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SUMMARY

Circadian clocks predictively adjust the physiology
of organisms to the day/night cycle. The retina has
its own clock, and many diurnal changes in its phys-
iology have been reported. However, their implica-
tions for retinal functions and visually guided
behavior are largely unresolved. Here, we study the
impact of diurnal rhythm on the sensitivity limit of
mouse vision. A simple photon detection task al-
lowed us to link well-defined retinal output signals
directly to visually guided behavior. We show that
visually guided behavior at its sensitivity limit is
strongly under diurnal control, reaching the highest
sensitivity and stability at night. The diurnal differ-
ences in visual sensitivity did not arise in the retina,
as assessed by spike recordings from the most sen-
sitive retinal ganglion cell types: ON sustained, OFF
sustained, and OFF transient alpha ganglion cells.
Instead, we found that mice, as nocturnal animals,
use a more efficient search strategy for visual cues
at night. Intriguingly, they can switch to the more effi-
cient night strategy even at their subjective day after
first having performed the task at night. Our results
exemplify that the shape of visual psychometric
functions depends robustly on the diurnal state of
the animal, its search strategy, and even its diurnal
history of performing the task. The results highlight
the impact of the day/night cycle on high-level sen-
sory processing, demonstrating a direct diurnal
impact on the behavioral strategy of the animal.

INTRODUCTION

Vast differences in light intensity between day and night set strict

functional demands on the reliability and adaptability of visual

functions. Many retinal mechanisms operating at different circuit

locations and on multiple timescales contribute to direct stim-

ulus-dependent visual adaptations [1–4]; for reviews, see [5–7].

Humans, like other mammals, have an intrinsic clock in the

suprachiasmatic nucleus (SCN) that is synchronized by the

intrinsically photosensitive retinal ganglion cells (ipRGCs) driving

non-image-forming visual functions like the pupillary light reflex

[8–13], for reviews, see [14, 15]. However, it has remainedmostly

unknown to what extent the diurnal rhythm has direct functional

impact on retinal computations and retinal output signals. Can

diurnal rhythm contribute to the adaptive processes of image-

forming vision by anticipating the different functional needs of

vision between the day and the night?

A rich set of diurnal changes in retinal biochemistry and

physiology has been reported. The concentration and expres-

sion levels of neurotransmitters and many key signaling mole-

cules in the retina show circadian and/or diurnal changes,

including the neuromodulators dopamine [16, 17] and melatonin

[18], melatonin receptors [19], as well as melanopsin in ipRGCs

[20–22]. The internal messenger cAMP shows diurnal changes

in photoreceptors [23, 24] that have been suggested to cause

different signal and noise distributions in rods [25]. Even the

expression of different types of visual pigment molecules in

photoreceptors in some species has been shown to be depen-

dent on the time of the day/night cycle [26, 27]. Furthermore,

disk shedding in rods is under diurnal control [28], and a recent

study even reports differences in the rate of the visual cycle be-

tween day and night [29]. Retinal signals, as assessed by electro-

retinogram, show diurnal amplitude variations [30–34], as does

electrical coupling between rods and cones [35], rods and rods

[36], between AII amacrine cells [37], as well as between RGCs

[38]. The intrinsically photosensitive M4 cells of rat (also known

as ON sustained alpha RGCs) have higher firing rates in the

daytime [39]. Similarly, a recent study relying on recordings

from single RGCs in awake mice in vivo revealed circadian vari-

ation in the firing rates of directionally selective RGCs and

some other RGC types over multiple day/night cycles [40].

Finally, differences in the inhibitory signaling of RGCs have

been shown to depend on melatonin levels [41]. Despite this

extensive circadian modulation at the molecular and cellular

levels as well as in retinal circuit connectivity, little is known

about the functional implications of these circadian changes

on retinal computations and visually guided behavior in rodents.

Human studies have reported diurnal changes at both the

photopic and scotopic sensitivity thresholds [42, 43]. Similarly,

small diurnal differences in decrement detection thresholds

across dim background lights have been reported in mice in a

water maze task [44]. It has been commonly hypothesized that

these changes in visual sensitivity at the behavioral level relate

to physiological changes in the retina [35, 44, 45], but direct

experimental evidence is missing.
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Here, we have measured the impact of diurnal rhythm on the

visual sensitivity of mice, both at the level of the most sensitive

retinal ganglion cell types and visually guided behavior. Single-

photon detection at the sensitivity limit of vision provides a

uniquely simplified framework to study diurnal effects from

well-defined, functionally relevant retinal outputs to visually

guided behavior. Our recent work relying on this task has shown

that behavioral performance of mice can be linked to the spike

outputs of ON sustained alpha RGCs [46]. To assess the

possible role of melatonin in diurnal changes of visual functions,

we performed the same experiments on two mouse strains:

CBA/CaJ (hereafter abbreviated CBA) mice that have melatonin

[47] and C57BL/6J (hereafter abbreviated C57) mice that do not

have a robust melatonin rhythm [48] but still have a diurnal

rhythm potentially due to dopamine [17].

RESULTS

Mice Have Higher Behavioral Sensitivity in Light
Detection at Night Than at Day
First, we tested the hypothesis that mouse vision is more sensi-

tive during the night than during the day as assessed behaviorally

in a dim-light detection task (Figure 1A). CBA and C57mice were

split into two groups (Figure 1B): one group was tested during

their subjective day (‘‘day group’’) and the other group during

their subjective night (‘‘night group’’). Both groups were accli-

mated to their respective diurnal rhythms, and the adjustment

was confirmed by monitoring running-wheel activity in their

housing conditions (STAR Methods). Figures 1C and 1D show

the running wheel activity of individual mice in the day group

(top panels) and in the night group (bottom panels) for both

CBA (Figure 1C) and C57 (Figure 1D) mice. The population

average across all mice is shown below each actogram. The

running-wheel activity of both mouse strains showed a clear

diurnal dependence, with the peak activity appearing soon

after light offset.

We measured the pupil sizes of dark-adapted mice corre-

sponding to the times at which behavioral measurements were

conducted. This was done to separate potential optical effects

from neural effects on visual sensitivity (Figures 1E and 1G) by

taking differences in pupil size into account in our conversion

of light intensities into photoisomerization rates (Figures 1I–1J,

see STAR Methods). There was a slight but significant increase

(7%–9%) in the pupil size during the subjective night, both

in C57 (p < 0.0001, paired samples t test) and in CBA mice

(p < 0.02). These changes cannot impact behavioral sensitivity

in our measurements, where they are already accounted for in

photoisomerization calculations. However, they could still be

interesting indicators of the internal state of the animals (e.g.,

arousal, see Discussion).

Our main interest here was visually guided behavior as as-

sessed in a dim-light detection task in a water maze in the

dark. All mice had been trained to associate an escape ramp

from the water with a light stimulus during a training period

preceding the experiments where different stimulus intensities

were used (Figures 1A, 1F, and 1H). The training ended when

the performance of both the day and the night groups for an

easily detectable bright stimulus light stabilized at a level of

R80% correct choices, which occurred after �12 days of

training in both the day and the night groups. Figures 1I and 1J

show the psychometric functions for light detection for the

night groups (blue) and the day groups (gold). All groups were

dark-adapted for at least 2 h prior to the experiments (Figure 1B).

The times of the day when the mouse groups were tested in

the behavioral experiments are indicated as bars on top of the

light/dark cycle schematics in Figure 1B. Figures 1I and 1J

show a robust difference in visual sensitivity between the day

and the night groups: mice in the night group were more likely

to find the stimulus corridor in the maze as the first choice over

a large range of the dimmest stimulus intensities. The shape of

the psychometric functions between the day and the night

groups differed significantly: the slope parameter n for both

CBA and C57 being �2 times greater for the night group (see

Equation 1 in Figure 1 legend). The intensity needed for half-

maximal performance (fit parameter Km) was significantly lower

at night compared to that at day: 13-fold in CBA and 7-fold

in C57. By contrast, the intensity at which the psychometric

functions started to deviate from the chance level (�0.01 visual

pigment isomerizations per rod per second, R*/rod/s) was similar

for both the day and the night groups, consistent with the idea of

a shared ultimate neural constraint (see Discussion).

