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ABSTRACT

In fluid power systems, one of the most common causes of failure is contamination of the hydraulic fluid.
Without filtering the fluid gets contaminated with harmful particles over time, which will cause excessive wear
of components or even block motion of parts in flow control valves. In order to avoid machine downtime, it is
important to monitor that adequate technical performance level of the fluid is maintained at all times.

This study contributes to condition-based maintenance of hydraulic fluid filter units by establishing a correlation
equation, based on comprehensive laboratory tests and incorporated in a simulation model, relating the
pressure drop over the filter unit with the main variables describing the operating conditions of the fluid system
as well as with filter operating time.

The paper describes how the correlation equation and the simulation model was constructed. The results
indicate that good correlation was obtained (R-square value 0.98) with the constructed equation between the
physical variables and the temporal development of the pressure drop over the filter. The model can be used
as a building block for a smart filter unit that can predict its lifetime.
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1. INTRODUCTION

In fluid power systems, one of the most common causes of failure is contamination of the hydraulic fluid [1]. In
addition to its main function, i.e., to transfer energy, the fluid acts as a lubricant between moving parts in the
components, enabling control of friction, wear and operating temperature.

In order to avoid machine downtime and loss of production, it is important to maintain adequate technical
performance level of the fluid at all times. This is done by filtering, without which the fluid gets contaminated
with harmful particles over time. Excessive concentration of particles in the fluid will cause excessive wear of
components or can even block motion of parts in flow control valves. Wear can also cause insufficient efficiency
in pumps, or their failure. Jammed parts in control valves can cause unreliable and erratic motion in actuators.
These potential detrimental effects stress the importance of maintenance of fluid filter units.

Filter elements are usually replaced according to pre-defined time-schedules, but this is inefficient as the
maintenance actions are not based on the actual time-history of the filter unit and the fluid system. Time-based



maintenance can either lead to premature replacement of filters, or lead to excessive contamination levels in
the fluid due to unforeseen sudden increase of particle load during the presumed service period. Condition-
based maintenance of filter elements can be made possible by continuously measuring the pressure drop over
the filter element and using the measured value in a filter model to predict the remaining lifetime of the element.

Filtering can also play an important role in assessing ship machinery condition (e.g., the thruster gear run
condition), as wear particle concentration rate is also influenced by the removal rate of wear particles from the
lubrication system. [2, 3]

Modelling the pressure drop associated with fluid flow through fibrous or porous media have been presented
by several researchers over the years. However, the studies can be restricted to estimating pressure drop due
to flow though clean fibrous filters [4, 5], or flow of air through porous material [6, 7]. This stresses the
importance of filter testing and modelling involving contaminated fluid and gradual pressure build-up over the
cartridge due to contamination retention. While the research on contamination retention in hydraulic filtration
is not as extensive as in, say, industrial air filtration, in [8] a study was conducted for predicting the service life
of a hydraulic filter based on the operating conditions. In the mentioned study, a model was developed for
monitoring the condition of a hydraulic return line filter in a hydraulic servo system of a hot strip mill. The study
presented a methodology for taking into account the influence of flow rate on the pressure difference over the
filter by using down-stream pressure measurement instead of utilizing expensive flow meters. However,
temperature measurement was not implemented, and thus the study did not take the influence of viscosity on
the pressure difference over the filter into account.

For this study, comprehensive laboratory tests have been made in order to produce filtration performance data
relating the effect of flow rate, contaminant particle concentration, and fluid temperature to the pressure drop
measured over the filter element. [9]

In this paper, the laboratory test results will be analysed and mathematical correlation expressions will be
derived from the experimental data giving estimates for the pressure drop over the filter as a function of the
operating conditions and service time. While these mathematical correlation expressions represent the near-
term goal, the aim of the future research is to develop Internet-of-things (IoT) enabled, smart filtering connected
to the overall computerized condition monitoring solution in the machine system, e.g., in a ship. The purpose
is to be able to compare filter performance data that have been recorded in the machine system with the
estimate given by the mathematical expressions, in order to detect the operating state of the filter cartridge
and to predict its remaining lifetime by producing an estimate (trend) of how the pressure drop will evolve over
time.

