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 
Abstract—Hazardous situations may easily be caused by 
limited visibility at urban traffic intersections due to 
buildings, fences, flora and other obstacles. Thus, drivers 
approaching an intersection have limited reaction time 
when other obscured road users, such as pedestrians and 
cyclists, appear unexpectedly. Previous research has been 
conducted on applications warning drivers of approaching 
out-of-sight vehicles. However, less focus has been on the 
detection and awareness applications revealing the presence 
of pedestrians. We propose a novel system that displays the 
driver real-time locations and types of hidden road users at 
traffic intersections. A roadside unit is installed in the 
infrastructure which sends safety-critical object data to the 
vehicle, supporting the real-time decision-making of the 
driver. The roadside unit consists of a monovision camera 
streaming video to a computing unit which performs object 
detection and distance measurements on the detected 
objects. This paper validates the capability of the proposed 
system of localising a pedestrian, and also examines its 
sensitivity to installation and detection errors. The results 
show that the accuracy of the proposed system is suitable 
for the intended application. However, an error in the 
vertical angle of the roadside unit camera caused an 
exponential error in the distance approximation in respect 
to the measured distance. The detection accuracy was 
noticed to decrease at long distances and in dark 
surroundings. Moreover, in order to reduce the effect of the 
presented errors, the camera should be installed as high as 
possible without hindering its detection capabilities. 
 

Index Terms—Cameras, intelligent transportation systems, 
machine vision, neural networks, object detection, vehicle safety. 

I. INTRODUCTION 
raffic intersections are hazardous areas as pedestrians and 
cyclists intermingle with vehicle traffic. These different 
types of road users must often cross each other’s 

trajectories, leading to potentially dangerous situations. Even if 
common traffic rules are followed, collisions can occur, and the 
consequences can be severe. One fifth of all fatal traffic 
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accidents in the U.S. occur in traffic intersections alone [1]. A 
similar percentage of road fatalities is reported to occur in 
traffic junctions in the EU [2]. These fatalities are partly caused 
by the surroundings of intersections being obscured by 
obstacles, such as buildings, fences and flora, in many densely 
populated regions. Naturally, limited vision reduces the 
reaction time of road users in rapidly changing situations. In 
addition, disturbances in the perception of a vehicle driver, such 
as difficult weather conditions, electronic devices and fatigue, 
can lead to mishaps and accidents. Thus, by increasing the 
reaction time and enhancing the perception of the driver at 
intersections, the safety of all road users could be significantly 
increased. 

Therefore, any information on hidden or obscured traffic 
users and their locations would provide drivers with more time 
to adjust to the immediate situation, thus helping them to 
interpret the intentions of others. Drivers would be able to 
prepare to give way to approaching road users before they come 
into view, avoiding possible collisions. This is especially 
important when vulnerable road users such as pedestrians and 
cyclists are present, since they can quickly and unexpectedly 
appear in the view and attempt to cross the road. Additionally, 
drivers with the right of way could also more easily identify 
situations where the rules are about to be violated. One method 
for acquiring information of obscured subjects is real-time 
object detection. Information gathered by a roadside unit (RSU) 
located at the intersection can be transmitted utilising a wireless 
vehicle-to-infrastructure (V2I) communication. 

V2I is an area of extensive research. Traditionally, research 
on V2I applications has mainly focused on acquiring statistical 
data from vehicles [3][4][5]. These data are beneficial for traffic 
design, traffic control and road maintenance applications. V2I 
has also been applied in safety applications [6][7][8][9]. A 
typical approach for such applications is an RSU that monitors 
traffic and warns drivers of possibly dangerous situations. In 
addition, vehicle-to-vehicle (V2V) communications have been 
investigated [10][11] which allow the sharing of safety-related 
information between vehicles; however, this information does 
not typically include the positions of other traffic users, such as 
pedestrians, cyclists and unconnected vehicles. 

This paper considers a novel approach as illustrated in Fig. 1 
where the information is delivered from the infrastructure to the 
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vehicle. In our approach, a V2I connection is used to acquire 
machine vision data of objects which are located out of the 
driver’s line of sight. The safety-critical object data are sent 
from the RSU to the vehicle and transformed to the vehicle’s 
coordinate frame utilising its navigation data. Hidden objects 
are classified and highlighted for the driver on a screen to 
support their real-time decision-making. Object detection 
technology is common in modern Advanced Driver Assistance 
Systems (ADASs) which offer considerable potential for 
increasing traffic safety [12]. However, their detection 
capabilities are usually limited to the sensors mounted on the 
car, whereas the proposed solution takes advantage of the 
different point of view provided by the RSU. In this paper, we 
study the pedestrian localisation accuracy of the proposed RSU 
and analyse its sensitivity to different installation and detection 
errors. 
 