We also tested CBA mice at the time of night when melatonin

levels are reported to be the highest [49] (indicated by a red bar

in Figure 1B). Performance at this testing time was similar to

that at the other testing time during the subjective night (cf. red

and blue traces in Figure 1I). Moreover, CBA and C57 mice

showed very similar performance at their subjective night: the

light intensity needed for half-maximal performance was �0.02

R*/rod/s for both strains. Thus, the diurnal differences in

behavior were not dependent on the melatonin proficiency or

deficiency of mouse strains nor on the prevailing melatonin

level in CBA. The performance levels at subjective night were

stable and consistent across the two mouse lines.

The Most Sensitive RGCs Do Not Show Strong Diurnal
Changes in Their Threshold Sensitivity
Wewanted to test whether the diurnal changes in visually guided

behavior arise already in the retinal signal processing. In general,

linking retinal function to behavior is particularly difficult since

the functional connection between the spike codes originating

from the populations of �40 distinct RGC types [50–52] and

behavior has not been established. Vision at its sensitivity

limit provides a unique opportunity to crucially simplify this

challenge, as visual information arising from sparse photons is

encoded only by a limited number of RGC types. In recent study,

we targeted all unidentified RGC types in complete RGC

mosaics across �200 RGCs and showed that ON sustained

(ON-S), OFF sustained (OFF-S), and OFF transient (OFF-T) alpha

RGCs constituted the most sensitive RGC types of the mouse

retina [46]. Furthermore, we showed by relying on a transgenic

mouse line with a sensitivity shift in the ON pathway that behav-

ioral light detection at the sensitivity limit is driven only by the

ON-S RGCs. Now we utilized this single-photon detection para-

digm to study the retinal contribution to the observed diurnal

changes in behavior.

Here, we measured the spike outputs of all of these most sen-

sitive mouse RGC types—ON-S, OFF-S, OFF-T alpha RGCs—

ex vivo in dark-adapted flat-mounted mouse retinas with the
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particular interest in the ON-S RGCs. We recorded the re-

sponses of alpha RGCs to sequences of flashes at intensities

close to the detection threshold at times of the subjective day

and the subjective night corresponding to the behavioral testing

times. Figure 2 shows example spike rasters of such measure-

ments at four increasing flash intensities for CBA ON-S (Fig-

ure 2A), OFF-S (Figure 2B), and OFF-T RGCs (Figure 2C) tested

at subjective day (gold) and subjective night (blue). Figures 2D–

2F show the mean firing rates for each of the stimulus intensities.

These flash intensities (from the lowest to the highest intensity)

elicit only �10–200 visual pigment isomerizations (R*) in the

entire receptive field of the RGC assuming a collecting area of

10,000 rods [53]. We used two-alternative forced choice

(2AFC) ideal observer analysis to define the sensitivity limit of

RGCs based on these spike responses as previously described

([54]; STAR Methods). Discrimination was based on computing

the correlation between the mean response and each epoch

during the intervals before and after the flash. The task was to

determine which of the two intervals was more likely to contain

a response to the flash. Figures 2G–2I show 2AFC results calcu-

lated from the same example recordings as shown in Figures 2A–

2C.We defined the RGCdetection threshold as the light intensity

giving a 75% fraction of correct choices in this task. Figure 2J

shows the population data on detection thresholds. OFF-S and

OFF-T RGCs were slightly more sensitive (<3-fold; see Table

S1) than ON-S RGCs for both mouse lines, consistent with

previous literature both in mouse [55] and in primate [54]. Most

importantly, no significant day-night differences in the detection

thresholds of the ON-RGCs between the day and the night were

seen in either the CBA or the C57 mouse strains (CBA: p = 0.88,

C57: p = 0.94, two-independent-samples t test). Likewise, the

day-night differences in the detection thresholds of OFF-S and

OFF-T RGCs were not significant (OFF-S CBA: p = 0.14, C57:

p = 0.78; OFF-T CBA: p = 0.08, C57: p = 0.19). We alsomeasured

the sensitivity of a subset of CBA ON-S RGCs to longer 500-ms

light steps in addition to flashes. The sensitivity to light steps did

not differ between the day and night (p = 0.95, two-independent-

samples t test, Table S1). The lack of diurnal differences in ON-S

RGCs is the most important for behavioral sensitivity compari-

sons, since our recent work relying on a transgenic mouse strain

shows that visually guided behavior at the sensitivity limit of

vision correlates closely with the performance of ON-S alpha

but not OFF-S RGCs [46].

To assess whether other aspects of spike responses could

indicate day-night differences, we also compared the sponta-

neous firing rates and flash sensitivities (spikes elicited per

photoisomerization) of RGCs between the day and night

groups. The spontaneous firing rates of ON-S and OFF-S

RGCs differed significantly from each other for both CBA

and C57 mice consistent with previous studies (for mouse, see

[55]; for primate ON and OFF parasol cells, i.e., the closest ho-

mologs of mouse alpha RGCs, see [54]). Comparing strains,

CBA ON-S RGCs had a lower tonic firing rate than C57 ON-S

RGCs (mean firing rate ±SEM, Hz): 2.1 ± 0.5 Hz (CBA, ON-S,

n = 47) versus 12 ± 1.9 Hz (C57, ON-S, n = 40), while both the

CBA OFF-S and OFF-T RGCs had a higher tonic firing rate

than C57 OFF RGCs: 74 ± 1.9 Hz (CBA, OFF-S, n = 61) versus

62 ± 2.4 Hz (C57, OFF-S, n = 35); 33 ± 1.4 Hz (CBA, OFF-T,

Figure 1. Mice Reach Higher Visual Sensitivity in a Dim-Light Detection Task in a Water Maze during Their Subjective Night Compared with

Their Subjective Day

(A) Experimental protocol consisting of a training period (12–15 days; done at subjective day for all mice) with a constant bright stimulus light and followed by an

experimental period (10–16 days; done at subjective night for the night group and at subjective day for the day group). During the experiment, the light intensity

was made dimmer in each testing day. At the end of the experimental series, the mice were re-tested at a high intensity to ensure that no significant changes had

happened in their overall ability to perform the task.

(B) Light cycles (12 h/12 h light/dark) for the day group (above) and the night group (below): light period (white), dark period (gray). Behavioral tests were carried out

on dark-adaptedmice in the timewindows indicated by bars above the light cycles: day group = gold bar (tested at 3 h from the light onset); night group = blue bar

(tested at 3 h from the light offset, test time 1), The day groupwas dark-adapted for 2 h during their light period in behavioral experiments (gray bar). The ‘‘test time

2’’ above the night group (red bar) marks the time when melatonin levels are estimated to be highest (9 h after light offset [49]), and the CBA night group was

additionally tested at this time.

(C) Running-wheel actograms for CBA mice housed under the light cycles shown in (B) plotted on a 24-h timescale: day group above (gold), night group below

(blue); light period (white), dark period (gray). Actograms exemplify the activity profile of an individual mouse as a function of time on 20 successive days (in 10-min

time bins; in 15 quantiles with the first being 1–55 revolutions, the second 56–110, and so on). Bottom: the mean activity profiles (the width of each trace indicates

mean ± SEM); day group n = 4 mice; night group n = 6. The scale bar is the same for all mean activity profiles.

(D) The same as (C) but showing results for C57 mice. Mean activity profiles for day and night groups: n = 8.

(E) The pupil areas of CBA mice measured at behavioral testing times are shown in bar graphs (mean ± SEM, mm2): 4.6 ± 0.1 (day, gold); 4.9 ± 0.1 (night, blue).

Symbols connected by lines are from the same mouse (n = 14).

(F) Training data of the day (gold, n = 10) and the night (blue, n = 10) group of CBA mice in a behavioral light detection task in a water maze using a single easily

detectable stimulus light intensity. The dashed line indicates the chance level of 0.17 (= 1/6). The fraction of correct choices is plotted against the training day:

mean across animals ±SEM.