2. METHODS

The study to create a correlation model for the pressure drop across a filter element was twofold: perform
laboratory tests at different fluid conditions, and develop a model based on said laboratory tests that could
predict the pressure drop based on the different conditions. Section 2.1. examines the laboratory tests that
were carried out, followed by the explanation of the succeeded modelling procedure in Section 2.2.

2.1. Experimental

The experimental part consisted of measuring the filter pressure drop at different oil conditions. For this
purpose, a test bench with multiple sensors monitoring the different conditions was utilized. The filter type used
in the experiments was a 5 μm rated commercial filter with glass fibre media that has an effective surface area
of 0.154 m2 through 57 pleats. The oil that was used was the standard ISO VG 32 hydraulic oil. [9]

The different oil conditions considered for this study were the oil flow rate, temperature, and gravimetric
contamination level. For adjusting the gravimetric contamination level, the fluid was subjected to ISO medium
test dust (ISO12103-1-A3) at different rates resulting in four different contamination levels at 2 mg/l, 5 mg/l, 8



mg/l and 10 mg/l. The flow rates were set to 40 l/min, 80 l/min and 120 l/min, and the fluid temperatures were
adjusted to 30 °C, 40 °C, 50 °C, and 60 °C, [9]. Figure 1 illustrates the types of effect that the different oil
conditions have on the pressure drop development over time. The different experiments were carried out until
a pressure drop of 5 bar had been reached, and the sampling period used for the measurements during each
experiment was two seconds. As a summary, the tests included four different contamination levels, three
different flow rates, and four different fluid temperatures, resulting in 48 experiments in total. The experimental
set-up was described in more detail in [9].

Figure 1. Examples of how the pressure drop developed when operation conditions were changed.

2.2. Model description

The main goal of this study was to establish a single model that will describe the development of the pressure
drop across the filter element throughout its entire service life. Based on the experimental data, the model will
consist of an equation of physical variables:

∆. = ݍ,ݐ)݂ ,ܶ, ,(ߩ (1)

where ݐ is time, , is volumetric flow rateݍ ܶ is temperature, and  is mass concentration of the contaminantߩ
i.e. the gravimetric contamination level. The approach used for constructing the model was regression analysis.
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2.2.1. Equation for ∆p

The first objective in the regression analysis was to find a general form for the equation (1) through curve
fitting. The curve fitting was performed in the MATLAB environment for all the different 48 experiments, with
the pressure drop as the output and time ∆ as the only initial input. Different models were experimented ݐ
with, but the best fitting was discovered to be with an exponential function that has two exponential terms. The
method utilized for finding the exponential fitting was the nonlinear least squares method, which is
characterized by

min
ఉ
∑ ଶ(ݔ)ݎ =
ୀଵ ଶ(ݔ)ଵݎ + .+ଶ(ݔ)ଶݎ . ,ଶ(ݔ)ݎ+. (2)

where the function is (ݔ)ݎ

(ݔ)ݎ = ݕ − ݔ)݂ ,(ߚ, (3)

where  is the sample, which isݕ in our case, and ∆ ݔ)݂ is the corresponding fitting function value for the (ߚ,
value  of the independent variableݔ with a parametrization vector The intention was to minimize (2) by .ߚ
applying the Trust-Region search algorithm, which is especially suited for solving nonlinear problems. [10,11]

As the best fitting was found to be with an exponential function that has two exponential terms, the equation
for could now be expressed as ∆

(ݐ)∆ = ܽ݁௧ + ܿ݁ௗ௧, (4)

where ܽ, ܾ, ܿ and ݀ are coefficients that vary at different flow rates, temperatures and contamination levels.
This exponential fitting for resulted in an ∆ ܴଶ value of over 0.99 for all but one of the original 48 experimental
results.