 
Fig. 1. Basic concept of the proposed system. 

 

II. STATE-OF-THE-ART 
V2I and V2V are popular fields of study as they form the core 

of an intelligent transportation system (ITS). V2V applications 
have been thoroughly researched for safety purposes, and there 
have been multiple patents [13][14][15] on such applications in 
the recent years. Intersection safety has been studied by Ibanez-
Guzman et al. [10], who developed a V2V solution that warned 
drivers of upcoming vehicles. The performance of such systems 
at urban intersections was examined by Rashdan et al. [11]. 
They measured the amount of losses in short-range 
communication between two vehicles, caused by obstacles such 
as buildings between them. Among safety applications V2V has 
presented possibilities in traffic monitoring [16] and control 
[17][18], which are also common areas of V2I research. 

V2I has proved to be effective in monitoring and controlling 
traffic, which are important means for reducing travel times and 
fuel consumption. In order to monitor traffic congestions, 
Barrachina et al. [3] developed a V2I-method for estimating 
traffic densities in a certain area with a 3.04 % accuracy, which 
is valuable information for traffic control applications. 
Optimized traffic flow was researched by Cai et al. [4], who 
simulated adaptive traffic signals that operated on travel-time 
approximations computed from vehicle positions. Compared to 
optimized fixed-time traffic signals, their model saved up to 11 
% of an intersection’s travel time in a high traffic scenario. 
Similar traffic flow case was studied by Ubiergo et al. [5], 

whose method was to give each vehicle approaching the traffic 
signals an individual speed limit. Their simulations achieved a 
15 % reduction in traffic delays and 8 % savings in fuel 
consumption. In addition to successful research in these areas, 
V2I has also been investigated for safety applications. 

Different V2I-based solutions have been proposed for 
collision detection systems aimed at increasing intersection 
safety. A system for preventing crashes and optimizing traffic 
flow in unsignalised intersections has been implemented by 
Milanés et al. [6]. Their approach was to determine all vehicles 
approaching the intersection, and then suggest target speeds to 
the drivers in order to allow safe passage. Another 
infrastructure-based collision warning system has been 
proposed by Basma et al. [7]. In their solution, magnetic sensors 
detected positions and speeds of vehicles approaching an 
intersection, and drivers were alerted if a collision seemed 
probable. Collision prediction has also been researched with a 
machine vision camera by Atev et al. [8]. Using a roadside 
camera, they were able to estimate the sizes and positions of 
visible vehicles and predict collisions between them over a 
short time interval. Their method for detecting vehicles was 
based on an assumption of a static background, so that areas 
that differed from the reference background were detected as 
targets. In addition to systems anticipating collisions between 
vehicles, there has been research on preventing collisions 
involving pedestrians. Artail et al. [9] have proposed an RSU 
that could inform drivers of upcoming pedestrians, localising 
them by requesting the positions of nearby cell phones from the 
mobile network. Applications such as these require equipment 
to be installed in the road infrastructure, and therefore co-
operation with local transportation authorities is necessary. 

Governments around the world have participated in the 
development of V2I and V2V solutions. MEC-View, an on-
going ITS project funded by German Federal Ministry for 
Economic Affairs and Energy, evaluates improving automated 
driving utilising infrastructure-based sensor information [19]. 
Furthermore, European Commission has co-funded an ITS 
research project SAFESPOT [20]. Among other 
accomplishments, the project has developed RSUs capable of 
dynamically mapping surrounding areas with equipment such 
as laser sensors and cameras [21]. One of their applications 
using these data is “Intelligent Cooperative Intersection Safety 
System” (IRIS). The system is capable of warning drivers about 
possible red-light violations, crossing pedestrians and cyclists 
when turning right over a crosswalk, and approaching vehicles 
when taking a left turn [22]. United States Department of 
Transportation has funded research on ITSs as well. Among 
concepts meant for similar purposes as those of SAFESPOT, 
they have also developed a concept for “Stop Sign Gap Assist” 
(SSGA) [23]. SSGA helps drivers coming from a minor road 
through a stop-controlled intersection by informing them if a 
car is approaching on the main road. These government efforts 
indicate that intersection safety is a relevant field of research, 
and there exists a legitimate demand for related applications.  