(G) The same as (E) but for C57 mice (n = 16, mean ± SEM, mm2): 5.1 ± 0.08 (day, gold); 5.6 ± 0.1 (night, blue).

(H) The same as (F) but for C57 mice (day n = 10, night n = 11).

(I) Behavioral visual sensitivity of dark-adapted CBA mice measured in a dim-light detection task in a six-armed water maze tested at day (see testing times in

(B) and at night: day group (gold symbols, n = 10), night group (blue symbols, n = 10). The fraction of correct choices is plotted against the light intensity

(rate of photoisomerizations, R*/rod/s). Each data point is a mean across animals at that intensity ±SEM. Smooth fits are from Equation 1, STAR Methods:

F = 0.17 + Fmax $ I
n/(In + Km

n) with parameters: Km = 0.29, Fmax = 0.78, n = 0.73 (day, gold, coefficient of determination r2 = 0.97) and Km = 0.02, Fmax = 0.78,

n = 1.45 (night, blue, r2 = 0.99). Red dashed line shows the smooth fit to dataset measured at the time corresponding to the melatonin peak (data omitted for

clarity, n = 9), with parameters Km = 0.02, Fmax = 0.73, n = 1.68.

(J) The same as (I) but showing results on C57 mice (day: n = 10, night: n = 11). Smooth fit from Equation 1 with parameters: Km = 0.14, Fmax = 0.75, n = 0.83 (day,

gold, r2 = 0.98); Km = 0.02, Fmax = 0.72, n = 1.57 (night, blue, r2 = 0.98). The slope (n) and half-saturating intensity (Km) parameters between the day and the night

groups differed significantly for both CBA and C57 as assessed by the posterior probability of a logistic regression fit (see STAR Methods).

See also Figure S1.
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n = 50) versus 25 ± 1.5 Hz (C57, OFF-T, n = 29). Consistent with

the mean rates, the variances of the spontaneous firing rates

in ON-S RGCs were significantly lower in CBA than in C57

mice (mean variance ±SEM, Hz2): 10 ± 2.3 (CBA, n = 47) versus

81 ± 16 (C57, n = 40). However, no significant day-night differ-

enceswere found in the intrinsic firing rates (see Table S1). These

findings exclude the possibility that differences in retinal noise

as measured in the key outputs would underlie the differences

in the shapes of psychometric functions between night and

day. Furthermore, neither the maximal spike count per photoiso-

merization (peak flash sensitivity or signal gain, Table S1) nor

the integration time differed significantly between the day

and the night at the level of RGCs. Neither did we find any signif-

icant day-night differences in other spike response metrics

that we tested, with the variance of the OFF-T firing rate as the

sole exception (Table S1).
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D E
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J

Figure 2. The Sensitivity Limits of Retinal

ON-S, OFF-S, and OFF-T alpha RGCs Do

Not Show Strong Diurnal Variation

(A) Spike rasters showing responses (n = 30) of a

CBA ON-S RGC to a family of 20-ms flashes

(delivered at the time of the arrow) of fixed in-

tensities (lower left corner in each box, in R*/rod/

flash) measured at subjective day (gold) and sub-

jective night (blue). These are two different example

cells from two different retinas.

(B and C) Single OFF-S (B) and OFF-T (C) cell spike

responses from a CBA mouse measured at sub-

jective day (gold) and subjective night (blue) to the

same flash intensities as in (A).

(D) ON-S cell mean firing rates (PSTH; 10-ms time

bin, n = 50) for the same cells and flash intensities as

in (A).

(E and F) OFF-S (E) and OFF-T (F) cell mean firing

rates for the same cells and flash intensities as in (B)

(n = 50).

(G–I) Two-alternative forced choice task for the

sameON-S (G), OFF-S (H), andOFF-T (I) RGCs as in

(A)–(C).

(J) Threshold intensities for a population of ON-S,

OFF-S, and OFF-T RGCs at day and at night from

CBA and C57 mouse strains. Bar graphs show

mean + SEM. See also Table S1.

Mice Use a More Efficient Search
Strategy for Visual Cues at Night
What then underlies the diurnal change in

behaviorally measured visual sensitivity?

Since diurnal changes in the retinal output

signals do not explain the observed behav-

ioral effects, these differences must arise

downstream of the retina in the efficiency

of sensory processing and/or from differ-

ences in the behavioral strategy used to

sample visual space. To investigate this

further, we took two primary approaches.

First, we wanted to test whether the differ-

ences in behaviorally measured psycho-

metric sensitivity curves are tightly associ-

ated with the testing time of the day/night

cycle. Second, wewanted to test whether these sensitivity differ-

ences can be associated with the behavioral strategy of mice as

quantified by several trackable features of mouse behavior.

We first tested whether the behaviorally measured differences

in visual sensitivity between the day and night groups are revers-

ible. In other words, if the measured differences in performance

are linked only to the testing time during the day/night cycle, the

effects should reverse when the day group is tested at night

and vice versa (see Figure 3A). The dashed horizontal lines in

Figure 3B show behavioral sensitivity measured at the stimulus

intensity where the day/night difference was greatest in the orig-

inal measurements (red arrow in Figure 3B). The performance of

the day group after the swap (i.e., now tested at night; green

symbol following axis break in Figure 3B) reached the perfor-

mance level observed for the original night group (blue dashed

line) in line with the idea that the performance level correlates
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with the diurnal phase. Surprisingly, the night group (purple sym-

bol following axis break in Figure 3B) was able to maintain its

original high performance level (blue dashed line) after the

swap (i.e., now tested at day). These data, together with the

RGC data, point toward a neural location other than the retina

underlying the behavioral differences and/or a difference in the

sampling strategy of visual cues. Such a diurnal history depen-

dence in performance levels would be very unlikely to arise in

retinal circuits.

Next, we wanted to test whether the observed differences in

behavior originate from how mice sample visual cues (i.e., their

behavioral strategy). We used our tracking technology to quan-

tify mouse head and body positions in each video frame and

analyzed the mouse behavioral strategy in the center of the

maze before the decision to enter a certain corridor (see STAR

Methods). This was done in the intensity range corresponding

to the greatest day-night difference in the original behavioral

dataset (0.03–0.14 R*/rod/s). We used a range of behavioral

features (12 in total) listed in Table 1. Some features related to

the body position of mice have also been used in earlier literature

[56] in the context of other visual tasks at higher light levels.

Several other features related to the head orientation of mice

are unique for this study relying on our novel tracking technology

of the head position and orientation of mice in darkness. The

behavioral features differed significantly between the original

subjective day and subjective night groups as shown in Table

1, in line with the idea that there is a clear difference in behavioral

patterns between the day and night mouse groups (p < 0.03

for all features, Mann-Whitney U test for continuous features

and a permutation test for discretized features, see Table 1). Fig-

ure 4 exemplifies two key features for the day and night groups:

one related to body position (the distance of mice from the maze

center during swimming trials) and one related to head orienta-

tion (the total time that the stimulus is in the visual field while

the mouse is making the selection between different channels

in the center of the maze). Figures 4A–4C show location heat-

maps and location histograms ofmice relative to themaze center

during the swimming trials for the original day and the original

night groups. Indeed, mice in the night group stayed significantly

longer on average in the center of the maze collecting informa-

tion of the correct stimulus corridor (see Table 1: ‘‘Swimming

distance from center’’: p = 0.004, Mann-Whitney U test). Simi-

larly, Figure 4E shows that the total time that the mice sampled

data from the stimulus channel was significantly longer for the

night group (p < 2$10�8, Mann-Whitney U test; see Table 1

‘‘Time stimulus in view’’). Furthermore, in the day group, more

mice (�18%) made their decision without sampling any informa-

tion at all from the stimulus channel, whereas, for the night

group, the corresponding fraction was <10% (bars correspond-

ing to Dt = 0 in Figure 4E inset). In summary, both of these fea-

tures can directly affect behavioral performance: the longer the

mice stay at the center of the maze seeking the stimulus and

the longer the stimulus falls in their visual field, the more confi-

dently they can make a correct first choice.

