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Dynamic Resource Provisioning of a Scalable E2E
Network Slicing Orchestration System

Ibrahim Afolabi, Jonathan Prados-Garzon, Miloud Bagaa, Tarik Taleb, and Pablo Ameigeiras

Abstract—Network slicing allows different applications and
network services to be deployed on virtualized resources running
on a common underlying physical infrastructure. Developing
a scalable system for the orchestration of end-to-end (E2E)
mobile network slices requires careful planning and very reliable
algorithms. In this paper, we propose a novel E2E Network
Slicing Orchestration System (NSOS) and a Dynamic Auto-
Scaling Algorithm (DASA) for it. Our NSOS relies strongly on
the foundation of a hierarchical architecture that incorporates
dedicated entities per domain to manage every segment of the
mobile network from the access, to the transport and core
network part for a scalable orchestration of federated network
slices. The DASA enables the NSOS to autonomously adapt
its resources to changes in the demand for slice orchestration
requests (SORs) while enforcing a given mean overall time taken
by the NSOS to process any SOR. The proposed DASA includes
both proactive and reactive resource provisioning techniques).
The proposed resource dimensioning heuristic algorithm of the
DASA is based on a queuing model for the NSOS, which consists
of an open network of G/G/m queues. Finally, we validate the
proper operation and evaluate the performance of our DASA
solution for the NSOS by means of system-level simulations.

Index Terms—Network slicing, Dimensioning, Orchestration,
5G, Queuing model, Analytical model, Auto-scaling.

I. INTRODUCTION

The Network Slicing concept plays a significant role in
Fifth Generation (5G) mobile networks. Network slicing en-
ables network operators to dynamically create logical and
isolated network partitions, dubbed network slices, to deliver
customized network services for the different market use cases,
which demand diverse and sometimes opposing requirements,
on top of a common physical network infrastructure [2],
[3]. Most importantly, the network slices are orchestrated
to facilitate the business solutions of mostly 5G vertical
industries/services and over-the-top application providers. The
fundamental enabling technologies of Network slicing are Net-
work Functions Virtualization (NFV) [5]–[7], which decouples
the different network functions from the underlying hardware,
and Software-Defined Networking (SDN) [8] that separates
the control and forwarding planes. These technologies allow
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network virtualization, i.e., the ability to provide a logical
software-based view of the hardware and software networking
resources, in order to create virtual networks (or network
slices) that are independent on the substrate network hardware.

Network slicing leverages the combination of network vir-
tualization and infrastructure-as-a-service paradigms to enable
the automation of key network slices management operations
such as deployment and scaling. In this way, operators will be
able to handle workload fluctuations with great agility and in
a cost-effective way, while keeping the desired performance
for the different network slices.

Despite the network slicing benefits, the end-to-end (E2E)
orchestration and management of the different network slices
can be a difficult endeavor [9]. The main tasks of a Network
Slicing Orchestration System are [9]: i) network slices creation
based on slices requirements upon the physical network, ii) vir-
tual network embedding (VNE) and function placement [40]–
[43], and iii) lifecycle management of the network slices in-
cluding their dynamic resource provisioning (DRP) or scaling.
To accomplish these tasks, the NSOS will have to run complex
and computationally intensive optimization algorithms. Fur-
thermore, the NSOS might orchestrate simultaneously a large
number of network slices given the plethora of vertical services
envisaged for 5G. On top of this, network slices for critical
applications will provide service to a narrow area due to their
ultra-low latency requirements, thus increasing the number
of network slices to manage. All these network slices might
generate a large number of slice orchestration requests (SORs)
(e.g., slice creation, release or scaling queries) that eventually
saturates the capacity of the NSOS to serve those slice
requests. By way of illustration, the reactive provisioning of an
Internet application can be triggered once every few minutes
[10], then it can potentially generate dozens of scaling requests
per hour. It shall be noted, however, that even in scenarios with
low SORs arrival rate the demand of computational resources
might fluctuate considerably due to the high service times at
some NSOS components.

In the light of the above-described scenario, there is a need
to tackle the DRP problem of the NSOS to face workload
fluctuations without human intervention [11], while assuring
an efficient utilization of the resources allocated to it. In other
words, algorithms that will enable the NSOS to decide when,
how and how much of resources to be provisioned itself.
The main challenge of the NSOS dynamic provisioning is to
perform the sizing of a high number of entities (refer to Section
III-B) at once and as quickly and efficiently as possible. The
DRP problem has been addressed in the literature mostly
for internet web applications [25] and softwarized network



services [28], [29], [31], [32], [35]. However, to the best of
the authors knowledge, the already proposed DRP solutions
either are not scenario-agnostic or cannot offer simultaneously
low-complexity, joint sizing of all entities, and system stability
(refer to Section II).

In this paper, we propose a novel holistic global E2E mobile
NSOS that enables network slicing for the next generation
mobile networks by specifically considering all the aspects
of the mobile network spanning across the access, core and
transport parts. Our presented high-level architecture shows a
hierarchical E2E network slicing system composed of a global
orchestrator (GO) and multiple domain-specific orchestrators
(DSOs) and their respective system components. Although,
different levels of management exposure is possible when
orchestrating a network slice as in [4], however, our focus is on
the one that allows the customer to request slice orchestration
and monitor them only. Moreover, we propose and develop
a novel Dynamic Auto-Scaling Algorithm (DASA) for the
NSOS that would instantaneously react to changes in the
orchestration system’s workload. By so doing the overall E2E
NSOS’s response time to serve network slices orchestration
requests (NSORs) within a given target delay is maintained.
The NSOS’s response time is understood here as the sum of
all the processing and waiting times experienced by a SOR
when passing through the different NSOS’s entities during its
lifetime in the NSOS. To the best of the authors’ knowledge,
this is the first work in which a federated slice orchestration
system is proposed and its dynamic resource provisioning
(DRP) addressed.