V2V, V2I and other traffic applications apply different 
methods for localising road users. Often these applications are 
designed to take advantage of GPS data provided by on-board 
units (OBUs), as high quality GPS receivers can obtain position 
information at an accuracy of a few metres [24]. However, GPS 
accuracy suffers from signal blockage caused by large objects 
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such buildings and trees. Other measurement devices can also 
be combined with GPS in order to create a more reliable system. 
A GPS/Dead Reckoning system consisting of a GPS receiver, a 
gyroscope and an odometer has been studied by Lee et al. [25]. 
Their tests carried out with an autonomous vehicle at an 
experimental site resulted in an RMSE of 2.11 metres in the 
longitudinal direction. Khattab et al. [26] have researched a 
GPS-free vehicle positioning RSU that used dedicated short-
range communications (DSRC) for two-way time of arrival 
calculations, combined with an on-board inertial measuring 
unit. The system was evaluated with simulations, and it was 
able to provide the distance along the road with an average error 
of slightly below 2 metres. Another common alternative to GPS 
localising are vision-based solutions. 

Different stereo vision and monovision approaches have 
been researched for obtaining distances to objects of interest in 
traffic scenarios. A stereo vision system for obstacle positioning 
has been studied by Nedevschi et al. [27]. Their algorithm 
created a 3D reconstruction of the surrounding scene, 
classifying grouped points as objects. They found the system to 
be highly accurate, with measurement errors lower than 10 cm 
at 10 m and approximately 30 cm at 45 m. Ibarra-Arenado et al. 
[28] have proposed a method for on-board monovision distance 
measurements, that was based on detecting vehicle license 
plates. As the size of a license plate is standardised, it can be 
used to derive the distance to a vehicle. They validated the 
method by conducting tests among urban traffic. With 
measuring distances between 0.5 and 10 metres, the highest 
relative error of their system on a cloudy day was 2 %. A typical 
roadside surveillance camera has been tested for monovision 
positioning of vehicles in a road environment in the 
SAFESPOT project [21][29]. Their experiments managed a 
mean error of 1.53 metres across all trials. The system 
recognised vehicles with a motion detection algorithm and 
computed the distance to them using a geometric 
transformation from the image plane to the ground plane. An 
image-to-ground-plane transformation was also used in the 
work of Atev et al. [8]. We aim to continue their research by 
using a similar method. 

We present an in-depth study of the localisation competency 
of a monovision-based RSU. Our algorithm for computing the 
distance of detected objects is based on a geometric 
transformation that has previously been used in monovision 
systems. However, our approach takes advantage of a modern 
real-time object detection software capable of detecting all 
types of road users.  Our aim is to combine previous methods 
into a practical approach, instead of presenting original 
technical means. The ultimate goal is to take a step in a new 
direction in the field of ITSs by developing and studying a 
platform, where alternative to a warning, drivers receive the 
real-time locations of other vehicles as well as cyclists and 
pedestrians when they are out of sight. The challenges and 
advantages of an object detection based RSU will also provide 
a viewpoint to the development and deployment of object 
detection software. 

 

III. METHODS 

A. Machine vision 
Commonly used methods for detecting road users include 

laser scanners [30][31], radars [32][33] and vision-based 
systems [34][35]. Laser scanners and radars offer accurate 
distance measurements along with their detection capabilities, 
but these systems tend to be better fit for detecting obstacles 
rather than detecting and classifying road users. Vision-based 
systems typically have a high detection rate for all road users in 
favourable conditions, as images contain plenty of information 
to perform detection on. Therefore, a vision-based solution was 
chosen for the application. 

Stereo vision is a common approach for photographic 
distance measurements, yet monovision is applied for lighter 
computing and simpler installation. Hence, the distance 
approximations are based on assumptions of the environment 
and optic equations of the camera lens. Monovision distance 
measurements have previously provided accurate results in 
traffic implementations [28][29]. A stereo vision system could 
possibly be more accurate for the intended application, yet it 
would also be more expensive. A second camera would 
increase the cost of the RSU and make the installation more 
demanding, as the cameras’ relative geometry would have to be 
calibrated. Off-the-shelf stereo vision systems are often 
compact and therefore have limited range. Most importantly, a 
stereo vision would require significantly more computational 
power due to either performing object detection on an 
additional camera or locating a detected object in the other 
camera view by mapping the corresponding pixels. 

B. Convolutional Neural Networks 
Real-time object detection was achieved with a 

Convolutional Neural Network (CNN). CNNs consist of input 
and output layers, and multiple hidden layers that process input 
data to output information. Object detection CNN models take 
an image as input and output detected object class and bounding 
box information. Architecture and inner details of layers vary 
between different CNN models. CNN computation is guided by 
model weights learned iteratively using annotated training data, 
which defines what a CNN model is able to detect. CNN models 
can be optimized and fine-tuned for specific use cases [36].  

Operation of a CNN is typically computationally demanding 
and trade-offs between speed and accuracy must often be 
considered [37]. One-stage detectors, such as YOLOv3 [38], 
[39] and RetinaNet [40], offer different trade-offs between 
speed and accuracy as Regional Convolutional Neural 
Networks (R-CNNs) [41][42][43], which first apply a CNN to 
find regions with probable objects, and then apply a second 
CNN to analyse these regions.  

