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Abstract

Background: As a standardized vocabulary of phenotypic abnormalities associated with human diseases, the
Human Phenotype Ontology (HPO) has been widely used by researchers to annotate phenotypes of genes/proteins.
For saving the cost and time spent on experiments, many computational approaches have been proposed. They are
able to alleviate the problem to some extent, but their performances are still far from satisfactory.

Method: For inferring large-scale protein-phenotype associations, we propose HPOAnnotator that incorporates
multiple Protein-Protein Interaction (PPI) information and the hierarchical structure of HPO. Specifically, we use a dual
graph to regularize Non-negative Matrix Factorization (NMF) in a way that the information from different sources can
be seamlessly integrated. In essence, HPOAnnotator solves the sparsity problem of a protein-phenotype association
matrix by using a low-rank approximation.

Results: By combining the hierarchical structure of HPO and co-annotations of proteins, our model can well capture
the HPO semantic similarities. Moreover, graph Laplacian regularizations are imposed in the latent space so as to utilize
multiple PPI networks. The performance of HPOAnnotator has been validated under cross-validation and independent
test. Experimental results have shown that HPOAnnotator outperforms the competing methods significantly.

Conclusions: Through extensive comparisons with the state-of-the-art methods, we conclude that the proposed
HPOAnnotator is able to achieve the superior performance as a result of using a low-rank approximation with a graph
regularization. It is promising in that our approach can be considered as a starting point to study more efficient matrix
factorization-based algorithms.
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structure
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Background
Phenotypes refer to observable physical or biological
traits of an organism. Revealing the relationships between
genes/proteins and their related phenotypes is one of
the main objectives of genetics in the post-genome era
[1–3]. The Human Phenotype Ontology (HPO) [4] is a
standardized vocabulary for describing the phenotypic
abnormalities associated with human diseases [5]. Being
initially populated by using databases of human genes
and genetic disorders such as OMIM [6], Orphanet [7]
and DECIPHER [8], HPO was later expanded by using
literature curation [9]. At present, only small quantities
of human protein-coding genes (∼ 3500) have HPO
annotations. It is, however, believed that a large num-
ber of currently unannotated genes/proteins are related
to disease phenotypes. Therefore, it is critical to pre-
dict genes/protein-HPO associations by using accurate
computational methods.

Currently, HPO contains four sub-ontologies: Organ
abnormality, Mode of inheritance, Clinical modifier, and
Mortality/Aging. As the main sub-ontology, Organ abnor-
mality describes clinical abnormalities whose first- level
children are formed by terms like abnormality of a skele-
tal system. The Mode of inheritance describes inheritance
patterns of phenotypes and contains terms such as Auto-
somal dominant. The Clinical modifier contains classes
that describe typical modifiers of clinical symptoms such
as those triggered by carbohydrate ingestion. For Mortal-
ity/Aging, it describes the age of death by terms like Death
in childhood and Sudden death. The Organ abnormal-
ity, Mode of inheritance, Clinical modifier, and Mortal-
ity/Aging have ∼12000, 28, 100, and 8 terms, respectively.

The annotations between genes/proteins and HPO
terms are very sparse. Specifically, 284621 annotations are
for 3459 proteins and 6407 HPO terms with the spar-
sity of 1.2%. Meanwhile, the annotation growth by time,
for example, is about 5%, with adding only 14820 annota-
tions as new ones between June 2017 to December 2017.
Since genes/proteins are annotated with multiple HPO
terms, the prediction can be regarded as a problem of
multi-label predictions. Differing from this, HPO terms,
however, form a hierarchical structure. This implies that
once a gene/protein is labeled with one HPO term, it
should also be labeled with all of its ancestors of this par-
ticular HPO term. In other words, when a gene/protein is
not labeled with an HPO term, it should not be labeled
with all of its descendants, either. That is, general terms
are located at the top of the HPO structure, with the
term specificity increasing from the root to the leaves.
Figure 1 shows a real example of an HPO hierarchical
structure (i.e., Directed Acyclic Graph, DAG) and the
scale of sub-ontologies.

The existing computational approaches for HPO anno-
tation prediction can be divided into two categories,

namely feature-based and network-based methods. The
feature-based approaches use gene/protein information
as the features to predict its annotations for a query
gene/protein. For sparse and noisy data, the incorporation
of auxiliary information into original input data generally
helps to improve predictive performance. One of these
methods, learning to rank, has been demonstrated the
superior performance in GO annotation prediction [10],
for example. Compared with GO annotations, HPO anno-
tations are, however, more reliable and stable. In addition,
the sparseness of HPO annotations is much less than
that of GO annotations, with focusing on human proteins
and terms under Organ abnormality only. Nevertheless,
few existing feature-based models take into consideration
HPO information, e.g., the hierarchical structure and co-
occurrence of HPO terms. The network-based approaches
are more prevalent at present. Usually, multiple networks
are integrated into a new large-scale network in order
to improve the prediction in these approaches such as
random-walk [11] and weighted score computation [12].
However, network-based approaches cannot perform well
for sparse data. This is because of disconnected nodes that
are commonly encountered in real-world graphs, partic-
ulary for sparse data, even though they can be related to
each other.

Prediction of the annotations between genes/proteins
and HPO terms can be grouped into two categorises: 1)
pair prediction, which predicts the missing HPO anno-
tations of existing proteins, and 2) prediction of new
proteins, which annotates HPO terms to the totally unan-
notated proteins. Most existing work belong to the latter
category, but few are for the former. To narrow this gap,
we focus on the first category in this paper, which is
also a famous task in the CAFA challenge. Existing meth-
ods for the first category have four major limitations.
First, the hierarchy of HPO is completely ignored. The
hierarchical structure poses a formidable challenge to a
prediction: a model needs to evaluate the associations
between a protein and all of its related phenotypes from
the deeper levels to the root in the hierarchy. Second, the
existing methods do not make full use of the potentials
of Protein-Protein Interaction (PPI) networks. For exam-
ple, a PPI network is modeled in the original annotation
space in their models, which may not extract the infor-
mation effectively. Moreover, multiple PPI networks may
be derived from different sources, resulting in the data
fusion. Third, only a few known associations are available
for training. So they are extremely unbalanced. Specifi-
cally, more than half of the terms in HPO are used to
annotate zero or only one protein. As a result, such a dras-
tic sparsity makes prediction more challenging. Finally,
existing methods usually study the sub-ontologies inde-
pendently without considering the co-annotations of HPO
terms. However, co-annotations are quite common in
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Fig. 1 An example of the HPO hierarchical tree. All parent-child relationships in HPO represent “is-a” relationships. X-linked inheritance, Abnormality
of limbs, Phenotypic variability, and Age of death are examples for sub-ontologies Mode of inheritance, Organ abnormality, Clinical modifier, and
Mortality/Aging, respectively

annotations. It is likely that they help improve prediction
results.