We wanted to understand more broadly whether the feature

space studied and showing differences between the day and

night groups also correlates with the actual behavioral perfor-

mance as quantified by fraction of correct choices in the 6AFC

task. Since behavioral performance becomes similar for both

day and night groups after the swap, the differences in the

behavioral features between the groups should also disappear

if indeed the behavioral pattern captured by these features is

associated with the performance in the 6AFC task. Indeed, we

observed that 10 out of 12 features that differed significantly
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Figure 3. The Mice Are Able to Perform Equally Well in Their Subjective Day after They Have Performed the Visual Task in Their Subjective

Night

(A) Scheme of the ‘‘swap’’ experiments, where the testing time ofmicewas swapped for both day and nightmouse groups so that the day groupwas tested during

their subjective night (green bar) and the night groupwas tested during their subjective day (purple bar). Mice were kept in two different 12 h/12 h light/dark cycles,

plotted on a 24-h timescale: day group above and night group below; light period (white), dark period (gray). The behavioral testing times were changed so that

day group (gold bar) was tested at night (green bar; 3 h from light offset) and night group (blue bar) was tested during their day (purple bar; 3 h from light onset).

(B) Left: the fraction of correct choices against light intensity is shown for the day and night groups before the swap. This is the same data as in Figure 1J (C57

mouse strain). Right: fraction of correct choices (mean ± SEM) averaged across 3 days (steady-state) following the swap tested with a single intensity (red arrow,

0.03 R*/rod/s, where the maximal day-night difference was observed before the swap): 131 trials (night group tested at subjective day, purple), 118 trials (day

group tested at subjective night, green). Dashed lines show the performance levels of day group (gold) and night group (blue) before the swap. Square symbols

show the mice (n = 11) that were originally tested at their subjective night and now tested at their subjective day after the swap. Circle symbols show the group of

mice (n = 10) that were originally tested during their subjective day and now tested at their subjective night after the swap.
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before the swap became similar after the swap (see Table 1).

Figures 4D and 4F exemplify that both the swimming location

relative to the center of the maze and the total time that the

stimulus is in the visual field became very similar after the

swap (p = 0.08, and p = 0.19, respectively, Mann-Whitney U

test; see Table 1). Similarly, the fraction of mice that do not sam-

ple at all from the stimulus before making a choice became

similar and much smaller than in the original day group (bars

corresponding to Dt = 0 in Figure 4F, inset). Significant differ-

ences only remain for two of the 12 features: angular velocity

and swimming speed (see Table 1). Despite these two features,

our data are, overall, consistent with the notion that there is a

robust difference in behavior as quantified over a wide range of

body position and head-orientation-related features between

the day and night groups. Furthermore, the results after the

swap demonstrate that these features can be qualitatively linked

to the performance of the mice in the 6AFC task.

DISCUSSION

We show that psychometric functions in a behavioral photon

detection task are under diurnal control and that mice reach

higher visual sensitivity at night. This change correlates with a

different behavioral repertoire between the subjective day and

the subjective night as characterized by multiple behavioral fea-

tures. Several of these features suggest that mice use a more

efficient behavioral strategy for visual cues at their subjective

night. Intriguingly, improvements in the search strategy are

Table 1. Behavioral Features from the Automatic Video Tracking System Compared between Day and Night

Features

Before Swap After Swap

Day Night p Value Night Day p Value

Body Position

Swimming distance (mm) 190 218 0.024* 182 181 0.802

Swimming distance from

center (mm)

56 46 0.004* 57 52 0.082

Swimming speed (mm/s) 145 136 0.002* 150 128 4.9 3 10�5*

Swimming time (s) 1.1 1.4 1.5 3 10�4* 1.1 1.2 0.148

Head Direction

Angular velocity (deg/s) 101 133 4.8 3 10�4* 121 107 0.049*

Heading angle (deg) 86 46 3.0 3 10�4* 49 60 0.576

Meander (deg/mm) 0.7 0.9 0.001* 0.8 0.8 0.538

Number of corridors seen 5.1 5.4 0.013* 5.0 5.0 0.901

Time stimulus in view (s) 0.7 1.0 2.2 3 10�8* 0.8 0.9 0.186

Times correct corridor

comes into view

1.0 1.2 0.005* 1.1 1.2 0.068

Times new corridor comes

into view

6.0 7.3 2.0 3 10�5* 6.3 6.5 0.696

Turn angle (deg) 217 271 0.002* 226 209 0.956

‘‘Before swap’’ indicates the day group tested at day and night group tested at night. ‘‘After swap’’ indicates day group tested at subjective night and

night group tested at subjective day. The features are explained below. To exclude the time after the mouse has detected the stimulus and merely

swims toward it, the analysis is focused on the early part of the trial corresponding to 50% of the maze area (see STAR Methods). In this constrained

area, the analysis starts when themouse is freed to swim and endswhen themouse exits this central region toward any corridor. Themouse visual field

is assumed to be ±100�. The analysis is done on the intensity range of 0.03–0.14 R*/rod/s, where the maximal day/night performance difference was

observed (see Figures 1G and 1H). Nonparametric Mann-Whitney U test was used to test the difference in medians between night and day in all of the

continuous behavioral features and permutation test [88] with mean as a test statistic in the discretized features (Number of corridors seen, Times cor-

rect corridor comes into view, Times new corridor comes in to view). The statistically significant values (p < 0.05) are marked with an asterisk. The

sample sizes were the following: day group before swap n = 115 trials; night group before swap n = 130 trials; day group after swap n = 118 trials;

night group after swap n = 131 trials.

Feature explanations: swimming distance: the total path length (mm). Swimming distance from center: the median distance of the mouse from the

maze center on its swimming path (mm). Swimming speed: the median swimming speed of the mouse (mm/s). Swimming time: the total swimming

time for themouse to exit the central region (s).Angular velocity: themedian turning speed of themouse on its swimming path (degrees/s). Total turning

(degrees) divided by the total swimming time (s). Heading angle: the median angle between the head-direction of the mouse and the direction of the

stimulus relative to the mouse head (degrees). A small heading angle indicates that the mouse has been mainly looking at the stimulus. Meander

( = zigzag): the change in the direction of movement of the mouse relative to the distance it moves (degrees/mm). A small value in meander indicates

that mouse swam a straight route from start to the target. Number of corridors seen: count of how many of the six light-emitting diodes (LEDs) (the

stimulus LED is on, the other five LEDs are off) have fallen inside the visual field of the mouse on its swimming path. Time stimulus in view: the accu-

mulated time the stimulus stays within the visual field (s). Times correct corridor comes into view: the number of times the stimulus LED enters the visual

field. The number increases each time when the stimulus appears in the visual field after being absent from the visual field. Times new corridor comes

into view: the number of times any LED (the stimulus LED or any other LED) falls within the mouse visual field. The number increases when the mouse

looks into the same LEDmultiple times. Turn angle: the cumulative change in direction during the swimming path (degrees). A large turn angle indicates

circling movements.
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irreversible: once themice have performed the task at night, they

implement the improved strategy also at their subjective day.

Finally, we show that the sensitivity of ON-S, OFF-S, and OFF-

T alpha RGCs, belonging to the most sensitive RGC types in

the mouse retina [46], do not markedly depend on the diurnal

rhythm in ex vivo retinal preparations. These results have several

important consequences related to diurnal effects on retinal

computations, behavioral states, and higher-order brain states

controlling behavior and sensory processing as discussed

below.

