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Abstract—The fifth generation (5G) and beyond wireless net-
works are foreseen to operate in a fully automated manner,
in order to fulfill the promise of ultra-short latency, meet the
exponentially increasing resource requirements, and offer the
quality of experience (QoE) expected from end-users. Among
the ingredients involved in such environments, network slicing
enables the creation of logical networks tailored to support
specific application demands (i.e., service level agreement SLA,
quality of service QoS, etc.) on top of physical infrastruc-
ture. This creates the need for mechanisms that can collect
spatiotemporal information on users’ service consumption, and
identify meaningful insights and patterns, leveraging machine-
learning techniques. In this vein, our paper proposes a frame-
work dubbed “SOCL” for the Service Oriented CLustering,
analysis and profiling of users (i.e., humans, sensors, etc.) when
consuming enhanced Mobile BroadBand (eMBB) applications,
internet of things (IoT) services, and unmanned aerial vehicles
services (UAVs). SOCL relies mainly on the realistic network
simulation framework “network slice planner” (NSP), and two
clustering methods namely K-means and hierarchical clustering.
The obtained results showcase interesting features, highlighting
the benefit of the proposed framework.

I. INTRODUCTION

To meet different verticals with diverse service and resource
requirements [1], 5G will rely not only on the advancement of
radio access network (RAN) (i.e., millimeter waves, new radio
frequencies, beam-forming, massive MIMO, etc.), but also on
key enabler technologies for network softwarization such as
software defined network (SDN) [2], [3] and network function
virtualization (NFV) [4]. Leveraging these technologies, 5G
is expected to achieve high-bandwidth, ultra-low latency, and
high-density connections, thus, enabling multiple use cases
that were not possible in the previous network generations.

In this vein, the 5G network is envisioned to support a
wide range of distinct services for different types of equipment
varying from regular terminals such as smartphones and tablets
to a broader set of devices such as UAVs, autonomous cars
and IoT sensors. The International Telecommunication Union
(ITU) and Fifth Generation Public Private Partnership (5G-
PPP) encapsulate the use-cases into three main categories [5]:
eMBB, massive machine-type communications (MTC), and
Ultra-Reliable Low-Latency Communication (URLLC).

To provide the required performance for this wide range
of use cases, 5G networks rely upon the concept of network
slicing [6]. A network slice aims to create a virtual network on

top of a common physical infrastructure. This virtual network
is then customized and optimized to offer the resources, virtual
network functions (VNFs), latency, and bandwidth expected to
meet a particular demand [7].

In order to instantiate such virtual networks, there is a
need for defining a meaningful clustering of users. Since
5G will support various types of user equipments (UEs), an
understanding of the aggregated behavior of UEs is vital.
The discovery of relevant groups of users who share the
same characteristics and behavior means that they would be
sharing similar requirements. This can reflect on the creation
of network slices that can handle the demands of each users’
group.

The major challenges facing such analysis are the lack of
user-activity data in the first place, the large amount of data
generated from devices continuously, and the analysis com-
plexity. In addition, these constraints make pattern searching
difficult from the operators’ point of view.

In recent years, machine learning techniques recorded major
success to deal with such limitations in other scenarios, and
found optimal results in a reasonable amount of time. In this
vein, this paper proposes a new solution dubbed “SOCL” for
the Service-Oriented CLustering. SOCL relies on widely used
clustering methods (i.e., k-means and hierarchical clustering)
to discover patterns and identify relevant groups of UEs,
according to their usage of the network, consumption of
services, and other behavioral features. This will facilitate an
optimal slice configuration, instantiation and selection, which
will make the overall network more flexible, adaptive, and
automated.

The remainder of this paper is organized as follows. Sec-
tion II summarizes the fundamental background topics and
related research works. Section III introduces the network
slice planner (NSP), a simulation framework on which SOCL
will be based. Section IV describes the main components of
SOCL. Section V provides an analysis of the results obtained.
Finally, Section VI concludes the paper with insights and
future research venues.

II. RELATED WORKS

The evolution towards 5G requires the provision of networks
in an “as a service” fashion. This begins by enabling a
dynamic configuration, and customization of network slices



based on application-specific service level agreements (SLAs),
and users’ preferences.

Several management and orchestration solutions based their
virtual network placement solutions on the collected resource
consumption data [12], [13]. However, the intelligent automa-
tion of such process requires a prior knowledge of resource
usage, and most importantly of trends and patterns in users’
service consumption. Indeed, a proper classification of such
data relying on machine learning techniques, will help to
supervise and automate the configuration, implementation, and
maintenance of network slices (i.e., automation of network
slices life-cycle management).