One-stage detectors are considered for the RSU due to their 
real-time performance with modern GPUs. Their speed and 
accuracy properties are typically modified by adjusting the size 
of the input layer, which affects the amount of information the 
CNN analyses from an image [37]. 

C. Measurement system 
The measurement system was built using off-the-shelf 

components. Main hardware components were a GPU equipped 
computer and a USB camera. Software components included a 
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YOLOv3 CNN  model executed on top of the Darknet [44] 
runtime, and a distance measurement algorithm. YOLOv3 is in 
this paper abbreviated to YOLO for simplicity. During 
operation, YOLO received input images from the USB camera, 
and output detected object class and bounding-box information. 
This information was processed by the distance measurement 
algorithm, which output the estimated distance to the target. 

Specifications for the used computer, camera and version of 
YOLO are provided in Table I, Table II and Table III, 
respectively. A consumer grade camera was chosen as it 
includes on-board video compression, which is important for 
the RSU to reduce the amount of computational power that has 

to be installed alongside the camera. Additionally, the camera 
emphasises that the concept is not dependent on expensive 
vision equipment. Proper image lighting was ensured by using 
the automatic exposure mode of the camera. 
 

 

A large input size was used for YOLO to achieve higher 
object detection accuracy. Higher bounding-box accuracy 
allows examining the maximal distance estimation potential of 
the system. However, this accuracy is acquired at the expense 
of detection throughput. In the intended application, a suitable 
balance with distance estimation accuracy and throughput 
needs to be determined. The suitable balance is affected by 
intersection specific factors such as the speed limit in the area, 
lighting conditions, and average number of road users. 

The basic principle of YOLO object detection is depicted in 
Fig. 2. YOLO meshes the given image into an S x S grid, which 

is proportional to the input size defined by the user. Each cell 
in the grid is responsible for detecting an object that has its 
centre point located inside the cell, detecting a defined number 
of possible bounding boxes simultaneously. Along the location 
and size of the box, they also return the class of the object and 
the probability that identified object is found inside. Boxes with 
probabilities under an adjustable threshold are filtered away, so 
that only the highest scoring predictions are eventually left.  
 

 
Fig. 2. YOLO object detection procedure. 

 

D. Distance measurement algorithm 
Computing the distance to a detected object in a monovision 

camera view requires additional information regarding the 
scenario, since depth cannot be perceived from a single point of 
view. Hence, the applied distance measurement algorithm 
assumes all detected road users to be located on the ground, and 
the ground to be even. The algorithm measures distance as a 
component of the object’s position in the ground plane, in the 
horizontal direction the camera is facing. Therefore, the 
distance represents the component of the object’s position that 
is parallel to the road, given that the installed camera is facing 
the direction of the road of interest. On a relatively straight road, 
this distance measurement is sufficient for describing the 
position of a road user, presuming that the side of the road the 
road user is located on can be determined from the images. 
Applying basic trigonometry and optic equations, the distance 
d can be defined as 
 

𝑑 = ℎ
1 −

𝑠
𝑙
𝑡𝑎𝑛⁡(𝛼)

𝑡𝑎𝑛(𝛼) +
𝑠
𝑙

⁡, 
(1) 

 
which can be derived from the geometry presented in Fig. 3. 
The horizontal angle of the camera is denoted by α and the 
distance between the camera lens and sensor is denoted by l. 
Since measured objects are expected to touch the ground, the 
height h of the camera is also the height between the camera 
and the bottom of the measured object. The bottom of the 
bounding box formed by YOLO is presumed the lowest point 
of the object. The position of the bottom of the bounding box in 
the image is provided by YOLO as a ratio of the height of the 
image it receives. Since the image is physically formed on the 
active area of the camera sensor, the same ratio applies there. 

TABLE I 
COMPUTER SPECIFICATIONS 

GPU Nvidia Geforce GTX 1080 Ti 11 GB 

CPU Intel Core i7-8700K 3.7 GHz 
RAM 2 x 16 GB 2400 MHz DDR4 

 
 

TABLE II 
CAMERA SPECIFICATIONS 

Camera model Logitech C920 HD Pro 

Documented focal length 3.67 mm 

Diagonal field of view 78° 

Capture resolution 1920 x 1080 

Auto-exposure On 

 
 

TABLE III 
YOLO MODEL SPECIFICATIONS 

YOLO version 3 

Input size 1024 x 1024 

Frame rate 8 frames per second (FPS) 

Framework Darknet 

Training dataset COCO [47] 
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By knowing the height of the camera sensor, the ratio can be 
used to compute the physical distance s on the sensor to the 
bottom part of the bounding box. These parameters provide 
sufficient information for distance measurements when 
operating under the previously stated assumptions. 

