and tends linearly toward zero when approaching the Dirac
point. The increased scattering of the data at large Vg is due
to smaller absolute values of noise, as seen in Fig. 6, and the
resulting statistical error.

In addition to cross-correlations, we determined the scaled
exchange factors ��scaled for the measured noise in individual
channels (autocorrelation). The obtained ��scaled are shown
in Fig. 7(b) together with the results of the numerical model.
��scaled shows similar constant behavior below Vg ≈ +5 V
as �Sscaled, but the slope approaching the CNP is steeper and
the scattering near CNP is significant.

When comparing the experimentally determined exchange
factors to the results from diffusive calculations described
in Sec. II C, it can be seen that the experimental values are
situated between the coherent and hot electron results (black
lines dashed with circles and squares, respectively, in Fig. 7).
For autocorrelation, the experimental results agree well with
the hot electron model, but for cross-correlation the hot elec-
tron model results in a too strong HBT exchange effect. For
best overall agreement, we obtain linearly interpolated values
in the crossover regime (see Fig. 4) with 60% hot electron
contribution far from the CNP and 50% close the CNP. The
interpolated values are shown as solid black lines in Fig. 7. As
already mentioned, however, such linear interpolation gives
an inadequate picture of the crossover regime, and therefore
the interpolated values should only be considered as rough
estimates.

V. DISCUSSION

There are several ways to construct a model for a graphene
box. One of the simplest is the chaotic quantum dot described
by a single distribution function [42]. A straightforward gen-
eralization of this model is to adopt the semiclassical model
and to describe the graphene using a single distribution func-
tion governed by contact resistances with an arbitrary Fano
factor. This model is in fact quite close to the model employed
in Ref. [13]. Such a model, lacking voltage variation over
the graphene box, was not able to match all the measured
quantities Gi j , S11, S33, S13 properly. First after inclusion of the
characteristic potential distributions, a satisfactory agreement
could be achieved.

Closest to the present work is our previous experiment with
a graphene cross sample with 50 nm nanoribbon arms [13].
In that graphene cross the HBT effect was characterized by
occupation number noise in the nearly ballistic central region
and regular diffusive noise in the ribbon arms. The HBT effect
far from CNP in the cross sample (�Sscaled ≈ −0.18) is of
comparable magnitude to that in the box (≈ −0.26), while the
HBT effect near the CNP was strongly enhanced in the cross
sample (to �Sscaled ≈ −1.5) but is suppressed in the graphene
box. This is in line with the theoretical findings [11] that
geometrical details of the sample strongly affect the observed
HBT exchange effect.

The shot noise in our sample is generated in the central
graphene region, as well as the narrow constrictions at the
contacts contributing significantly to sample resistance [see
Eq. (11)]. The contact resistances affect the characteristic
potential distribution in the central region, and thus also their
asymmetry has significant effect on the noise. We note that
for such small contacts as we have in our sample, the contact
capacitance can be regarded as negligible (on the basis of
Ref. [43]), and the reactive impedance part at the noise mea-
surement frequency does not bypass the contact resistance,
resulting that the DC conductance values are sufficient for the
noise circuit analysis.

The fact that the Dirac point in our sample is not well
defined (see Figs. 2 and 7) indicates the presence of nonuni-
form doping, possibly due to contributions from fabrication
residues, proximity of the contacts, and localized states at
the edges. These locally varying doping effects would lead
to nonuniform conductance in the regime of charge puddles
near the Dirac point. Nonuniform conductance can easily be
implemented in our numerical calculations, but this approach
was not found exceedingly beneficial, and was given up due
to further increase in the already high number of our fitting
parameters. In addition, the characteristic statistics of the
charge puddles are unknown, making it impossible to justify
any specific configuration of nonuniformity in our model.

According to Fig. 7, our results are intermediate between
coherent and hot electron transport. Theoretically, however,
the strength of electron-electron interactions grows as V 2 due
to the increase in the available scattering states with bias volt-
age. Therefore, we would expect the electron propagation in
our graphene box to transform gradually with bias even closer
to the hot electron regime with decreasing electron-electron
scattering length �el−el < L [44]. Instead of an increase in the
shot noise due to hot electron effects, we find a 5% decrease
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in total F (F = SI/2eI) at Vb = 50 mV compared with the
value deduced using the low-bias Fano factor. This decrease
is assigned to inelastic scattering, i.e., to the onset of scattering
by polar surface modes in the graphene/SiO2 system [45,46].
Our experimental results do not show any noticeable change
in �Sscaled up to bias voltage Vb = 50 mV, and hence the pure
hot electron regime was not fully achieved in our experiments.
The independence of our results on bias at |Vb| � 50 mV
suggests that �S and �� might include features inherent to
diffusive graphene.

It is instructive to consider the analogy between our ex-
periment and interference experiments in optics. We note that
in Eq. (7) the function � is multiplied by gradients ∇φm

and ∇φn. In analogy with optics, these gradients can be
interpreted as distributed detector functions “filtering” the �

function. They vary smoothly inside the graphene box, which
implies that the whole box acts as an “interferometer screen.”
In this interpretation the noise cross-correlation is given by
an area integral weighted with the geometric response func-
tions. For a simple description, we employ an analogy with
a double-slit experiment where the incoming intensity I on
the detector is determined in three different configurations:
the experiment is performed by closing first one slit (IA), then
the other slit (IB), and finally by keeping both slits open (IC);
here the applied electric potential is the analog of light in the
double-slit experiment. In our case, the “detection screen” is
the whole graphene box where interference due to f (1 − f )
takes place at every point. The recorded interference value
is an integral provided by the cross-correlation measurements
[see Eq. (7)] where we take the equivalent of �I = IC − IA −
IB (the difference between the actual interference pattern and
the two backgrounds), namely �S = SC − SA − SB. Although
this analog is illuminating for understanding the setting of our
experiment, the underlying effects are two-particle interfer-
ences. The correlation effects arise via the competition of the
available states in the reservoirs for the outgoing electrons.
The nonequilibrium � function [see Figs. 1(b) and 1(c)]
carries this information over to the whole sample. However,
the actual phase dependence of the two-particle scattering
events is averaged out in our diffusive conductor [11]. Due to

the lack of phase dependence, we prefer to call our observed
results as HBT exchange effects, even though interference
by two diffusive wave fronts describes the phenomena in the
sense of our analogy.

VI. CONCLUSIONS

We have studied exchange cross-correlations in a disor-
dered graphene box. Our experimental results display distinct
Hanbury Brown and Twiss (HBT) exchange correlations,
which deviate from the standard predictions of scattering
matrix theory. Our results indicate that the finite contact
resistances significantly affect the noise cross-correlations in
a diffusive system. The values of experimentally determined
HBT exchange effects fall between calculated values for co-
herent and hot electron models, indicating either the presence
of a bias-independent crossover regime or intrinsic behavior
of diffusive graphene which is not captured by the standard
model for diffusive systems. The overall picture is the same
for both near and far from the Dirac point, although the
low carrier density near the CNP leads to further deviations
between the model and experimental data.
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