Many attempts have been carried out to generate data on
the performance and behavior of cloud networks such as
CloudsimNFV [8]. However, to the best knowledge of the
authors, NSP is the first to consider a user-centric simulation
experience coupling both the underlying network simulation as
well as the user/devices realistic behavior [9], and to provide
logs that can be used by VNF placement algorithms for slice
planning purposes. In this context, many works have been able
to benchmark and test VNF placement algorithms [10], [11]
using NSP data.

III. NETWORK SLICE PLANNER

NSP is a simulator that mimics as much as possible the real-
life service consumption relevant to 5G-related use-cases. As
illustrated in Fig. 1, NSP defines a spatio-temporal modeling of
mobile service usage (i.e., usage over a particular geographical
area and in real time progress). The mobile services that are
simulated using NSP are as follows:

• Video streaming services.
• Social network services.
• Instant messaging services.
• UAV delivery services.
• IoT sensors.

Fig. 1. NSP Simulation

Furthermore, NSP simulates the real-time edge computing
resource usage in terms of RAM, CPU, storage, and record
several types of events (e.g., handoff operations, trakcing area
updates, attach/detach, migration, etc.). The network side is

handled by leveraging NS3’s LENA module, providing de-
tailed information and statistics on Key Performance Indicators
(KPIs) such as temporal variation of PHY Layer KPIs (i.e.,
RSRP and SINR reported by UEs, etc.) and temporal PDCP
Layer KPIs (i.e., average PDU size, delay, etc.).

Within NSP, several mobility patterns are taken into account
(i.e., walking, biking, or driving) using Google Direction API,
which helps in the generation of real itineraries reflecting
multiple users’ journey.

The usage of NSP in our context is mainly motivated by the
fact that users’ behavioral and consumption data (i.e., mobility,
service usage, network consumption, etc.) is not available.
Indeed, it can be obtained either from mobile operators or
directly from users’ terminal, but they are reluctant to share
such information, due to the critical nature and privacy con-
straints of such data.

IV. SERVICE-ORIENTED CLUSTERING FRAMEWORK

Clustering in general stands for extracting natural groups
of similar data objects. These groups should reflect hidden
patterns in the data objects, by ensuring similarity within
a cluster, and non-similarity between different clusters. In
this section, we will present our NSP-based dataset, two
most widely used clustering methods namely K-means (KM)
and hierarchical clustering (hierarchical clustering), and their
application on the dataset.

A. NSP-based dataset

Fig. 2. NSP-based log sample

Based on the logs of NSP, the dataset that will be manip-
ulated by the clustering methods contains the following fields
before preprocessing:
• Event type: It can be an attach event, a handoff operation,

or other events.
• Time stamp: Time when the data was recorded.



• Service Type: The service launched (e.g., browsing pro-
file page, watching 720p video online, weather sensing,
UAV home delivery, etc.).

• Device ID.
• Device position: The position of user or sensor in latitude

longitude format.
• Edge Cloud ID: Determines the edge cloud to which the

service was offloaded.
• eNB ID: Determines the eNodeB capturing the users

signal.
• Track ID: Determines the tracking area to which the eNB

belongs.
• Data usage: Determines the data used in KB.
Fig. 2 depicts a sample of the dataset before preprocessing.

As it may be seen, the dataset contains many inputs that are
less relevant to the behavior of UEs, such as event related
logs. Thus, it is important to ensure an efficient preprocessing
to retain only the relevant data. To be able to do so, we applied
an improved implementation of the feature-selection based on
mutual information and less redundancy [14], by removing
before-hand all inputs that are relevant to migration, handoffs,
and tracking area update, as well as the inputs of the simulation
configuration.

B. K-means

K-means is one of the most widely used unsupervised
machine learning tools. Its main feature is the utilization
of input vectors rather than referring to labels and obvious
outcomes. This enables to discover hidden patterns. The main
objective of K-means is to find a k number of clusters, each
with a centroid that reflects the characteristics of the resulting
group. Formally, for a given dataset Ds = {pi} with i={1, .., n}
and pi is a point in the d-dimensional space Rd, the objective
is to find a satisfying set of assignments such that the sum
of squared error Σ is minimized. Σ is obtained using the
following equation:

Σ =

k∑
j=1

n∑
i=1

ci,j‖pi −mj‖2 (1)

With ci,j is the cluster indicator. It equals 1 if pi and pj belong
to the same cluster, and equals 0 otherwise. mj is the mean
of cluster j. It is calculated as follows:

mj =

∑
pe∈Cj

pe

|Cj |
(2)

C. Hierarchical clustering

The main motivation behind using hierarchical clustering
lies in the fact that we are trying to find a hierarchical
decomposition of our data. This will allow us to automate
slice configuration or other operations for specific services.
For instance, we can deduce a sub-cluster of one service type
belonging to another service cluster. The main hierarchical
clustering types are the agglomerative clustering and the
divisive clustering, and both are based on a similarity matrix
computed using cosine and Jaccard distance. The first family

defines a bottom-up approach, meaning that the starting point
is that each data point begins with its own cluster, and then
a greedy strategy is followed to merge similar clusters. The
second one starts by having all data points in the same cluster,
and then dividing less similar clusters until the number of
desired groups is reached. Within our framework, we apply
the agglomerative clustering since the second type is rarely
used in practice.