The fitted curve includes certain observable trends that are typical for exponential functions. The curve is
characterized by a low and steady increase in at the beginning along the time-axis, which can also be seen ∆
from Figure 1 that showcases the measurement data. After the initial steady increase, the rate of change for
increases markedly towards the end of the experiment, Figure 1. However, the region of increased rate of ∆
change for ∆ is not as apparent at lower temperatures, i.e. at higher fluid viscosities.

The next modelling objective was to present the coefficients ܽ, ܾ, ܿ and ݀ in (4) with the help of the physical
variables ,ݍ ܶ and . This was initially approached by the means of manual search, e.g. keeping someߩ
physical variables constant, such as flow rate and temperature, and varying a single variable, such as
contamination level, and determining whether it had any effect on the coefficients ܽ, ܾ, ܿ or ݀. The coefficients
ܽ and ܿ were found to be mainly influenced by the fluid flow rate and temperature, as their sum represents the
pressure drop at time instant zero. Therefore, the coefficients ܽ and ܿ can be expressed as

ܽ + ܿ = (0)∆ = ,∆ (5)

where the initial pressure drop across the filter element at time instant zero is denoted as . This initial∆
pressure drop occurs when the filter is still “clean” and has not been subjected to a stream of particles. This is
also depicted in the uppermost graph in Figure 1, where the initial pressure drops are similar despite the
differences in the gravimetric contamination level.

The initial pressure drop could be expressed with the help of the Ergun equation (1952), which is an extension
of the Darcy’s law (1856) for a pressure drop for a fluid flowing through a packed bed. The Ergun equation for
a pressure drop is given as [12]

∆ = ଵହఓ(ଵିఢ)మ௩ೞ
ௗమఢయ

+ ଵ.ହ(ଵିఢ)ఘ௩ೞమ
ௗఢయ

, (6)

where ,is the dynamic viscosity ߤ ߳ is the porosity of the bed, ,௦ is the superficial velocity of the fluidݒ is the ܮ
length of the bed, and ݀ is the particle diameter. According to the Ergun equation, the effect of fluid viscosity
is linear, and the effect of fluid velocity is quadratic for the pressure drop across a packed bed. For our
modelling purposes, the initial pressure drop  for different cases was obtained by linear interpolation from∆
the measurement data, as a function of flow rate and temperature.



Despite the initial pressure drop being independent of the fluid contamination level, the coefficient ܿ was
perceived to have a decreasing trend versus higher contamination levels, though no such trend was observed
with the coefficient ܽ. An example of this is demonstrated in Figure 2, where the contamination level is varied
but the flow rate and temperature are kept constant at 120 l/min and 50 °C, respectively. This trend was
observed at almost all different sets of a fixed flow rate and temperature.

Figure 2. The coefficient c at different contamination levels, while the flow rate and temperature are kept
constant (at 120 l/min, 50 °C)

The flow rate and temperature were varied separately as well, to determine how much they affected the
coefficient ܿ. After doing this inspection manually, a general form for the coefficient ܿ was approximated as:

ܿ = ൫ݔଵݍ௩ߩ + ௩ݍଶݔ
௫య൯ߥ + ௩ݍସݔ

௫ఱߩ + ,௩ݍݔ (7)

where ଵ throughݔ  are constants andݔ is the fluid kinematic viscosity. Note that this equation uses fluid ߥ
viscosity as one of its variables rather than temperature. The relationship between fluid viscosity and
temperature for the ISO VG 32 oil kinematic viscosity (in cSt) was given in [9] as:

ߥ = 300.98ܶି.ହ଼ହ, (8)

where the temperature ܶ is expressed in °C. Now that a general form for ܿ had been acquired, the coefficient
ܽ could be expressed with the help of (5):

ܽ = ∆ − ܿ = ∆ − ቀ൫ݔଵݍ௩ߩ + ௩ݍଶݔ
௫య൯ߥ + ௩ݍସݔ

௫ఱߩ + ,௩ቁݍݔ (9)

A similar approach was taken for the coefficients ܾ and ݀ in (4), to approximate how the different physical
variables affected them. The effect of contamination level was found to be very linear for both of the
coefficients. The temperature was perceived to have little to no effect, however the effect of flow rate was
noticeably linear and similar across different contamination levels. Figure 3 depicts an example of the effect of
contamination level and flow rate on the coefficient ܾ.