 
Fig. 3. Illustration of the geometry during the measuring process. 

 
In case the algorithm parameter values are incorrect, or the 

assumptions are violated, the measurement process is naturally 
prone to errors. These errors can be mathematically modelled 
utilising geometries similar to those presented in Fig. 3. For 
example, in a scenario where the ground is uneven, resulting in 
the object not being located on the ideal ground plane, the 
measured distance dm can be expressed as 
 

 
The parameter used for the height of the camera is denoted by 
hm, whereas the actual values for the distance and the height 
between the lowest point of the target and the camera are 
denoted by da and ha, respectively.  
 

E. Experiment protocol 
The following experiments were conducted to validate the 

feasibility of the presented distance measurement method. The 
camera was placed at a known height h in a laboratory with a 
level floor. It was then positioned at the desired angle by placing 
a point representing the angle on the opposite wall, and tilting 
the camera so that the centre of the image was on the point. 
Measurement waypoints were marked on the floor, representing 
the real-life distances. The distances from the camera to the 
marker were measured with a laser meter, which had 1 mm 
accuracy. For each distance measurement, a person was 
standing still with their toes on the marking, while the camera 
measured the distance for five seconds. The mean of the 
measurements was recorded, which consisted of 39 to 42 
samples, due to slight variations in the computational speed. 
These measurements were then replicated with different camera 
heights and angles. In addition to verifying the system’s ability 
to measure distances, the system’s sensitivity to installation 
errors was studied one factor at a time. This was achieved by 
measuring distances with known errors in the vertical angle α 
and horizontal angle γ, which are both illustrated in Fig. 4. 
Before the recorded experiments were performed, the system 
was calibrated to determine necessary parameters for the 
distance calculations. 

 
Detailed information of the height of the sensor’s active area 

smax and the distance from the lens to the sensor l was essential 
for computing the distance of an object using Eq. 1. The 
distance l depends on the focus setting and was therefore an 
unknown value. Furthermore, since there was no certainty of 
the area the sensor utilises for forming an image, the parameters 
l and smax were both initially unknown. However, their relation 
could be conveniently measured, which is here referred to as λ. 
This was sufficient for the equation computing the distance to 
the object. As the camera was placed at the location from which 
the measurements were to be taken, the distance to the point 
where the view intersected the ground was measured. This 
setting is depicted in Fig. 5, and according to the geometrical 
rule of similar triangles, the ratio λ could be defined as  

 

𝜆 =
𝑠𝑚𝑎𝑥

𝑙
=
ℎ

𝑑
⁡, (3) 

where the height of the camera is denoted by h, and the distance 
to the point where the view intersects the ground is denoted by 
d.   
 

 
Fig. 5. Definition of λ based on the rule of similar triangles. 

 
The defined value λ was validated with distance measurements, 
and eventually adjusted by a few percent to optimise the 
accuracy. In addition to focus, distorted imaging may affect the 
core optics of the camera. It is typically caused by poor quality 
lenses, or intentionally applied to record wide-angle 
photographs and videos without stretching occurring in the 
edges of the image. 

Camera lenses often have radial distortion, which warps 
captured images. Such distortion would cause irregularities in 
the distance measurement. Therefore, the distortion of the used 
camera was investigated with the chessboard calibration of the 
OpenCV library [45]. No lens distortion was found present, and 
this was further confirmed by comparing test sets of calibrated 
and uncalibrated distance measurements which were seemingly 
identical. Hence, in this case it was deemed unnecessary to 
compensate for image distortion in the distance measurement.   
 

𝑑𝑚 =
ℎ𝑚
ℎ𝑎

𝑑𝑎 ⁡. 

 
(2) 

Fig. 4. Vertical and horizontal camera angles depicted. 
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IV. RESULTS 
The experiments provide data displaying the accuracy of the 

proposed system in multiple scenarios. Firstly, the distance 
measurement with the algorithm is validated. Secondly, the 
system’s sensitivity to installation errors in the camera angle are 
studied. Both the horizontal and vertical angle deviations are 
investigated and analysed. Thirdly, the accuracy achieved with 
our distance measurement is compared to the theoretical 
accuracy of a high-end stereo vision camera. Finally, 
estimations are presented for the values of possible error 
components affecting the initial validation distance 
measurements, and their effect in a general application is 
analysed. All experiments are recorded with the camera at a 
height of 2.16 m and a λ-ratio of 0.39. 
 