Why Is the Detection Threshold of the Most Sensitive
RGCs Not under Diurnal Control?
It has been hypothesized previously that many of the diurnal or

circadian changes in retinal physiology relate to functional im-

provements enhancing visual sensitivity at night. Our data now

show that the detection thresholds of the most sensitive RGC

types in the mouse retina do not have such a diurnal

A B

C D

E F

Figure 4. Mice Use a More Efficient Search

Strategy for Visual Cues at Night

(A) Tracked population swimming paths of 115 trials

of mice (C57) in their day for the intensity range 0.03–

0.14 R*/rod/s, where the maximal day/night perfor-

mance difference was observed (see the psycho-

metric functions, Figures 1I and 1J). The ‘‘correct’’

corridor with the light stimulus is marked with S.

(B) The same as (A) but shown for the night mice (130

trials).

(C) Inset, bottom right: the distributions of the dis-

tances the mice were from the maze center in each

frame (40-ms): n = 10 mice, 115 trials (day, gold); n =

11 mice, 130 trials (night, blue). The main panel

shows the cumulative distributions of the distance

from the center for the day (gold) and the night (blue)

group.

(D) The same as (C) but shown for the ‘‘swap’’ ex-

periments as explained in Figure 3, where the day

group tested at subjective night (green, n = 10 mice,

118 trials) and the night group tested at subjective

day (purple, n = 11 mice, 131 trials) have similar

performance in the behavioral task as shown in

Figure 3B.

(E) Inset, bottom right: the distributions of total time

(Dt) that the stimulus projection was within the visual

field of mice during the time that they were seeking

the stimulus in the center of the maze: day (gold),

night (blue). These distributions were obtained by

tracking the head position and direction of the mice

during swimming trials and assuming a visual field

of ±100 degrees [57]: n = 10mice, 115 trials (day); n =

11 mice, 130 trials (night). The main panel shows the

cumulative distributions of Dt for the day (gold) and

the night (blue) group.

(F) The same as (E) but shown following the swap,

n = 11 mice, 131 trials (night group tested at sub-

jective day, purple); n = 10 mice, 118 trials (day

group tested at subjective night, green).

dependency. This is an interesting finding,

since previous studies of diurnal changes

in retinal responsiveness have relied mainly

on ERG response amplitudes, which bear

no clear relation to RGC sensitivities at the visual threshold

[30–34]. Our results are, to our knowledge, the first direct mea-

surements of diurnal effects on the absolute sensitivity limit of

RGCs. One could, of course, always argue that the RGC mea-

surements are done in ex vivo preparations, leaving a possibility

for ex vivo and in vivo differences e.g., due to washout of neuro-

modulators. Furthermore, recent work [58] has provided evi-

dence that RGC signals in vivo could depend on the behavioral

state of the animal. Such effects requiring potential feedback in-

formation from the brain to the retina could, of course, not be de-

tected in ex vivo retinal experiments. However, as the behavioral

strategy correlates clearly and irreversibly with the diurnal

changes in behavioral performance, it is very difficult to explain

our main results with any simple neuromodulatory effects in

the retina and/or any feedforward-type retinal mechanism.

Furthermore, the lowest intensity at which the behavioral psy-

chometric sensitivity function starts to deviate from chance level

is very similar between night and day, whereas the slope of the
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functions is different. These data are in line with the notion of a

shared underlying ultimate constraint from RGCs. Indeed, our

recent study on a transgenic mouse line shows that, when ON-

S alpha RGC sensitivity is shifted to higher light intensities, the

psychometric functions as assessed by the same behavioral

photon detection task as here show a similar and robust shift

along the intensity axis [46], while their shape remains unaltered.

This phenomenon differs significantly from what we see here

(Figures 1I and 1J) and supports the idea that the diurnal effects

on visual sensitivity observed in this study do not arise in the

retina.

Why is there a rich set of physiological changes in the retina

that are under diurnal control if these changes do not have any

direct impact on retinal computations at the visual threshold?

The lack of diurnal control on the output signals of ON-S, OFF-

S, and OFF-T alpha RGCs at the sensitivity limit of vision does

not exclude the possibility of such effects on retinal computa-

tions for other stimuli and light level conditions, neither for these

or other RGC types. Indeed, a recent study [40] carried out at

stimulus light levels that were �1,000 times higher than those

corresponding to the behavioral threshold intensities in our study

and where also directional selectivity occurs, shows circadian

modulation of RGC responses across various types in vivo. Dark-

ness, however, sets very special functional requirements for

vision. The absolute threshold of RGCs and mouse behavior

gets very close to the limits posed by physics and retinal noise

[46, 59] showing that evolution has optimized this visual compu-

tation extremely well. Indeed, it is not clear what biological trade-

off might be served here by diurnal effects: maximizing the signal

and minimizing noise always seems to be the best thing to do in

these conditions, where photons are extremely sparse. Earlier

work on primate retina has shown that extremely dim back-

ground light causing only a couple of isomerizations during the

integration time of the RGC can fundamentally change the noise

filtering mechanisms of the inner retina in the ON pathway [54].

Thus, it is likely that the higher scotopic and mesopic light re-

gimes offer a much richer framework for spatiotemporal trade-

offs in vision and in retinal computations. At these light levels,

computing motion, direction, and orientation provides a rich

framework for potential targets for circadian control, whereas,

at the visual threshold, such computations are sacrificed for

sensitivity [46, 60–62]. In future studies, it will, therefore, be

intriguing to seek diurnal effects in well-defined retinal computa-

tions and retinal outputs at these higher scotopic and mesopic

light levels.

Diurnal Rhythm Can Impact the Behavioral Strategy and
the Shape of Psychometric Visual Functions of Mice
Our study is an example of diurnal changes in behavioral strategy

on a visually guided performance test. Many past studies as-

sume that animals apply a stable and optimal behavioral strategy

and analyze psychometric functions based on these assump-

tions. Our results underscore the fact that mice are far from

‘‘static robots’’ with a pre-defined set of behavioral rules.

Instead, they have a rich set of behavioral strategies to imple-

ment, even in the simplest task of photon detection. We show

that behavioral strategy itself can be under robust diurnal con-

trol, and, once an efficient night-time strategy has been estab-

lished, it can even be transferred to daytime behavior.

Can we provide a quantitative model for linking the observed

changes in behavioral strategy to psychometric functions? It is

intriguing that differences in the behavioral strategy as character-

ized by 12 different features correlated so well with differences in

behavioral visual sensitivity as measured in our experiments.

However, a more precise understanding of how the shape of

the psychometric functions could be predicted from these track-

able behavioral features would require more extensivemodeling.

Our recent study [46] provides a quantitative model for mapping

signals originating from sparse photons in a water maze to the

ON-S RGC population code and ultimately to psychometric

functions through an ideal observer integrating the neural infor-

mation. However, even if these models account for the differing

sampling strategies of visual cues between the day and night

group, they fail to predict the entire magnitude of the day-night

sensitivity shift. Particularly, the dominant day-night change in

the slope of the sensitivity functions observed in this study is

hard to implement if one assumes that the downstream circuits

integrating neural signals from the retina are in a static state be-

tween the day and night groups. Only models linking the down-

stream readout mechanismwith the behavioral state and/or day/

night state would allow the observed psychometric functions to

be produced. However, constraining the downstream parame-

ters of such models would require data from the neural popula-

tions of the mouse brain centers involved in photon detection

[63], manipulations of such brain states, e.g., via optogenetic

tools, and behavioral sampling by close-loop control of the stim-

ulus, while quantifying the behavior precisely. All of these ap-

proaches provide interesting directions for future studies.