To address the above four problems, we apply matrix
factorization to approximate a protein-HPO annotation
matrix by two factorized low-rank matrices. As such,
the latent factors that underlie the HPO annotations can
be well captured. Since the HPO annotation matrix is
binary, we choose to use Non-negative Matrix Factoriza-
tion (NMF). NMF has proved to be effective for sparse
problems in the field of bioinformatics [13–16]. Based
on our above observations, we propose an NMF-based
framework called HPOAnnotator by which to predict
missing protein-HPO annotations. In essence, the key
idea of our model is to factorize the HPO annotation
matrix into two non-negative low-rank latent matrices,
which correspond to the respective latent feature spaces of
proteins and HPO terms. In addition, the graph Laplacian
on PPI networks is performed to exploit their intrinsic
geometric structure. Co-annotations and the hierarchical
structure of HPO are also incorporated to measure HPO
semantic relationships.

We have experimentally validated the performance of
HPOAnnotator by comparing it with the three network-
based approaches, which will be reviewed in the related
work. The proposed model was tested on the latest large-
scale HPO data with around 300000 annotations. Exper-
imental results clearly demonstrated that HPOAnnotator
outperformed the competing methods under two scenar-
ios: cross-validation and independent test. It indicates that
a low-rank approximation and network information are
effective for pair prediction. Furthermore, our case studies
further provide evidence for the practical use of HPOAn-
notator. Note that, the work presented in this paper is

the extension of our previous work AiProAnnotator [17]
(AiPA for short). The main difference between the two
methods is that HPOAnnotator can seamlessly combine
multiple rather than single PPI networks and then benefit
from them.

Related work
As mentioned before, we can group the existing
approaches to HPO annotations into two categories:
feature-based and network-based ones.

Two well-known methods of feature-based approaches
are PHENOstruct [9] and Clus-HMC-Ens [18]. Clus-
HMC-Ens applies the decision tree ensembles, while
PHENOstruct (the extension of GOstruct which was
designed to predict GO annotations) relies on the Struc-
tural Support Vector Machine (SSVM). Together with
HPO annotations (i.e., labels) of each protein, a feature-
based method normally accepts feature vectors as the
input of a classifier. The trained classifier is then used
to make a prediction. The above procedure is the same
for both two categories of approaches. Additionally, it
is worth noting that PHENOstruct and Clus-HMC-Ens
were originally developed for GO but then applied to
HPO annotation prediction. In this sense, the difference
between HPO annotations and GO annotations has not
been fully taken into account by researchers.

Relying on two networks of protein-HPO annotations
and the hierarchy of HPO (or Network of HPO, called
NHPO) with an optional PPI Network (hereafter PPN),
the network-based approaches make predictions. The
assumption behind them is that two nodes in a net-
work should share some similarities, particular for those
well-connected nodes who have more similarities. In the
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following, we review the three methods as representatives
of network-based approaches, all of which are compared
against our proposed approach in the experiments.

Bi-random walk
Bi-Random Walk (BiRW) [19, 20] has been demonstrated
as a useful method for the bi-network prediction problem.
BiRW performs random walks on the Kronecker product
graph between PPN and NHPO in a way that they can be
combined effectively for the protein-phenotype associa-
tion prediction. The random walks iteratively performed
by BiRW follow the equation:

Yt = αPYt−1G + (1 − α)˜Y (1)

where α > 0 is a decay factor, P and G are the normalized
PPN and NHPO matrix, respectively. Yt is the estima-
tion of associations at iteration t, and ˜Y denotes the initial
annotations in the training data. By introducing BiRW to
capture the circular bigraphs patterns in the networks,
the model can unveil phenome-genome associations over
time.

Dual label propagation model
The label propagation-based algorithm has been success-
fully applied to predict phenotype-gene associations in
various forms [21, 22]. With the following objective func-
tion, label propagation assumes that proteins should be
assigned to the same label, if they are connected in a PPN:

�(y) = θ

np
∑

i,j=1
S̄p(yi − yj)

2 +
∑

i
(yi − ỹi)

2

= θyT LSy + (1 − θ)‖y − ỹ‖2

(2)

where S̄p is a normalized PPN defined as S̄p =
D− 1

2 SpD− 1
2 , and D is a diagonal matrix with the row-sum

of Sp on the diagonal entries. Equation 2 can be rewritten
as follows:

�(Y) = θtr(YT LSY) + (1 − θ)‖Y − ˜Y‖2
F (3)

where tr(·) denotes the trace of matrix, ‖·‖F denotes the
Frobenius norm, and LS is the normalized graph Laplacian
matrix of S̄p defined as LS = I − S̄p.

The Dual Label Propagation model (DLP) [23] extends
the label propagation model by adding two smooth-
ness terms. The first term imposes the smoothness in a
PPN such that interacting proteins tend to be associated
with the same HPO term. The second term imposes the
smoothness in NHPO in a way that the connected pheno-
types (parent-child pair) are encouraged to be associated
with the same protein. The objective function of DLP is
given as:

�(Y) = ‖��(Y−˜Y)‖2
F +βtr(YT LSY)+γ tr(YLGY YT )

(4)

where β , γ ≥ 0 are tuning parameters, LS and LGY
encode the PPN and NHPO information, respectively. �

is the binary indicator matrix that selects only the known
associations to be penalized, and � denotes Hadamard
product (a.k.a entrywise product).