A. Distance measurement accuracy 
The distance measurements were conducted from 6 m to 22.5 

m, with measurement intervals of 25 cm. The camera was set at 
an α-angle of 0°. The distance measurements proved to be 
accurate, as can be seen from the results depicted in Fig. 6. 

 

 
Fig. 6. Measured distances compared to the actual distances. 
 
 The proposed system managed a RMSE of 0.32 m, with the 
maximum absolute error being 0.87 m. These values were made 
proportional by dividing each error with the respective actual 
distance of the measurement. These relative errors resulted in a 
RMSE of 2.1 %, and the maximum absolute relative error was 
4.0 %. 
 

B. Comparison to stereo vision 
In order to evaluate the proposed system’s accuracy, the 

errors in the results presented in Fig. 6 were compared to the 
theoretical error of Point Grey’s Bumblebee XB3, a high-end 
stereo vision system. The theoretical error of the stereo vision 
system was computed with a tool provided by Point Grey [46], 
using the most favourable values for the situation: baseline of 
24 cm, lens focal length of 6 mm and stereo resolution width of 
1024 pixels. The errors of the different systems were relatively 
close to one another, and the comparison of absolute errors is 
displayed in Fig. 7. 

 
Fig. 7. Absolute error of the proposed system compared to the theoretical error 
of a high-end stereovision system. 

 
A separate trend line was regressed to the results ignoring the 

unusually high errors present around the 14 m mark, as they 
were anomalies. A possible reason for the anomalies was floor 
T-slot patterns affecting the detection of a person’s shoes, as 
shown in Fig. 8. The system managed to provide results more 
accurate than the theoretical ones of the stereo vision camera in 
the 15.5 m to 18.5 m area but showed generally worse results at 
short-range and long-range. Accuracy in the 15.5 m to 18.5 m 
area was higher due to exceptional bounding box placement 
occurring in the area for no apparent reason. 
 

 
Fig. 8. Detection results visualised at 14 m with different positions relative to 
the T-slots. 

 Impact of incorrect bounding box placement was further 
examined by mathematically modelling the experiment 
scenario, and computing measurement error contributions of 
different bounding box offsets. Solely offsets of the bottom of 
the bounding box were considered, since the bottom is the only 
parameter of the bounding box affecting the results of the 
presented measurement method. Several plausible pixel offsets 
were estimated for the experiment scenario, and their 
measurement error contributions are presented in Fig. 9.  
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Fig. 9. Contribution of offset of the bottom of the bounding box. 
 

Pixel offset of the bottom of the bounding box contributed an 
exponentially growing error relative to the measurement 
distance. Absolute value of the error was found dependent on 
offset direction, with a negative offset downwards in the image 
causing smaller absolute error than equal offset upwards in the 
positive direction. The magnitude of error contribution of pixel 
offset proved substantial, as previously indicated by the higher 
measurement errors occurring in the 14 m area with the 
incorrect bounding box placement. Since the measurement 
errors in proximity to the 14 m mark correspond to offsets 
between five and ten pixels, the considered range of pixel 
offsets was arguably reasonable.  

C. Sensitivity to vertical angle displacement 
The effect of error in the vertical α-angle was analysed by 

tilting the camera downwards from the α = 0° position, yet 
performing the calculations as if it still was in the original 
position. The results are presented in Fig. 9 for the studied 
errors α-error ∈ [1°, 2°, 3°]. The measurements were carried 
out in a range of 6 m to 20 m, at 2 m intervals.  
 

 
Fig. 10. Contribution of errors in the α-angle. 

Error in the α-angle had a critical impact on the distance 
measurements. As the α-error grew, the distance error became 

increasingly exponential. With an α-error of 3°, the distance 
measurement supplied values twice as long as the actual 
distance at the 20 m mark. The measurements provided values 
longer than the actual distances since the angle was shifted 
downwards, causing the person to appear higher in the images. 
A shift upwards would have resulted in the measured values 
being shorter than the actual distance.  
 

D. Sensitivity to horizontal angle displacement 
The system’s sensitivity to errors in the horizontal γ-angle 

was studied in a similar manner to the α-angle. Measurements 
were recorded with γ-error ∈ [5°, 10°, 15°]. A γ-error of 5° had 
an insignificant effect on the measured distances and was 
therefore left out of the results visualised in Fig. 10. 

 

 
Fig. 11. Contribution of errors in the γ-angle. 

Received results were shorter than the actual values, as the 
system is designed to measure the distance component in the 
direction of the horizontal angle of the camera. Equivalent 
results would have been received if the γ-angle had been shifted 
in the negative direction. The system was robust towards errors 
in the horizontal γ-angle, and even an error as wide as 15° did 
not cause a crucial error in the distance approximation.  
 