What Is the Impact of Higher-Order Brain States on the
Diurnal Control of Psychometric Visual Functions?
Our data indirectly point toward changes in the higher-order sen-

sory processing coupled with the observed diurnal changes in

behavioral strategy and psychometric functions. In the light of

current knowledge, such changes appear plausible: there is an

emerging and expanding literature pointing out that the brain’s

response to sensory inputs is strikingly dependent on the behav-

ioral state, even in awake animals. It has been shown that neural

activity patterns, gain stages, gating mechanisms, and sensory

processing can vary vastly depending on the behavioral state,

e.g., the feeding state [64], thirst [65], locomotion [66–70], fear

[71, 72], arousal [73], and attention [74, 75]. Even though the pre-

cise neural circuit mechanisms linking behavioral states to brain

states are to a large extent unknown [63], some recent work has

been able to correlate internal brain states and circuit mecha-

nisms to particular distinct behavioral states, e.g., in reactions

to visual threats [72], locomotion [68], or behavioral transitions

from active to passive coping [76]. Interestingly, parallel to this

literature, other recent studies have shown that many higher-or-

der mechanisms can be under diurnal control: arousal [77],

attention [78], mood [79], short- and long-term memory forma-

tion [80–84], and the synchrony of cortical activity [85]. We hy-

pothesize that our findings on behavioral search strategies

reflect the circadian impact on higher-order brain states and

sensory processing. In line with this, and suggestive of a differ-

ence in the arousal state between night and day, we observed

larger pupil sizes of mice at their subjective night. It has been

shown that heightened arousal correlates with larger pupil sizes
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[73] and increases the signal-to-noise ratio of visual responses in

V1 circuits [86] and enhances contrast detection [87]. The

observed difference in pupil size, together with our modeling

results, therefore supports the hypothesis that diurnal changes

in behavioral repertoire are coupled with diurnal changes in

high-order brain states. It would be interesting to rigorously

test this hypothesis in future studies.

What Are the Implications of Our Findings for Behavioral
Experiments Carried Out on Rodents?
We show that the behavioral performance of mice in a dim-light

detection task is robust and stable even across mouse lines

when tested at their subjective night. It may be argued that

mice, as nocturnal rodents, are also more likely to follow optimal

visual strategies and higher-order sensory processing while

tested at night. Indeed, our conclusion that higher-order compu-

tations alsoworkmore effectively at night emphasizes the impor-

tance of the nominal night state in behavioral studies of nocturnal

rodents. If our findings generalize to other more complex behav-

ioral tasks, it suggests that rodents should be tested at their

subjective nighttime. Considering the normal daily rhythm of

scientists, this would support the idea of keeping mice in

reversed light cycles in their housing conditions by default. It

would also be important to study across more behavioral para-

digms what conditions produce the highest reproducibility of

experimental results.
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58. Schröder, S., Steinmetz, N.A., Krumin, M., Pachitariu, M., Rizzi, M.,

Lagnado, L., Harris, K.D., and Carandini, M. (2019). Retinal outputs

depend on behavioural state. bioRxiv. https://doi.org/10.1101/638049v1.

59. Naarendorp, F., Esdaille, T.M., Banden, S.M., Andrews-Labenski, J.,

Gross, O.P., and Pugh, E.N.J., Jr. (2010). Dark light, rod saturation, and

the absolute and incremental sensitivity of mouse cone vision.

J. Neurosci. 30, 12495–12507.

60. Grimes, W.N., Schwartz, G.W., and Rieke, F. (2014). The synaptic and cir-

cuit mechanisms underlying a change in spatial encoding in the retina.

Neuron 82, 460–473.

61. Kuo, S.P., Schwartz, G.W., and Rieke, F. (2016). Nonlinear spatiotemporal

integration by electrical and chemical synapses in the retina. Neuron 90,

320–332.

62. Yao, X., and Field, G.D. (2019). Inhibition controls receptive field size,

sensitivity, and response polarity of direction selective ganglion cells

near the threshold of vision. bioRxiv. https://doi.org/10.1101/683961.

63. Stringer, C., Pachitariu, M., Steinmetz, N., Reddy, C.B., Carandini, M., and

Harris, K.D. (2019). Spontaneous behaviors drive multidimensional, brain-

wide activity. Science 364, 255.

64. Filosa, A., Barker, A.J., Dal Maschio, M., and Baier, H. (2016). Feeding

statemodulates behavioral choice and processing of prey stimuli in the ze-

brafish tectum. Neuron 90, 596–608.

65. Allen, W.E., Chen, M.Z., Pichamoorthy, N., Tien, R.H., Pachitariu, M., Luo,

L., and Deisseroth, K. (2019). Thirst regulates motivated behavior through

modulation of brainwide neural population dynamics. Science 364, 253.

66. Bennett, C., Arroyo, S., and Hestrin, S. (2013). Subthreshold mechanisms

underlying state-dependent modulation of visual responses. Neuron 80,

350–357.

67. Fu, Y., Tucciarone, J.M., Espinosa, J.S., Sheng, N., Darcy, D.P., Nicoll,

R.A., Huang, Z.J., and Stryker, M.P. (2014). A cortical circuit for gain con-

trol by behavioral state. Cell 156, 1139–1152.

68. Lee, A.M., Hoy, J.L., Bonci, A., Wilbrecht, L., Stryker, M.P., and Niell, C.M.

(2014). Identification of a brainstem circuit regulating visual cortical state in

parallel with locomotion. Neuron 83, 455–466.

69. Maimon, G., Straw, A.D., and Dickinson, M.H. (2010). Active flight in-

creases the gain of visual motion processing in Drosophila. Nat.

Neurosci. 13, 393–399.

70. Niell, C.M., and Stryker, M.P. (2010). Modulation of visual responses by

behavioral state in mouse visual cortex. Neuron 65, 472–479.

71. Herry, C., Ciocchi, S., Senn, V., Demmou, L., Müller, C., and Lüthi, A.
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Petri Ala-

Laurila (Petri.ala-laurila@helsinki.fi). This study did not generate new unique reagents.

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Ames’ Medium Sigma-Aldrich Cat# A1420

HiLyte Fluor 750 hydrazide AnaSpec Cat# AS-81268

Experimental Models: Organisms/Strains

C57BL/6J Charles River RRID:IMSR_JAX:000664

CBA/CaJ The Jackson Laboratory RRID:IMSR_JAX:000654

Software and Algorithms

MATLAB (version: R2014b and onward) The Mathworks https://se.mathworks.com/products/

matlab.html

OriginPro (version: 2018b) OriginLab http://www.originlab.com

IBM SPSS (version: 22) IBM SPSS Statistics https://www.ibm.com/products/

spss-statistics

Symphony (version: 1.2.1.0 and onward) Symphony-DAS; Ala-Laurila Lab https://github.com/Symphony-DAS/

symphony-v1; https://github.com/ala-

laurila-lab/Symphony-1.x

Andor iQ3 Oxford Instruments https://andor.oxinst.com/products/

iq-live-cell-imaging-software/andor-iq3

ImageJ (version: 1.47) NIH https://imagej.nih.gov/ij

Python (version: 3.6) Python Software Foundation https://www.python.org

OpenCV (version: 3.4) OpenCV team https://opencv.org

NumPy (version: 1.16) NumPy developers http://www.numpy.org

SciPy (version: 1.2) SciPy developers https://www.scipy.org

PySide2 (version: 5.6) Qt Project https://wiki.qt.io/PySide

TensorFlow (version: 1.12 GPU) Google Brain Team https://www.tensorflow.org

VirtualDub (version: 1.10.4) virtualdub.org http://virtualdub.org

Java (version: SE 7) Oracle https://www.oracle.com

Micro-Manager (version 1.4.22) Open Imaging https://micro-manager.org

Stan platform The Stan Development Team http://mc-stan.org

Multi-Device Interface Software for running wheel

recording

Columbus Instruments http://www.colinst.com/products/

multi-device-interface-mdi-software

BioRender BioRender biorender.com

Other

8 Station Home Cage Running Wheel System with

Software

Columbus Instruments 0297-8

Microscope for ganglion cell recordings Nikon Eclipse FN1

Amplifier for ganglion cell recordings Axon Instruments / Molecular Devices MultiClamp 700B

Excitation light source for epifluorescence Excelitas Technologies X-Cite 120Q

Camera for fluorescence imaging Andor technology, Oxford Instruments iXon Ultra 897 EMCCD