V. EXPERIMENTATION AND RESULTS

In this section, we analyze the results obtained for a
varying number of groups, using k-means and the hierarchical
clustering methods. The main focus is on the usage of network
traffic, MEC resources, and the services consumed by users in
each of the obtained clusters.

A. K-Means clustering

(a) Data usage

(b) Service distribution

(c) Resource usage

Fig. 3. K-Means clustering with a target of 2 groups.



1) 2 clusters case: Using K-Means with a k value of 2,
users are regrouped in a logical manner where the first group
consumes a low level of network traffic and MEC resources,
while the second group contains users with a relatively high
usage of both the network and MEC infrastructure (see Fig.
3). For the service distribution, both groups show a large usage
of social networks and instant messaging services.

(a) Data usage

(b) Service distribution

(c) Resource usage

Fig. 4. K-Means clustering with a target of 3 groups.

2) 3 clusters case: As shown in Fig. 4, K-Means with
a k value of 3 tries to balance between groups. For the
characteristics related to data usage, service distribution, and
resource usage, the obtained groups are equivalent with a slight
difference in data usage. This equivalence is more pronounced
from the resource usage perspective where the groups depict
approximately the same resource usage.

3) 4 clusters case: Fig. 5 illustrates the scenario where k-
means is used with a k value of 4. The algorithm pursues
further in the equity of groups, and the level of homogeneity
within each cluster confirms that the more we increase the

(a) Data usage

(b) Service distribution

(c) Resource usage

Fig. 5. K-Means clustering with a target of 4 groups.

number k of clusters ( i.e., groups ), the more k-means will
try to equilibrate between groups which will result in a more
homogeneous set of users. In this particular case, the level of
similarity within the obtained group can enable a prediction
of virtual resources consumption, and make particular slices
more available (i.e., social networks and instant messaging as
the most used services).

B. Hierarchical clustering

1) 2 clusters case: As illustrated in Fig. 6, when launching
the Hierarchical clustering with 2 clusters as a parameter, it
can be noticed that the algorithm splits the users into two
groups. Although the two groups show a slightly similar
behavior when comparing the data usage in the up-link, group
0 exhibits a much more usage in the down-link. For the service
distribution, the two groups have a comparable service usage
mostly regarding social network and video streaming services
that are predominant. In terms of resource consumption, the



(a) Data usage

(b) Service distribution

(c) Resource usage

Fig. 6. Hierarchical clustering with a target of 2 groups.

second group (i.e., group 1 ) of users manifests a considerable
overall consumption of the MEC infrastructure, especially
regarding the video streaming and social network services
where the consumption is nearly multiplied by two.

2) 3 clusters case: For the Hierarchical clustering with
3 clusters as a parameter (see Fig. 7), the first two groups
display similar data usage in both the up-link and down-link,
but the last group is quite different as it shows a considerably
low consumption. For the service distribution, the groups have
an equivalent service usage mostly of social network, instant
messaging, and video streaming. The resource usage of the
groups is quite ordered where the second group 0 is more
resource consuming then group 1. The same remark applies
to group 1 relative to group 2, with the latter having the lowest
resource consumption.

3) 4 clusters case: As depicted in Fig. 8, the hierarchical
clustering with 4 clusters regroups the users in an equitable
way where we have groups ranging from a highly consuming

(a) Data usage

(b) Service distribution

(c) Resource usage

Fig. 7. Hierarchical clustering with a target of 3 groups.

group (i.e., group 0), in terms of data usage and resource
consumption, then a medium-high (i.e., group 1), a medium
(i.e., group 2), and finally a group with a relatively low usage
(i.e., group 3). For the service distribution, all groups have an
equivalent service usage that mostly involves social network,
video streaming, and instant messaging services.

VI. CONCLUSION

Since network slicing enables the creation of logical net-
works tailored to support specific application demands, it is
crucial to analyze the service consumption trends and the
consequent resource needs. In this vein, we focus on the
clustering of groups of UEs, according to their usage of the
network, consumption of services, and other behavioral signs,
in order to permit an optimal slice configuration, instantiation
and selection. To do so, we propose SOCL as a framework
for the Service Oriented CLustering, analysis and profiling of
users (i.e., humans, sensors, etc.). This will be extended to



(a) Data usage

(b) Service distribution

(c) Resource usage

Fig. 8. Hierarchical clustering with a target of 4 groups.

enable the tailoring of the overall network for more flexibility
and life-cycle management automation.
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