Ontology-guided group lasso
The last method to be reviewed is Ontology-guided
Group Lasso (OGL) [24]. It uses an ontology-guided
group norm for HPO, rather than the graph regularizer
in DLP. By combining label propagation and an ontology-
guided group lasso norm derived from the hierarchical
structure of HPO, OGL updates estimation, according to
the following objective function:

�(Y) = ‖� � (Y − ˜Y)‖2
F + βtr(YT LSY) + γ

np
∑

i=1

∑

g∈GY

rY
g ‖Y(g)i‖2

(5)

where β , γ ≥ 0 are balancing factors. rY
g is the group

weight for group g. Y(g)i selects the group members of
group g from the i-th column of Y, and the smooth-
ness is imposed through the �2-norm group lasso (‖·‖2)
among the members for the consistent prediction within
the group. A notable difference between OGL and our
model is that the estimated matrix is not factorized into
low-rank matrices.

One of the biggest drawbacks of network-based meth-
ods is that data sparseness has a significant impact on
the performance. As mentioned before, the current HPO
annotations are quite sparse. In addition, all of the net-
work based-methods suffer the heavy computational bur-
den, as they accept a large-scale protein-HPO annotation
matrix as an input directly.

Methods
Notation
Let Y ∈ {0, 1}Np×Nh be a protein-HPO annotation matrix,
where Np and Nh are the number of proteins and HPO
terms, respectively. If protein i is annotated by an HPO
term j, then Yij = 1, and 0 otherwise. We define Spk

(k = 1, 2, · · · , t) be the networks for proteins, namely
PPNs, where t is the total number of networks. Spk

i,j rep-
resents the strength of the relationship between protein
i and protein j in the k-th PPN. Similarly, let Sh be the
network of HPO terms which is generated from an ontol-
ogy structure and co-annotations, and Sh

i,j is the similarity
value between term i and term j. Our goal is to estimate Ŷ
given Y, Spk and Sh.

Our proposed method
Preprocessing: generating a network from HPO
The network of HPO terms, or NHPO, is derived by
measuring the similarity between two HPO terms in a
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hierarchy. We adopt the measure proposed in [25]. Hav-
ing been extensively used in natural language processing,
this metric defines the semantic similarity between two
labeled nodes by counting the co-occurrence frequency in
a corpus.

Specifically for HPO, the semantic similarity between
two terms s and t is defined as:

Sh
s,t = 2 · I(mca(s, t))

I(s) + I(t)
(6)

where I(s) = log(p(s)) and p(s) = count(s)
Np

. Here, count(s)
denotes the number of proteins annotated by term s and
mca(s, t) is given as follows:

mca(s, t) = arg min
k∈A(s,t)

p(k)

where A(s, t) represents the set of all common ancestors
of s and t.

The weight of the edge between nodes s and t in NHPO
is exactly the similarity score. The larger the number of
annotated proteins shared by s and t, the higher their
similarity score is. It is more likely to happen when the
common ancestor of s and t is located closely. This means
that Sh considers both the co-annotations of two HPO
terms and their distance in a hierarchical structure.

Non-negative matrix factorization
The aim of Non-negative Matrix Factorization (NMF) is
to find two low-rank matrices with all non-negative ele-
ments by approximating the original input matrix. In fact,
the latent factors that underlie the interactions are cap-
tured. Mathematically, the input matrix Y ∈ R

Np×Nh
+ is

decomposed into two rank-K matrices, U ∈ R
Np×K
+ and

V ∈ R
Nh×K
+ . Then, finding U and V can be done by

minimizing the reconstruction error which is defined as:

J = ‖Y − UVT‖2
F , s.t.U ≥ 0, V ≥ 0 (7)

Generally, the �2 (Tikhonov) regularization is imposed to
Eq. (7) so as to alleviate overfitting of U and V.

Since there are unknown (missing) entries in Y, we
encode the missingness with a masking matrix W ∈
{0, 1}Np×Nh . If the annotation between protein i and HPO
term j is missing, we set Wij = 0. Otherwise, we set
Wij = 1, meaning that the element Yij is observed.
Accordingly, W is also plugged as an extra input into our
model. Together with the �2-norm regularization terms,
the objective function is refined as follows:

JNMF =‖W � (Y − UVT )‖2
F

+ λ(‖U‖2
F + ‖V‖2

F), s.t.U ≥ 0, V ≥ 0
(8)

where λ is a regularization coefficient.
The unobserved protein-HPO associations are com-

pleted by multiplying two factor matrices, or concretely,
Ŷ = UVT .

Network regularization
Once we obtain the similarity matrix of HPO, Sh, we can
regularize V with the help of it. The basic idea is to impose
smoothness constraints on the phenotype-side factors;
that is

1
2

∑

i,j
Sh

i,j‖Vi − Vj‖2

= tr(VT (Dh − Sh)V)

= tr(VT LhV)

(9)

where Vi is the i-th row vector of V, Dh is a diagonal
matrix whose diagonals are the node degrees, and Lh =
Dh − Sh is the graph Laplacian of Sh. Actually, the term is
exactly the vanilla graph regularizer.

For proteins, multiple PPNs are derived from diverse
data sources with heterogeneous properties. In this way,
for a collective of PPNs Spk (k = 1, · · · , t), their regularizer
is imposed as

t
∑

k=1
tr(UT Lpk U), (10)

where Lpk = Dpk − Spk is the graph Laplacian of Spk , and
Dpk is the degree matrix.

Minimization of graph-based regularization terms will
lead to the learned data representations (U and V) that
respect the intrinsic geometrical structure of original
data spaces (Spk and Sh). Note that such standard graph
regularization has already been used in a variety of
applications [26].

Model formulation
By combining (8), (9) and (10), our model is formulated as
follows:

min
U≥0,V≥0

‖W � (Y − UVT )‖2
F + λ(‖U‖2

F + ‖V‖2
F)

+ α

t
∑

k=1
tr(UT Lpk U) + βtr(VT LhV)

(11)

where α and β are regularization coefficients to strike
a balance between the reconstruction error and graph
smoothness.

Model optimization
Notice that the objective function defined in Eq. (11) is
biconvex with respect to U and V. A very regular but
effective procedure for fitting is Alternating Least Square
(ALS), which alternately optimizes one of the variables by
fixing the others as constants until convergence.