E. Summary  
To further examine the total error present in the distance 

measurements, possible sources of error were identified, and 
their relative quantities were estimated and documented in 
Table IV. Estimation was mostly based on geometrical models 
of the measurement scenario, and the sources of error were 
studied one factor at a time. Distance errors were computed 
using estimated maximum error source values for the presented 
experiments and a general RSU application. Since detection 
error was difficult to quantify in the measurements, it was 
deduced by subtracting the other errors from the total error. 
Estimation of maximum bounding box offset in a general 
application was based on an assumption that lower bodies of 
pedestrians are entirely visible in the images. Therefore, no 
tremendous offset in the bottom of the bounding box should 
occur. 
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V. DISCUSSION 
The proposed system managed to measure distances at a 

sufficient level for a vision-based method, as can be seen in the 
comparison to a high-end stereovision camera in Fig 7. 
However, the measurements were performed on a level 
laboratory floor, which is not the case on a real road. If the 
measurements were to be carried out on a road, the inclination 
and bumps would violate the assumption of known height 
between the camera and the target’s lowest point. Furthermore, 
the relative error caused by varying height is the relation 
between the assumed and the actual height, which is shown in 
Eq. 2. Therefore, the higher the camera is located, the smaller 
are the errors caused by an uneven road, since the relative 
change in height caused by bumps and slopes is lower. This 
implies that the camera should be placed as high as possible. 
However, then objects close by might be left out of the field of 
view, and longer distances may hinder the detection capabilities 
of YOLO.   

At longer distances, objects become seemingly smaller and 
start to blend into the background, making it more difficult for 
YOLO to detect them. Even if an object is detected, the 
detection may not be perfectly accurate, leading to a bounding 
box that either contains the object only partially, or is oversized 
for the detected object. When performing the tests, it was 
noticed that as the measurement distances started reaching the 
20 m mark, YOLO excluded person’s feet of the bounding box. 
This caused the measurements to show values higher than the 
actual distance, as can be seen in Fig. 6. It was noted that the 
colour of the person’s shoes affected the detection, with shoes 

blending into the floor being left out, and brightly coloured 
shoes being included in the detection. At shorter distances, 
YOLO tended to detect bounding boxes that were larger than 
the person, leading to distance measurements that were shorter 
than the actual distance, which can be seen in Fig. 6. Errors such 
as these could possibly be reduced by emphasising bounding 
box placement accuracy during the training process of a CNN. 
Range was not the only factor affecting the detection, and it was 
noticed that a relatively small change in the background could 
cause a significant anomaly in the measurement. 

The larger errors around the 14 m distance in the experiments 
were as well likely caused by YOLO leaving the person’s shoes 
out. When further investigated, it was found that when the 
person’s feet were next to the laboratory floor’s t-slots, YOLO 
did not recognise the shoes and left them out of the bounding 
box. With feet placed farther from the T-slots, YOLO managed 
to perform the detection more accurately. These two scenarios 
are shown in Fig. 8 at a distance of 14 m. Slight detection 
failures should not notably disturb the distance measurements 
in the intended application. As a detected road user is moving, 
their nearby background is constantly changing, and therefore 
anomalies such as colour patterns on the road will not affect the 
overall localisation. Therefore, these errors were left out of the 
trend line in Fig. 7. Most likely, errors in the vertical α-angle 
will cause noteworthy deviations in distance measurements.  

As shown in Fig. 9, the α-angle has to be accurately known 
in order to receive valid distance measurements. This means 
that the camera needs to be precisely installed and calibrated, 
and it must be attached to something rigid, which will not shift 
or bend overtime. To avoid false measurements and the 
possibly dangerous scenarios they might cause, the system 
could be trained to interpret the truthfulness of its results. In 
case of continuous measurements that are unlikely for the 
specific installation, the system would report a possible 
malfunction. A gyroscope could also actively ensure that the 
camera is well aligned. This way the system would be able to 
adjust its measurements to its current position and thus become 
notably more robust towards shifts in the vertical angle. In the 
horizontal γ-angle, the system seemed robust by itself, which 
can be seen in Fig. 10. It should be noted that the system 
measures the distance component in the ground plane, in the 
horizontal direction the camera is facing. Therefore, if the 
camera is pointed in the direction of a straight road, the received 
values represent distance components along the road, regardless 
where the detected object is located horizontally. Another 
important factor in the measurements is the focus of the camera, 
which affects the value for the ratio λ. 