Camera for tracking mouse behavior and measuring

pupil size

Watec Wat-902H2 Ultimate

Optometer for light calibrations UDT Instruments S470 & S450 with 268R sensor

Spectrometer for spectral irradiance measurements

of light stimuli

Ocean Optics JAZ-COMBO
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
Melatonin deficient mice (C57BL/6J; Charles River Laboratories, Sulzfeld, Germany; RRID:IMSR_JAX:000654) and melatonin profi-

cient mice (CBA/CaJ; Jackson Laboratory, Bar Harbor, ME, USA; RRID:IMSR_JAX:000664) were used in all experiments (males and

females at the age of 8-40 weeks). Mice were housed in two roomswith different 12 h/12h light/dark cycles: lights were on from 06:00

to 18:00 in the room designed for the ‘‘day group’’ (C57: 6 females and 5males; CBA: 5 females and 5males) and from 20:00 to 08:00

in the room designed for the ‘‘night group’’ (C57: 5 females and 5 males; CBA: 5 females and 5 males, CBA ZT21 night group: 3 fe-

males and 6 males; see Figure 1B). Animals were acclimated to their light cycles for at least 20 days before the experiments. The

lighting of both rooms wasmonitored with a data-logging lux meter (model HHLM112SD, Omega Engineering Inc). The light intensity

during the ‘‘day’’ time was in the range 100-700 lux (depending mainly on the cage location in the rooms) and always well beyond

the threshold light level needed for photoentrainment of mice for diurnal rhythms [89]. All animal procedures were performed accord-

ing to the protocols approved by the Regional State Administration Agency of for Southern Finland. Sample sizes were not deter-

mined prior to the experiments, and the investigators were not blinded to the mouse strains.

METHOD DETAILS

Running wheel experiments
The runningwheel activity of mice was recorded from single-housedmalemice in cages (26.73 20.73 14 cm) equippedwith running

wheels (9.5 cm in diameter; Columbus Instruments International). The data was acquired in each case consecutively for 20 days using

10-min time bins with the software provided by Columbus Instruments (Multi-Device Interface Software) and further analyzed in

MATLAB (R2014b).

Pupil measurements
The pupil areas of dark-adapted mice were measured as previously described [46] to allow us to estimate the light intensities used in

behavioral experiments in the rates of photoisomerizations in rods (R*/rod/s, see below). Briefly, these measurements were done

in darkness in a dry water maze during the same time interval as the behavioral experiments were performed. The mouse was

held from its tail at the center of the maze and monitored with an IR-sensitive camera (WAT-902H2, Watec) with a macro lens

(MLH-10X macro zoom lens, Computar) at a distance of �20 cm from the mouse’s head. The IR LEDs of the experimental setup

were turned on to allow the mouse pupils to be visualized. Pupil areas were measured from single frames of the videos using ImageJ

by tracking the border of the pupil in each frame (1.47v, National Institute of Health, USA).

Ganglion cell recordings
Ex vivo retinal preparationswere harvested fromC57 andCBAmice in closelymatching diurnal timeswith the behavioral experiments

considering the previous estimates of the melatonin cycle in CBA mice [49]. The dissection time for the ‘‘day’’ experiments was 3

hours after light onset (ZT3) and for the ‘‘night’’ experiments 7.5 hours from light offset (ZT19.5). The recordings were done between

ZT3–ZT8 (day experiments) and ZT20–ZT23 (night experiments).

Ganglion cell recordings followed previously described procedures [46, 54]. Briefly, the mice were dark-adapted for a minimum of

2 hours and sacrificed by rapid cervical dislocation. Their eyes were enucleated, hemisected, the vitreous was removed, and the

eyecups were stored in a light-tight container at 32�C in oxygenated (95% O2/5% CO2) Ames solution (Sigma, A-1420; osmolality

adjusted to 280 ± 2 mOsm/kg). All procedures were done under infrared illumination (> 900 nm) using night vision goggles (PVS-

7-1600, B.E. Meyers) and IR pocket scopes (D7200-I-1600, B.E. Meyers) attached to the dissection microscope. Pieces of the retina

were gently isolated from the pigment epithelium and placed on a poly-D-lysine coverslip (BioCoat, Corning, Discovery Labware, Inc.)

photoreceptor side down. The retinawas then transferred to the recording chamber and perfusedwith warm (32 ± 1�C) Ames solution

at a flow rate of 8 ml/min. The preparations were visualized using IR light (940 nm; turned off during recordings) and a CCD camera

(Wat-902HS, Watec) attached to the microscope.

All experiments were performed in flat-mount preparations of the retina. ON sustained, OFF sustained, and OFF transient alpha

ganglion cells (ON-S, OFF-S and OFF-T) were identified based on their large soma size and their typical light responses as previously

described [46]. In a subset of experiments, the dendritic morphology of cells was verified by filling the cells with a fluorescent dye

(HiLyte Fluor 750 hydrazide, AnaSpec, AS-81268) and imaging the cells (Andor iXon Ultra 897 EMCCD) following fluorescence

excitation (peak at 740 nm; width 35nm, X-Cite 120Q, Excelitas Technologies). The cell morphology was confirmed to be consistent

with ON-S, OFF-S, or OFF-T alpha RGCs.We recorded the light-evoked action potentials in cell-attached patch clamp configuration.

Calibrated spatially uniform flashes (20-ms in duration, circular spot,�580 mm in diameter) centered on the target cell were used in

RGC recordings froma blue LED (peak at 470 nm). Stimulus intensities were set by neutral density filters and by controlling the current

driving the LEDs. Light intensities were calibrated with an optometer (S450 with the sensor 268R, UDT Instruments) and the spectrum

was measured with a spectrometer (Jaz spectrometer, OceanOptics). Calibrated photon fluxes were converted to photoisomeriza-

tions per rod per second (R*/rod/s) based on rhodopsin absorption spectrum [90] with the wavelength of peak sensitivity for the

mouse rhodopsin, lmax = 497 nm [91], the measured LED spectrum and the peak rod collecting area of 0.6 mm2 (see [46], STAR

Methods for a detailed description of the peak collecting area estimation).
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Behavioral experiments
The visual threshold of mice was determined as previously described [46]. Shortly, behavioral experiments carried out in a black six-

armed water maze in darkness monitored the ability of dark-adapted mice to find a dim light spot. Themice were placed in the center

of the maze in a transparent tube and allowed to orient for �5 s. Then the transparent tube was removed, allowing the mice to

approach the stimulus light located in one of the six arms. The choice was defined as correct if the mouse entered the stimulus

corridor before entering any other corridor. All experiments were done in darkness using night-vision goggles. The body and head

positions of the mouse were monitored during the behavioral trials under IR illumination using a sensitive CCD camera (WAT-

902H2 ultimate, Watec; equipped with a 12VM412ASIR lens, Tamron) and our fully-automated system for tracking mouse behavior

[46]. All experiments were recorded using an open-source video capture software (VirtualDub 1.10.4, http://virtualdub.org) and

stored on the computer in the AVI format.

The mice were first trained in dim ambient illumination to associate the stimulus light with an escape ramp from the water (�20�C)
using easily detectable stimulus light intensity (�200 000 R*/rod/s) (Figure 1A). After the training, themice learned tomake the correct

choice in R 80% of the trials (Figures 1F and 1H). This took 12 days for C57 mice and 10 days for CBA mice and was always per-

formed during the subjective day. Thereafter, the mice (21 C57 and 20 CBA divided into the day and the night groups) were tested

with a sequence of intensities (200 000 – 0.001 R*/rod/s, one intensity per day, 4 trials per mouse per day), starting at the highest

intensity, the intensity was subsequently decreased each day until the mice made a choice completely randomly. The location of

the stimulus light was randomized across trials. At the end of the experimental series, the mice were re-tested with a high stimulus

intensity to make sure that no significant changes had happened in their overall ability to perform the task (i.e., that the fraction of

correct choices R 80% of the trials at this high intensity).