We first hold U fixed and derive the updating rule of V.
The objective function of V can be written as:

J(V) = ‖W � (Y − UVT )‖2
F + λ‖V‖2

F + βtr(VT LhV)

(12)
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Accordingly, the derivative of J(V) with respect to V is

∂J(V)

∂V
= −2(W�Y)T U+2(W�UVT )T U+2λV+2βLhV

(13)

Taking the Karush-Kuhn-Tucker (KKT) complementary
condition, we obtain

[ (W�UVT )T U− (W�Y)T U+λV+βLhV]ij Vij = 0
(14)

Now let us rewrite Lh = Lh+ −Lh−, where we have Lh+ =
(|Lh|+ Lh)/2 and Lh− = (|Lh|− Lh)/2. The multiplicative
update rule of V is then:

Vij ←− Vij

√

(W � Y)T U + βLh−V
(W � UVT )T U + λV + βLh+V

(15)

Note that the problem given by (11) is symmetric in
terms of U and V. Therefore, the derivation of the updat-
ing rule of U is simply the reverse of the above case.
Precisely, we have

Uij ←− Uij

√

(W � Y)V + α
∑t

k=1(Lpk−U)

(W � UVT )V + λU + α
∑t

k=1(Lpk+U)

(16)

Training algorithm
We describe the overall framework of HPOAnnotator
in Fig. 2. The procedure of our optimization process is
presented in Algorithm 1. The optimization was imple-
mented based on the MATLAB code provided by [26].

Algorithm 1 The training algorithm of HPOAnnotator
Require: Protein-HPO annotation matrix: Y ∈ R

Np×Nh ;
Mask of observed entries: W ∈ {0, 1}Np×Nh ;
Protein-protein networks (PPNs): Spk ∈ R

Np×Np ;
Hierarchical structure of HPO

Ensure: U, V.
1: Generate the network of HPO terms, i.e. NHPO, Sh

by (6).
2: repeat
3: Update V by (15) .
4: Update U by (16).
5: until convergence
6: return: U, V and Ŷ = UVT

Results
Data
HPO annotations
Two HPO annotation datasets released by June
2017 and December 2017 were downloaded from
the official HPO website (https://hpo.jax.org/). For
the sake of brevity, we call them Data-201706 and
Data-201712 in the following, respectively. The true-
path-rule is applied here to propagate annotations,
and only HPO terms with at least one related pro-
tein remains. Table 1 lists the statistics of the two
datasets.

According to the number of proteins annotated, we sep-
arated the HPO terms into five groups: 1 to 10, 11 to 30, 31
to 100, 101 to 300, and more than 300. Figure 3 shows the
percentage of HPO terms and corresponding annotations
over five groups in Data-201706.

Fig. 2 The framework of HPOAnnotator

https://hpo.jax.org/
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Table 1 Statistics of two datasets: Data-201706 and Data-201712

Dataset Data-201706 Data-201712

#Proteins 3,459 3,644

#HPO terms 6,407 6,642

#Leaves of HPO 4,092 4,274

#Annotations 284,621 317,443

Ave. #annotations per protein 82.28 87.11

Ave. #annotations per HPO term 44.42 47.79

NHPO (Network of HPO)
We downloaded the hierarchical structure of HPO from
their official website.

PPN (Protein-Protein Network)
Four types of PPNs were used in our experiments; that
is, STRING [27] (https://string-db.org/), GeneMANIA
[28] (http://genemania.org/data/), BioGRID [29] (https://
downloads.thebiogrid.org/BioGRID), and Reactome [30]
(https://reactome.org/download-data). Table 2 reports
the statistics of these four networks. Note that STRING
is the most famous PPI network, which was found very
useful for predicting HPO annotations in [9]. It com-
bines diverse data sources, including co-expression, co-
occurrence, fusion, neighborhood, genetic interactions,
and physical interactions, by assigning a confidence score
to a certain pair of proteins for indicating its reliability.

A preliminary test on pairs of two HPO terms in NHPO: the
correlation between the number of shared proteins and the
average similarity
First, we grouped all pairs of two HPO terms (from
NHPO), according to the number of proteins, say M,

Fig. 3 HPO terms are divided into five groups according to the
number of proteins they annotate. The number of HPO terms per
group (the left-hand side of each group) and the total number of
annotations per group (the right-hand side of each group) are shown
for Data-201706

Table 2 Statistics of PPNs of Data-201706

Dataset #Annotations #Connect-proteins

STRING 214,410 3,342

GeneMANIA 206,900 3,385

BioGRID 10,752 2,725

Reactome 970 1,051

shared by the two HPO terms. For each group, we then
computed the average similarity score (Sh) by NHPO over
those sharing M proteins. Finally, we plotted each group
over the two-dimensional space of M× the average simi-
larity score. Figure 4 shows the result. The similarity score
is equal to the edge weight of NHPO. This means that this
test would be evaluated on the consistency of the similar-
ity with the number of shared proteins from each HPO
term pair. There found some correlations between these
two, which would be a positive support for using NHPO
for HPO annotations.

A preliminary test on pairs of protein-protein edges in a PPN:
correlations between the average similarity by a PPN and
#shared HPO
Considering the extensiveness, we chosen STRING as the
research object. At first step, we grouped all pairs of two
proteins, according to the number of their shared HPO
terms, denoted as K. For each group, we then computed
the average of similarity score (Sp) of STRING PPN over
those sharing the same number of HPO terms. Finally, we
plotted each group over the two-dimensional space of the
average score (similarity) ×K . Figure 5 shows the plotted

Fig. 4 Each circle is a pair of two HPO terms in NHPO, with sharing the
same numbers of proteins, say M. The y-axis is the average similarity
score between two HPO terms over those proteins sharing the same
M, and the x-axis is M, i.e., the number of shared proteins. The red line
is fitted by a linear function

https://string-db.org/
http://genemania.org/data/
https://downloads.thebiogrid.org/BioGRID
https://downloads.thebiogrid.org/BioGRID
https://reactome.org/download-data
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Fig. 5 Each circle is a pair of two proteins in STRING PPN, with sharing
the same numbers of HPO terms, say K. The x-axis is the average
similarity score between two proteins over those HPO terms sharing
the same K, and the y-axis is K, i.e., the number of shared HPO terms.
The red line shows the trend, which is fitted by a polynomial function
with the maximum degree of three

results. The line in this figure shows that the polynomial
trend line is fitted to the distributed points of the two-
dimensional space. It shows a slightly positive correlation
between the number of shared HPO terms and the aver-
age similarity score by a PPN. This observation validates
the idea that the edges in a PPN may imply that proteins
connected by the edges share the same HPO.