In order to receive valid results with the distance 
measurement algorithm, the value for the ratio λ must be 
correct. This requires setting the camera focus to a certain value, 
limiting the distances at which objects appear sharp in images. 
Lenses with short focal lengths are well suited for this, since 
using a single focus setting, they can cover the range from 
shorter distances to infinity than lenses with long focal lengths. 
However, shorter focal length results in a wider angle of view, 
limiting the pixels available for depicting the road at longer 
distances. With fewer available pixels, the detection typically 
cannot operate as efficiently, resulting in errors in the 
localisation. A lens with a long focal length provides more 

TABLE IV 
ESTIMATED ERROR CONTRIBUTION OF DIFFERENT FACTORS, DISPLAYED AS 

RELATIVE ERROR OF THE MEASURED DISTANCE 

Factor Experiments General application 

Distortion Low 
Distortion was negligible.  

Low 
Distortion can be 
corrected with software. 

Horizontal 
angle γ 

Low 
 γ-error 0.3° 
 Relative distance error 
0.001 % 

Low 
 γ-error 3° 
 Relative distance 
error 0.1 % 
 

Height High 
 Height error 1 cm 
 Camera height 2.16 m 
 Relative distance error 
0.5 % 
 

High 
 Height error 20 cm 
 Camera height 4 m 
 Relative distance 
error 5 % 
 

Vertical 
angle α 

High 
 α-error 0.1° 
 Camera height 2.16 m 
 Nearly linear relative 
distance error, 0.6 % at 6 m 
and 1.9 % at 22.5 m 
 

High 
 α-error 0.4° 
 Camera height 4 m 
 Nearly linear relative 
distance error, 1.9 % at 
9 m and 7.6 % at 40 m 
 

Detection High 
 Detection caused a 
maximum relative distance 
error of 3.6 %. 

High 
 Camera height 4 m 
 α-angle 10° 
 Pixel offset 10 
 Nearly linear relative 
distance error, 1.9 % at 
9 m and 7.8 % at 40 m. 
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accurate detection results for longer distances, yet has to be 
placed farther away from the intersection in order to keep 
nearby targets in focus. Placing the camera farther increases the 
localisation errors caused by other factors, such as differing 
height, and errors in the camera angle, as can be interpreted 
from the values provided in Table IV. Consequently, the 
localisation of road users in proximity to the intersection might 
be less accurate compared to a closer placed camera with a 
shorter focal length. 

VI. CONCLUSION 
Localisation methods are a vital area of ITS research, as they 

provide the base information many applications operate on. In 
order to locate road users, an RSU based on monovision CNN 
object detection was proposed. The object detection enabled a 
novel type of system to observe road users concealed from 
drivers by obstacles. Such a system’s capabilities were 
evaluated by performing distance measurements using a person 
as the target in a laboratory setting. The accuracy of the system 
was validated and compared to a state-of-the-art stereo vision 
solution. Furthermore, the system’s sensitivity to errors in the 
horizontal and vertical angles were studied and analysed. 
Overall, the results were in line with the expectations, and the 
proposed method showed robust operation with small errors. 

The system proved capable of measuring distances 
accurately in the test range of 6 m to 22.5 m on a level floor. It 
fared well in comparison to the theoretical error of a stereo 
vision-based solution, which is intended for a similar purpose. 
When analysing the sensitivity, an error in the vertical α-angle 
of the camera was noticed to significantly impact the measured 
values, with the error growing exponentially to the measured 
distance. However, the horizontal γ-angle had little impact on 
the measurements, causing the measured values to appear 
slightly shorter than the actual distances. The proposed system 
showed substantial potential and could be a valuable addition 
to the existing distance measuring methods used in ITS. 

Object detection-based distance measurements could 
significantly improve traffic safety, as these measurements 
include all types of traffic users: pedestrians, cyclists and 
vehicles. The proposed system enables mapping the locations 
of all traffic users present at an intersection. This information 
could then be presented to the driver, greatly increasing their 
situational awareness. The experiments presented in this paper 
were conducted inside with optimal lighting and visibility, level 
floor and a stationary target. Future work will focus on studying 
the system in a real-world traffic intersection. With a camera 
placed at an intersection, topics such as optimal camera height, 
detection capabilities, abnormalities and measurement accuracy 
can be investigated in depth with different types of CNNs. 
Emphasis will be on reliable operation of the unit in challenging 
conditions, including operation in poor visibility during 
difficult weather and night-time. Detection in poor visibility 
will be enhanced with methods such as fusing motion detection 
with the object detection and monitoring the intersection with 
an infrared camera. Additionally, fine-tuning the used CNN 
with traffic related and weather sensitive data will be crucial for 
optimal detection accuracy in all conditions. Detection 
accuracy and robustness could also be further increased using 
an ensemble of multiple parallel CNNs and majority voting on 

the detection results. Once there is a proper understanding of 
the proposed system’s capabilities, it can be integrated as a part 
of a V2I system to improve traffic perception and safety. 
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