The stimuli consisted of a circular plexi-diffusor window (�40 mm in diameter) located at the end of each corridor. The stimulus

window was continuously illuminated by a green LED (peak at 515 nm) and narrow-band filtered with a 512-nm interference filter

(�10-nm transmission bandwidth) during each experimental trial. The light intensity was set by neutral density filters and by control-

ling the current driving the LEDs. Light intensities were calibrated with an optometer (Models S470 & S450 with 268R sensor, UDT

Instruments) at the level of the mouse cornea at the center of the maze. The spectral irradiances of stimuli were measured with a

spectrometer (Jaz spectrometer, Ocean Optics) The photoisomerization rates were calculated based on the projected size of the

stimulus spot on the retina while taking into account the pupil size of mice [46].

The timing of themeasurementswas defined as three hours from light onset (ZT3) for the day group and three hours from light offset

(ZT15) for the night group.We also tested CBA-mice at their supposedmelatonin peak at night, ZT21 [49]. Themice were always dark

adapted for a minimum of 2 hours before the experiments. We have confirmed by comparing RGC sensitivities obtained after 2 hours

versus overnight in our laboratory that the 2-hour dark adaptation time is sufficient for reaching a fully dark-adapted RGC state.

Furthermore, previous literature both at the level of in vivo retinal samples in mice as well as human psychophysical experiments

confirm that dark-adaptation is complete within 2 hours [92, 93].

We verified that the lighting conditions of the behavioral experiments did not affect the diurnal activity rhythm. First, we measured

whether the dark adaptation and the testing period in darkness could alter the running wheel activity of the day-group (Figure S1A).

The mice were given a three-hour dark period after 1 hour after light onset (ZT1), mimicking the testing conditions of the day-group (1

hour of light exposure followed by 2 hours of dark adaptation and 1 hour of testing in the dark). We did not find any shift in the activity

rhythms measured during the dark pulse compared to the activity without the dark pulse. Second, we checked that the light inten-

sities corresponding to the light stimuli used in the water maze experiments during the dark period did not affect the running wheel

activity of the night group (Figure S1B). We showed the mice four 5 s flashes corresponding to the median swimming time of mice

during the water maze experiments. These flashes were delivered at the subjective testing time of the night group (3 hours from light

offset, ZT3). The stimulus was matched to the water maze experimental conditions and the intensities decreased daily by a factor of

10 as in the behavioral experiments. We did not find any shift in the activity rhythms.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of RGC features
Two-alternative forced choice (2AFC) ideal observer analysis was performed to define the sensitivity limit of RGCs [54]. Briefly, a

correlation of the pre- and post-flash firing rates was compared with an average flash response (discriminant). The average

flash response was computed across all other epochs except for the one under examination. The choice was assigned based on

the higher correlation value. We defined the intensity giving rise to 75% correct choices in the task as the sensitivity threshold for

RGCs. The means presented in Figure 2J and in Table S1 are geometric means. A time window of 450 ms preceding and following

the 20 ms flash was used in all of the analyses.

To calculate the RGC integration time and flash sensitivity (see below) we used baseline-corrected peristimulus-time-histograms

(PSTHs) for ON-S and OFF-S RGCs. However, for OFF-T RGCs with a biphasic response, we instead used the absolute values of

the PSTHs. The integration time was obtained as the integral of the normalized PSTH (normalized to the transient peak for OFF-T

RGCs). Flash sensitivity, in turn, was estimated as the response per absorbed photon by dividing the average response (spike count dif-

ference: response versus baseline firing)with the flash strength (intensity inR*). The response slopeswere calculated in a similar fashion.
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For ON-S and OFF-S RGCs, the response was defined as the average spike count difference (between post-flash and pre-flash firing

rates) whereas for the OFF-T RGCs it was defined as the absolute spike count difference (between baseline subtracted post-flash

and pre-flash firing rates).

The normality of the parameter distributions was tested with Kolmogorov-Smirnov normality test. The features that were not

normally distributed were tested with Mann Whitney U -test and the rest with two-independent samples t test.

Analysis of behavioral threshold sensitivities
The metric for behaviorally measured visual sensitivity was defined as the percentage of trials when the mice found the right corridor

(entered the stimulus corridor as the first choice) as a function of stimulus light intensity (see Figures 1I and 1J) [46]. A modified

Hill function was fitted to the behavioral response-intensity curves:

F = 0:17+ Fmax

In

In +Kn
m

; (1)

where F is the fraction of correct choices at intensity I, Fmax the maximal fraction of correct choices, Km the intensity corresponding to

half-maximal F and n the slope of the curve. The factor 0.17 (z1/6) represents chance level (i.e., behavioral performance converges

to the chance level at the lowest light levels). The fits were weighted with 1/SEM2. We calculated the posterior probabilities for the

Hill function parameters using logistic regression to show that the slope parameter n was larger for the night group than for the

day group (p < 0.01) and the half-saturating intensity parameter Km was larger for the day group as compared to the night group

(p < 0.03).The logistic regression fit was calculated using Stan platform (http://mc-stan.org/) with 200 000 samples taken to estimate

the parameters.

Analysis of behavioral search strategy
Toestimate the behavioral strategyofmice, weobtained the head- and body-position aswell as the head-direction of themouse in each

frame from our automated video-tracking software. We analyzed the body-position and head-direction on the series of frames consti-

tuting the mouse swimming path to derive a set of quantitative features of the animal’s behavior (see below). To exclude the time when

themouse had detected the stimulus andmerely swam toward it, we focused on the early part of each trial where themouse was at the

center of themaze looking for the stimulus (central area corresponding to 50%of themaze area excluding corridors). In this constrained

area, a decision was defined to be made when a mouse exited the center region toward any corridor. The analysis was done on the

intensity range corresponding to the greatest day–night difference in the fraction of correct choices for the C57 mice: 0.03–0.14

R*/rod/s. In all of the analyses, we assumed ± 100� field of view centered at the mouse nose. This is a conservative assumption based

on [57], where themouse binocular visual field was estimated to be at least 120� (±60�). We checked the robustness of the analysis with

fields of view of ± 15�, ± 60�, ± 100� and ± 120�. The main conclusions held across all tested visual fields.

The features included in the analysis were the following (see also Table 1): swimming distance ( = the length of the swimming path

during a trial, mm); swimming distance from center ( = median distance of the mouse from the maze center during its swimming path,

mm); swimming speed ( = median swimming speed of the mouse, mm/s); swimming time ( = total swimming time inside the central

region, s); angular velocity ( = median turning speed of the mouse during its swimming path, degrees/s); heading angle ( = median

angle between the head-direction and the direction of the stimulus, degrees); meander or ‘‘zigzag’’ ( = the change in direction of

head movement relative to swimming distance, degrees/mm); number of corridors seen ( = how many of the six LEDs that have

been inside the visual field of the mouse during its swimming path); time stimulus in view ( = the accumulated time that the stimulus

stayed within the visual field, s); times correct corridor comes into view ( = the number of times that the stimulus enters the visual field.

The number increases every time the mouse looks at the stimulus); times new corridor comes into view ( = the number of times that

any LED, including the stimulus LED, was within the visual field. The number increases every time when the mouse looks at the same

LED again after having looked at another LED); turn angle ( = the cumulative change in head direction during the swimming path,

degrees. A large turn angle indicates circling movements.

Statistics
All data analysis and result figures were done in MATLAB (version R2014B and onward), Origin (OriginPro 2018) or SPSS (version

22.0.0.1). All data are presented as mean ± standard error of mean (SEM) unless otherwise stated in figure legends. Details of the

sample size (n) for each experiment can be found in the figure legends. Statistical significance was tested with two-independent-

samples t test and Mann-Whitney U test for those features that were not normally distributed. Paired samples t test was used to

compare the difference in pupil size between day and night. Nonparametric Mann Whitney U test was used to test the difference

in medians between night and day in all of the continuous behavioral features that we obtained from the video-tracked data. For

the discretized behavioral features, we used a two-tailed permutation test with the mean as a test statistic. A p value of 0.05 was

used to define significance in all test. All tests used for p values were two-tailed. The SEMs were calculated per light intensity

from the means of individual mouse performances.

DATA AND CODE AVAILABILITY

The datasets and code generated during the current study are available from the corresponding author on request.
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