Evaluation criteria
The performance is evaluated from three aspects.
Annotation-centric measure Each annotation (or a
protein-HPO term pair) is viewed as one instance. The
models are evaluated using Area Under the receiver oper-
ator characteristics Curve (AUC) [31]. Considering the
sparseness of protein-HPO association matrix, we mea-
sure the Area Under the Precision-Recall curve (AUPR) as
well.

Protein-centric measure AUCs (AUPRs) are calculated
for each protein based on the corresponding predictive

scores by all available HPO terms. Then the computed
AUCs (AUPRs) are averaged over all proteins, resulting in
micro-AUC (micro-AUPR).

HPO term-centric measure We think that the term-
centric measure is important. Typical scientists or biolo-
gists focus first on a certain HPO term and are interested
in obtaining genes/proteins, which can be annotated by
the focused HPO term. The HPO term-centric measure
can be computed in a total reverse manner of the protein-
centric measure, with the following two steps: 1) AUCs
(AUPRs) are first computed for each HPO term; and
2) The computed AUCs (AUPRs) are averaged over all
HPO terms, which result in macro-AUC (macro-AUPR).
In addition, we average the computed AUCs (AUPRs)
over HPO terms at only leaves of the HPO hierarchical
structure. We call the obtained AUC (AUPR) leaf-AUC
(leaf-AUPR).

We further calculate the macro-AUCs (macro-AUPRs)
for each of the five groups, which are generated by focus-
ing on the number of annotations per HPO term (see
Fig. 3). In total, (from annotation-, protein-, and HPO
term-centric measures) we have the eight criteria to vali-
date the performance.

Experimental procedures
Parameter settings
Our approach is compared with three network-based
methods: BiRW [20], DLP [23] and OGL [24] as described
in related work. Besides, we take Logistic Regression (LR)
as a feature-based baseline. Note that LR classifiers are
trained on each single HPO term independently, and the
features are built by concatenating association scores in
PPNs together.

The parameter of BiRW is selected from
{0.1, 0.2, · · · , 0.9}. Regularization coefficients (i.e., hyper-
parameters) of DLP and OGL, β and γ are selected
from {10−6, 10−5, · · · , 106}. Note that the ranges of these
parameters are specified by following [23]. Our model
has four parameters: K, α, β and λ, which are determined
by internal five-fold cross-validation, where the training

Table 3 The results of the eight criteria obtained by 5×5-fold cross-validation over Data-201706 for the nine competing methods in
total

Method AUC AUPR micro-AUC micro-AUPR macro-AUC macro-AUPR leaf-AUC leaf-AUPR

LR 0.775 0.028 0.760 0.072 0.579 0.052 0.532 0.020
BiRW 0.875 0.066 0.826 0.096 0.732 0.056 0.597 0.031
OGL 0.785 0.051 0.776 0.078 0.603 0.034 0.536 0.014
DLP 0.902 0.073 0.875 0.100 0.736 0.094 0.659 0.055
NMF 0.961 0.496 0.900 0.273 0.753 0.139 0.701 0.089
NMF-PPN 0.963 0.525 0.902 0.281 0.756 0.142 0.703 0.089
NMF-NHPO 0.965 0.541 0.903 0.290 0.756 0.144 0.702 0.094
AiPA 0.970 0.559 0.905 0.295 0.760 0.146 0.705 0.096
HPOAnnotator 0.971 0.562 0.907 0.296 0.760 0.152 0.706 0.097
Method performs best in terms of this evaluation metric are in boldface
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Table 4 Macro-AUC obtained by 5×5-fold cross-validation over Data-201706 for the nine competing methods

Method [1-10] [11-30] [31-100] [101-300] [≥301]

LR 0.526 0.553 0.633 0.735 0.755

BiRW 0.608 0.854 0.875 0.835 0.815

OGL 0.586 0.670 0.788 0.812 0.806

DLP 0.622 0.880 0.914 0.863 0.834

NMF 0.649 0.908 0.942 0.948 0.911

NMF-PPN 0.651 0.911 0.943 0.951 0.916

NMF-NHPO 0.653 0.919 0.946 0.947 0.919

AiPA 0.654 0.922 0.943 0.957 0.931

HPOAnnotator 0.655 0.925 0.947 0.958 0.931

Method performs best in terms of this evaluation metric are in boldface

data is further randomly divided into five folds (one for
validation and the rest for training). The search ranges
are as follows: {100, 200} for K, {2−3, 2−2, · · · , 22, 23} for
λ, {2−7, 2−6, · · · , 26, 27} for α and β .

There are several variants of our algorithm by changing
the settings of hyper-parameters α and β . We also evaluate
each of them as comparison methods. The details are as
follows.

1. NMF: α = 0 and β = 0
Now the model is reduced to standard NMF, and the
objective function is exactly the same as Eq. (8).

2. NMF-PPN: α �= 0 and β = 0
Under this setting, there is no regularization term of
NHPO, but PPN has. Thus, we term this model as
NMF-PPN.

3. NMF-NHPO: α = 0 and β �= 0
This setting is in contrast to NMF-PPN. That is, the
regularization term of NHPO is kept, while that of
PPN is not.

For the case of α �= 0 and β �= 0, there are two another
variants depending on whether or not multiple PPNs are
utilized.

1. AiPA: only one PPN is utilized
It is proposed in our previous study [17], which can
be regarded as a special case of HPOAnnotator
because only single PPN of STRING is exploited.

2. HPOAnnotator: multiple PPNs are utilized
It is our final model presented in this paper. All four
PPNs are used, including STRING, GeneMANIA,
BioGRID, and Reactome as described before.