Figure 3. The effect of contamination level on b (at 80 l/min, 40 °C), and the effect of flow rate on b (at 5
mg/l, 40 °C)

As both of the coefficients ܾ and ݀ were discovered to vary very linearly based on the contamination level and
flow rate, the two coefficients could be expressed as:

ܾ = ,ߩ௩ݍݔ            (10)

and

݀ = ,ߩ௩ݍ଼ݔ            (11)

where  andݔ are constants. Combining the resulting functions for ଼ݔ ܽ, ܾ, ܿ and ݀ into (4) provides us a general
form for the pressure drop equation:

∆ = ൬∆ − ቀ൫ݔଵݍ௩ߩ + ௩ݍଶݔ
௫య൯ߥ + ௩ݍସݔ

௫ఱߩ + ௩ቁ൰ݍݔ ݁௫ళೡఘ௧ + ቀ൫ݔଵݍ௩ߩ + ௩ݍଶݔ
௫య൯ߥ + ௩ݍସݔ

௫ఱߩ + ௩ቁݍݔ ݁௫ఴೡఘ௧            (12)

The constants were initially obtained manually while deriving this equation. However, for better ଼ݔ—ଵݔ
accuracy, the coefficients were later refined using parameter optimization, which is discussed in the following
sub-section.

2.2.2. Parameter optimization

After deriving the mathematical model (12) for the pressure drop across the filter element, the next task was
to optimize the parameters in order to improve the accuracy of the model. The experimental results for ଼ݔ—ଵݔ
were resampled into equally long lists, to avoid excessive importance of the longer experiments, mainly ∆
those that occurred at lower flow rates and contamination levels. Some of the measurements were excluded
for this stage as they were inconsistent with the majority. The excluded measurements contained all the
experiments done at flow rate of 40 l/min at temperatures 50 and 60 °C, therefore eight experiments in total
from the original 48 experiments were excluded. The included measurements were combined into a single
output list, and an input matrix that included the corresponding time, flow rate, viscosity and contamination



level, was created. The problem was approached similarly as in (2), where it was treated as a cost function to
be minimized. For this case, the function to minimize was:

min
௫

ଵ
ଶ
∑ ∆) − )ଶ̂∆
ୀଵ ,            (13)

where ∆ is the measured pressure drop obtained from the output list, and  is the estimated pressure drop̂∆
calculated with (12) using the values from the input matrix. is a vector to optimize, containing the parameters ݔ
i.e., the constants of (12) that are to be determined. The amount of sample points ,଼ݔ—ଵݔ ݊ is 14683, which is
the length of the list that contains the measured values. The search algorithm used was the Nelder-Mead ∆
simplex algorithm [10], and the values that had previously been obtained manually for were used as an ଼ݔ—ଵݔ
initial guess for the algorithm. The accuracy of the optimized, final function will be examined in the Results
section.

2.2.3. Simulink model

The final step in the model establishment procedure was to simulate the response of equation (12) at different
cases of flow rate, temperature and contamination level. For this purpose, a model in the Simulink environment
was constructed. The model uses constant values for that were acquired through the parameter ଼ݔ—ଵݔ
optimization, and as inputs the aforementioned physical variables: fluid flow rate, temperature and
contamination level, as well as time. The fluid kinematic viscosity is calculated in the simulation using equation
(8), and an initial pressure drop across the filter element is interpolated from the flow rate and temperature.
The simulation has been programmed to end once a pressure drop of 5 bar has been reached. The simulation
results were validated by comparisons with the experimental data, which shall be discussed in more detail in
the following section.

3. RESULTS

This section examines the modelling results. The Simulink model that utilizes equation (12) was experimented
with at different flow rates, temperatures and contamination levels. The simulation outcomes were compared
against the experimental data. Some of the comparisons are demonstrated in Figure 4 to illustrate the accuracy
of the developed model. The simulation results for the early phase in the pressure drop development are
largely accurate, though for some cases, clear deviation between the simulated and measured results can be
observed at the end.