Two evaluation settings
Under two different settings, we validate the performance
of the compared methods from two viewpoints:

1. Cross-validation over Data-201706
We conduct 5×5-fold cross-validation over all
annotations on Data-201706. That is, we repeat the
following procedure five times: all known annotations
are divided randomly into five equal folds. The four
folds are for training, while the remaining one is for
test. After selecting the test annotation between
protein p and HPO term h, all annotations between p
and the descendants of term h in the hierarchical
structure of HPO are removed from the training
data, in order to avoid any overlaps between training
data and test data. It means that we predict the
annotation of protein p out of all unknown HPO
terms, which is a fair and strict evaluation.

2. Independent test by using Data-201712
HPO annotations are incomplete, due to various
reasons, such as slow curation. The way of
annotations might be changed over time. So we

Table 5 Macro-AUPR obtained by 5×5-fold cross-validation over Data-201706 for the nine competing methods

Method [1-10] [11-30] [31-100] [101-300] [≥301]

LR 0.003 0.022 0.047 0.064 0.077

BiRW 0.023 0.119 0.164 0.175 0.155

OGL 0.005 0.024 0.056 0.087 0.132

DLP 0.028 0.135 0.182 0.223 0.182

NMF 0.032 0.204 0.362 0.470 0.428

NMF-PPN 0.032 0.206 0.365 0.479 0.440

NMF-NHPO 0.032 0.209 0.373 0.488 0.472

AiPA 0.033 0.216 0.369 0.500 0.482

HPOAnnotator 0.034 0.219 0.375 0.510 0.487

Method performs best in terms of this evaluation metric are in boldface
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Table 6 Performance of NMF-PPN with individual PPNs

Data scource AUPR micro-AUPR macro-AUPR

STRING 0.525 0.281 0.142

GeneMANIA 0.523 0.280 0.143

BioGRID 0.517 0.280 0.140

Reactome 0.505 0.278 0.139

All 0.545 0.283 0.145

Results are for each PPN on the Data-201706. “All” means all four PPNs are used.
Method performs best in terms of this evaluation metric are in boldface

conduct additional several experiments other than
regular cross-validation by using data obtained in
different time periods. That is, the training data is
obtained before June 2017. All annotations in
Data-201706 are used for training, where an internal
five-fold cross-validation is done for setting up
parameter values. After training, annotations
obtained from June to December 2017 are then used
for testing.

Experimental results
Predictive performance in cross-validation on Data-201706
Table 3 reports the scores of the eight criteria obtained
by averaging over 5×5 cross-validation (25 runs in total)
on Data-201706. In this experiment, we compare the nine
methods in total. In particular, the four are existing meth-
ods (LR, BiRW, OGL and DLP), and another five are vari-
ants of our model (NMF, NMF-PPN, NMF-NHPO, AiPA
and HPOAnnotator). Note that STRING is the only PPN
utilized in NMF-PPN. From the table, it clearly shows that
our five methods perform better than the four existing
methods. For example, our four methods achieve around
0.5 to 0.56 in AUPR, while all the scores by the exist-
ing methods are less than 0.1. In fact, our five methods
perform better than the existing methods with respect
to all of the eight metrics. Thus, their performance dif-
ferences are very clear. We can conclude that a low-rank
approximation is useful for the HPO annotation problem.
Furthermore, HPOAnnotator always outperforms other
variants in eight conditions among our five methods. This
indicates that network information is well incorporated
into our formulation.

Table 4 lists the AUC scores obtained for five groups
divided by the number of annotations. Again, the results
reported in these tables demonstrate the same conclusion
as that in Table 3. That is, HPOAnnotator outperforms all
other methods in all of the cases. A similar trend is also
shown in Table 5. In summary, our approach is capable of
achieving the best performance for HPO annotations in
terms of cross-validation.

A noteworthy point is that our method works well for
the HPO terms with a very small number of annotations,
i.e., only one to ten annotations per HPO term. In fact,

Table 7 Training times of a single run in 5×5-fold
cross-validation (average over 25 runs)

Method Computation time

LR ∼3.5 hours

BiRW ∼1.5 hours

OGL, DLP ≥4 hours

NMF, NMF-PPN, NMF-NHPO, HPOAnnotator ∼30 minutes

this situation is usually hard for a low-rank approximation.
As HPOAnnotator has achieved the best performance,
this implies that a low-rank approximation is useful for all
types of groups including HPO terms with a very small
number of annotations for HPO annotations.

The effectiveness of individual PPNs in cross-validation on
Data-201706
By using NMF-PPN, we perform a set of experiments in
order to identify the most effective PPN in terms of HPO
predictions. To this end, we perform a series of experi-
ments on NMF-PPN by using a single PPN as its input at
a time. NMF-PPN with the four PPNs performs best as
reported in Table 6. As shown in Table 6, we can conclude
that STRING is the most useful PPN for predicting HPO
annotations. By the way, Our model can take advantage of
different PPNs to achieve the best performance.

Computation times in cross-validation on Data-201706
The computation (training) times of the eight methods
compared in the cross-validation are recorded, where the
times are averaged over the total 25 runs (5 ×5 folds). The
computation times on the same machine with the same
settings are reported in Table 7. From the table, our four
models run faster than the compared ones. In fact, they
are more than eight times faster than OGL and DLP. The
training data is updated periodically, thus the model must
be trained by the updated data often. As such, this advan-
tage of our models would make a difference. In addition,
OGL and DLP need much more memory spaces than the
compared methods.

Table 8 AUC obtained by independent test using Data-201712

Method AUC

BiRW 0.7971

DLP 0.8298

OGL 0.7322

NMF 0.8527

NMF-PPN 0.8923

NMF-NHPO 0.8959

AiPA 0.9187

HPOAnnotator 0.9231

Method performs best in terms of this evaluation metric are in boldface
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Table 9 Seven true predictions out of the top 30 results (by HPOAnnotator) among all newly added annotations

Rank Protein ID Protein name Gene name HPO ID HPO name

2 Q02388 Collagen alpha-1(VII) chain
(Long-chain collagen) (LC collagen)

COL7A1 HP:0001072 Thickened skin

7 Q9UBX5 Fibulin-5 FBLN5 DANCE,
UNQ184/PRO210

HP:0012638 Abnormality of nervous system physiology

17 Q9H5I5 Piezo-type mechanosensitive ion
channel component 2 (Protein
FAM38B)

PIEZO2 HP:0000422 Abnormality of the nasal bridge

19 O43175 D-3-phosphoglycerate
dehydrogenase (3-PGDH) (EC
1.1.1.95) (2-oxoglutarate reductase)
(EC 1.1.1.399) (Malate
dehydrogenase) (EC 1.1.1.37)

PHGDH HP:0000366 Abnormality of the nose

24 Q02388 Collagen alpha-1(VII) chain
(Long-chain collagen) (LC collagen)

COL7A1 HP:0000962 Hyperkeratosis

26 Q04656 Copper-transporting ATPase 1 (EC
3.6.3.54) (Copper pump 1) (Menkes
disease-associated protein)

ATP7A HP:0002650 Scoliosis

27 P43026 Growth/differentiation factor 5 GDF5 BMP14,
CDMP1

HP:0005622 Broad long bones

These seven annotations were not in the training data (Data-201706), but found in the latest release (Data-201712)

Predictive performance in the independent test on
Data-201712
Table 8 reports AUC obtained by the experiments
conducted on independent data for the eight compet-
ing methods. Among the three existing methods, DLP
achieves the best performance, with AUC of 0.8298.
NMF outperforms DLP with AUC of 0.8527, while two
variants of NMF with one network regularizer further
achieves better performance with AUC of around 0.89.
AiPA achieves 0.9187 of AUC with STRING PPN and
NHPO. Most importantly, HPOAnnotator archives the
best performance, with the AUC of more than 0.92.

As Table 9 reports, seven out of the 30 highest ranked
predicted annotations are validated to be true accord-
ing to Data-201712 which is released later. For example,
protein Q02388, encoded by gene COL7A1, is actually

annotated by HPO term HP:0001072 (Thickened skin).
But we fail to find it in the data released by December
2017. Another example is protein Q9UBX5. According
to Data-201706, it has no relationship with HPO term
HP:0012638 (Abnormality of nervous system physiology).
But this record occurs in the later release of the data.

As the highest-ranked new annotation found by our
model, HP:0001072 is known to also annotate another
ten proteins, O43897, P07585, P08123, P08253, P12111,
P20849, P20908, P25067, P53420, and Q13751, based on
Data-201706. We find that their similarity scores with
Q02388 in STRING are more than 0.9. It indicates that
their interactions between Q02388 and those ten proteins
in PPNs imply a high possibility of annotating Q02388 by
HP:0001072. In summary, the number of these examples
have demonstrated both the effectiveness and necessity of

Table 10 Validation of false positives in the top 10 ranked predictions

Gene name Protein HPO ID HPO name PubMed ID Disease Evidence

SH3TC2 Q8TF17 HP:0001315 Reduced
tendon
reflexes

PMID: 14574644 Charcot-Marie-
Tooth disease
4C (CMT4C)

"Demyelinating neuropathies are characterized by
severely reduced nerve conduction velocities (less than 38
m/sec), segmental demyelination and remyelination with
onion bulb formations on nerve biopsy, slowly progressive
distal muscle atrophy and weakness, absent deep tendon
reflexes, and hollow feet. By convention autosomal reces-
sive forms of demyelinating Charcot-Marie-Tooth disease
are designated CMT4."

FOXG1 P55316 HP:0001263 Global devel-
opmental
delay

PMID: 19578037 Rett syndrome
congenital
variant (RTTCV)

"Rett syndrome is a severe neurodevelopmental disorder
representing one of the most common genetic causes
of mental retardation in girls. The classic form is caused
by MECP2 mutations. In two patients affected by the
congenital variant of Rett we have recently identified
mutations in the FOXG1 gene encoding a brain specific
transcriptional repressor, essential for early development
of the telencephalon."
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Table 11 Predicted HPO terms of P23434 (gene name: GCSH) by
our four methods based on NMF

Method Predicted HPO terms Correct

NMF HP:0002079, HP:0001276,
HP:0000007, HP:0007256,
HP:0003287, HP:0000718,
HP:0000729, HP:0002167,
HP:0001268, HP:0002360

2

NMF-NHPO HP:0000007, HP:0002079,
HP:0001250, HP:0001276,
HP:0000718, HP:0000729,
HP:0012444, HP:0007256,
HP:0002360, HP:0000478

3

NMF-PPN HP:0000007, HP:0001276,
HP:0007256, HP:0000729,
HP:0000718, HP:0000478,
HP:0003287, HP:0001268,
HP:0001298, HP:0001250

4

HPOAnnotator HP:0000007, HP:0001250,
HP:0001298, HP:0000005,
HP:0000707, HP:0000718,
HP:0002167, HP:0000711,
HP:0000924, HP:0000234

5

True HP:0000007, HP:0000711,
HP:0000718, HP:0001250,
HP:0001298, HP:0001522,
HP:0002086, HP:0002795,
HP:0100247, HP:0100710

Correctly predicted HPO terms are in boldface

introducing PPI networks for unknown HPO annotations
prediction.

Validating false positives
As mentioned before, seven of the top 30 correct pre-
dictions from our model have already been found in the
December 2017 release version of HPO annotations. Due
to the fact that a curation process on HPO annotations
is normally slow, we believe that there may be more false
positives among our top ranked predictions. In order to
validate our assumption, we first select the rest of the top
10 predictions that have not been found in the Decem-
ber 2017 HPO data. Using a protein name (or its coding
gene name) and an HPO term name as a query for online
search engines, we then check the relevant literature and

diseases for each false prediction. Finally, we manually
extract the information from the retrieved papers con-
taining supporting evidence that suggest a particular false
positive to be correct in fact. Using this manual process,
we find evidence for another two predictions. Table 10
lists the PubMed IDs of the relevant literature, the relevant
diseases names, and the detailed evidence for each pair of
the found gene/protein-HPO term. The results strongly
indicate that the performance of HPOAnnotator is under-
estimated, which is caused by the incompleteness of the
current gold standard.