Table 1 assesses the goodness of equation (12), when compared against all the measured data that was
included for the optimization process, i.e. the list of 14683 different .measurements ∆

Table 1. Validation of function (12) when compared against the measured data.

Goodness
of fit

Value

SSE 303

R2 0.985

RMSE 0.144



Figure 4. Comparing simulated and measured pressure drops.

4. DISCUSSION

The model developed in this study can predict the development of ∆Ā up to 5 bar with a high degree of
accuracy. Eight of the original 48 experiments were excluded from this inspection due to their inconsistent
results. All of the excluded cases were 40 l/min cases, which might account for more noticeable discrepancies
between the simulated and measured results for the 40 l/min comparisons in Figure 4. However, when
considering that the model was assessed against 40 experiments that each had three independently varied
physical variables, an ܴଶ value of 0.985 can be deemed high enough to showcase a clear correlation between
the different physical variables and the development of ∆Ā. The greatest variance between the simulated and
measured results can typically be observed at the end of the simulation, though the greatest inconsistencies
in the experimental results also occurred at the end, making the end of the ∆Ā curve the greatest area of
uncertainty.

The equation (12) that was derived in this study is an equation of the filtration time that works only if the different
oil parameters are assumed to be constants. To have the equation work better with variable parameters, the
equation should be written without time as one of its variables. One possibility would be to rewrite the equation
as a function of filtered mass instead of time, where the filtered mass would be defined as the cumulative
integral of mass that has entered the filter, calculated from the oil contamination level and flow rate. Another
possibility could be to examine the derivatives of different ∆Ā curves to investigate whether a clear point where
the ∆Ā starts to climb excessively could be identified. As the fitting function is exponential in nature,
differentiating it would be simple.



Another aspect is that the model developed in this research could be entirely media specific, and there is no
guarantee that it would work with other filter types. The coefficients that were considered constants in this
study would most likely vary based on the filter media. In addition, as laboratory tests that were performed at
careful conditions were the basis of this research, further confirmation of the accuracy of the developed model
would require additional field-testing.

5. CONCLUSIONS

The objective in this study was to develop a correlation model for the pressure drop across a filter element that
is subjected to a stream of contaminated oil at different oil contamination levels, flow rates and temperatures.
The study resulted in exponential equation (12) that could be used to calculate the developing pressure drop
based on the aforementioned oil parameters. The model was validated against experimental data, and was
found to match the empirical results with a high degree of accuracy with a coefficient of determination R2 of
over 0.98. This demonstrated a clear correlation between the oil parameters and the pressure drop
development over the filter element, which is typically used for determining the remaining service life of the
filter.

This study has been done as part of an initial research in order to investigate correlations between oil conditions
and filter service time. The ultimate goal of the research is to develop an intelligent oil filter that can predict its
remaining lifetime. This information would be used in predictive maintenance that would eliminate unnecessary
filter replacements, and prevent downtime due to a filter failure. As the research is still in its early phase, more
work needs to be done to develop the correlation models. Possible future prospects include a correlation model
based on filtered mass, and an investigation of the rate of change of the pressure drop data, in order to more
accurately detect the beginning of the actual blocking phase of the filter lifetime.
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NOMENCLATURE

ߥ Kinematic viscosity [mm2/s]

ߩ Mass concentration of contaminant, i.e., the gravimetric contamination level [mg/l]

ܽ, ܾ, ܿ,݀ Coefficients for pressure drop [ - ]

∆ Pressure drop [bar]

∆ Initial pressure drop over a filter [bar]

ݍ Volumetric flow rate [l/min]

ݐ Time [s]

ܶ Temperature [°C]

଼ݔ—ଵݔ Constants for pressure drop [ - ]

SSE Sum of squares due to error (summed square of residuals) [ - ]

R2 R-square (coefficient of determination) [ - ]

RMSE Root Mean Squared Error (standard error of the regression) [ - ]
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