A typical example of demonstrating the performance of
HPOAnnotator
To further demonstrate the performance of our proposed
method for predicting HPO annotations, we here present
the different predictions made by the four methods for
a typical example, protein P23434. As listed in the last
row of Table 11, this protein has 10 annotations. It is
interesting to note that the number of correctly predicted
HPO terms gradually increases from the first row to the
fourth row. Again, this indicates that network information
is effective for improving the performance of predicting
HPO annotations.

Performance comparisons focusing on Organ abnormality
Most of the existing models are evaluated on separate
sub-ontologies. However, considering only part of the
ontology may lose entire network information. Such infor-
mation can connect proteins or HPO terms that are
even beyond the boundaries of two or more subontolo-
gies in the network space. As such, we do not conduct
the experiments on separate sub-ontologies. Instead, we
focus on the major sub-ontology, Organ abnormality (the
part under HP:0000118), with 6370 HPO terms, 3446
proteins and 269420 annotations in total according to
Data-201706. A 5×5-fold cross-validation has been con-
ducted by following the same splitting strategy as before.
Table 12 reports the scores of the eight evaluation crite-
ria obtained by all compared methods. The results clearly
show that the performance differences among the seven
cases are subtle. For example, HPOAnnotator achieves the

Table 12 Performance results on Data-201706 focusing on the sub-ontology Organ abnormality

Method AUC AUPR micro-AUC micro-AUPR macro-AUC macro-AUPR leaf-AUC leaf-AUPR

NMF-Organ 0.955 0.507 0.883 0.250 0.745 0.127 0.682 0.077

NMF-PPN-Organ 0.962 0.555 0.889 0.276 0.755 0.144 0.701 0.091

NMF-NHPO-Organ 0.962 0.535 0.888 0.264 0.756 0.141 0.702 0.089

NMF-All 0.956 0.512 0.884 0.258 0.755 0.129 0.685 0.083

NMF-PPN-All 0.962 0.553 0.889 0.273 0.755 0.143 0.698 0.089

NMF-NHPO-All 0.962 0.556 0.889 0.274 0.755 0.144 0.699 0.090

HPOAnnotator-All 0.963 0.559 0.891 0.278 0.759 0.146 0.702 0.094

The first three rows of methods with “Organ” are trained by HPO terms on Organ abnormality, while the others with “All” are trained by considering all sub-ontologies.
Method performs best in terms of this evaluation metric are in boldface
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Table 13 Macro-AUC obtained by focusing on Organ abnormality

Method [1-10] [11-30] [31-100] [101-300] [≥301]

NMF-Organ 0.645 0.897 0.924 0.945 0.922

NMF-PPN-Organ 0.654 0.921 0.943 0.956 0.934

NMF-NHPO-Organ 0.652 0.926 0.942 0.958 0.936

NMF-All 0.645 0.906 0.939 0.941 0.912

NMF-PPN-All 0.651 0.924 0.941 0.954 0.919

NMF-NHPO-All 0.650 0.928 0.940 0.953 0.935

HPOAnnotator-All 0.655 0.929 0.946 0.955 0.938

The three rows with “Organ" use only organ abnormality for training, while the others with “All" take all sub-ontologies for training.
Method performs best in terms of this evaluation metric are in boldface

best performance with respect to all evaluation measure
except for leaf-AUC. Comparing NMF-Organ and NMF-
PPN-Organ in terms of AUC, we can find that network
information can help to improve the performance to a
certain extent. Nonetheless, the use of both networks of
PPN and NHPO might not be so effective in this scenario.
Besides, it seems that the performance improvement is
quite limited when we consider the whole ontology rather
than individual sub-ontologies. Tables 13 and 14 list the
evaluation scores of Macro-AUC and Macro-AUPR over
the five HPO term groups, respectively. The trend is sim-
ilar to that presented in Table 12. Again, the results show
no notable difference among the compared methods.

Discussion and Conclusion
In this paper, we have presented an approach that uses
a low-rank approximation to solve the problem of the
large-scale prediction of HPO annotations for human
proteins. In particular, network information is used to
regulate such an approximation. The network informa-
tion can be derived from both sides of annotations, i.e.,
PPI networks, and a hierarchical structure of an ontology.
In essence, we provided a low-rank approximation solu-
tion to the optimization problem of matrix factorization
with a network-derived regularization. Extensive experi-
ments on the current HPO database have been conducted

Table 14 Macro-AUPR obtained by focusing on Organ
abnormality

Method [1-10] [11-30] [31-100] [101-300] [≥301]

NMF-Organ 0.030 0.190 0.355 0.478 0.446

NMF-PPN-Organ 0.033 0.205 0.371 0.495 0.486

NMF-NHPO-Organ 0.033 0.207 0.369 0.490 0.485

NMF-All 0.031 0.193 0.363 0.477 0.449

NMF-PPN-All 0.032 0.204 0.370 0.486 0.460

NMF-NHPO-All 0.032 0.209 0.373 0.482 0.462

HPOAnnotator-All 0.035 0.212 0.374 0.493 0.485

The three rows with “Organ" use only organ abnormality for training, while the
other four rows with “All" take all sub-ontologies for training.
Method performs best in terms of this evaluation metric are in boldface

to validate the effectiveness of our approach. Experimen-
tal results clearly demonstrated the good performance of
the proposed method under various settings, including
cross-validation, independent test, analysis on the major
sub-ontology Organ abnormality, and detailed case stud-
ies. The results have validated the good effectiveness as a
result of using network information and ontology hierar-
chical structure as regularization and a low-rank approxi-
mation for HPO predictions, even for predictions on HPO
terms with a very small number of known annotations.

Overall, the four important findings can be concluded
from the experimental results: 1) a low-rank approxima-
tion works quite well for a large-scale HPO annotations
prediction; or more generally, for multi-label classifica-
tion, even for predicting labels with an extremely small
number of labeled instances; 2) a hierarchical ontology
structure is very useful as side information for improv-
ing the performance of a low-rank approximation; 3) PPI
networks from different sources play an important role
in predictions; and 4) multiplicative parameter update of
a low-rank approximation (matrix factorization) is time-
efficient, with around eight times faster than network-
based approaches that need the huge memory because of
using the original annotation matrices directly.
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