The proposed DASA includes both proactive and reactive
provisioning mechanisms. The proactive mechanism relies
on a workload predictor, which is implemented using ma-
chine learning techniques. The reactive provisioning module
is responsible for triggering asynchronous requests to scale
in or out the different entities of the NSOS. The entities
of the system are later detailed in Section III-B. The core
of the whole solution is a resource dymensioning heuristic
algorithm which is in charge to determine the required amount
of computational and virtual resources to be allocated to the
NSOS for a given workload so that a maximum response time
of the NSOS is guaranteed. Namely, the resource dimensioning
algorithm will be invoked when a provisioning decision is
taken to decide how much resources have to be requested
or released. Throughout this article, we will consider that
the different NSOS entities run CPU-bound processes, though
our solution can be easily adapted to more general scenarios.
Under this consideration, the heuristic algorithm provides the
required number of physical CPU cores and virtualization
containers to be allocated to each NSOS entity. To that end, the
heuristic algorithm relies on the use of a performance model to
estimate the response time of the NSOS. Consequently, in this
work, we develop a holistic performance model of the NSOS
using queuing theory. The model follows the same modeling
approach as in [23]. More precisely, the NSOS is modeled as
an open network of G/G/m queues. The resulting network of
queues is solved using the Queuing Network Analyzer (QNA)
method [22].

Our DRP solution interacts with the request policing mech-

anism of the NSOS which is responsible for rejecting excess
requests when either there is unforeseen workload surges or
it becomes impossible to scale the system due to lack of
resources. That is because of these two modules are closely
coupled, since the DRP mechanism provides the maximum
workload peak that the system could withstand at a given
point, which helps to configure the request policing part. In
the same way, the admission control part could invoke the
provisioning mechanism when the request drop rate exceeds
a certain threshold.

We validate the proper operation and evaluate the perfor-
mance of the proposed DRP solution by means of system-level
simulations. The results show that, for the scenario considered,
the algorithm is able to find the minimal required resources
to keep the mean response time of the NSOS under a given
threshold. Our results also suggest that the NSORs rejection
rate during a given period, is determined by the reaction
time of the reactive provisioning mechanism which, in turn,
strongly depends on the Virtual Machine (VM) instantiation
time.

The remainder of the paper is organized as follows. Section
II briefly reviews the related literature. Section III describes
in detail the proposed network slicing orchestration system
for the next generation mobile networks. Section IV includes
the system model and problem statement. Section V includes
the queuing model of the slices orchestration system. Section
VI describes the proposed dynamic resource provisioning
solution. Section VII includes simulation results to evaluate
the performance of our dimensioning algorithm and to validate
the proper operation of the DASA. Finally, Section VIII draws
the main conclusions.

II. RELATED WORKS

This section mainly consists of two parts. First, we introduce
existing works on network slicing orchestration system. Then,
we give a brief background on existing solutions in the
literature that leverage the queuing theory in enabling auto
scaling systems.

A. Slices Orchestration Systems

There are several ongoing projects directed towards enabling
different aspects of the 5G technology, a number of them are
focused on network slicing and how it could be leveraged to
realize the 5G technology. For example, while 5G-NORMA
is targeted towards enabling the next generation radio access
network to support the different use case requirements of the
5G network [13] in a network slicing-centric way, 5GEx also
known as 5G Exchange on the other hand is intended towards
enabling cross-domain orchestration of network services over
multiple administrative domains [14]. Similarly, 5G!Pagoda
takes the objectives of 5GEx a step further by presenting a 5G
architecture which aligns the vision of both Europe and Japan
within the context of the next generation network through
the introduction of federated network slicing, which considers
the orchestration and provisioning of network slices across
multiple continents [16]. Each of the mentioned works presents
variant system components based on their fundamental system



architectures and functional objectives for the orchestration of
network slices.

Similarly, variant algorithms [33] and approaches towards
enabling 5G networks based on network slices with a focus
on different aspects of the network slice composition have
been proposed. While a number of them have focused on
the dynamic allocation of the virtualized network resources
to network slices and their resource embedding [34], [37]–
[39], others have proposed and evaluated their frameworks
based on the capacity support for network slices from the
network nodes, links and routes that support network slices.
For example, the work in [17] takes a look at network slicing
from the point of view of network services comprising network
Service Function Chains (SFCs) enabled from underlying
network infrastructure with network resource constraints in
terms of link and node capacity without taking other aspects
into account. Taking the idea in [17] a step forward, the
work in [20] considers network slicing from a cloud-native
approach where network slices are orchestrated from granular
modules of legacy network functions to form network of
capabilities and services. Similarly, in [19], the authors focus
on the orchestration of network slices leveraging a hierarchical
architecture consisting of multiple orchestrators using the
software defined transport networking scheme.

The work in [13] though with a bit more focus on the
realization options of network slicing from a flexible radio
access network, proposes yet another system architecture con-
sidering also an E2E network slicing perspective for the 5G
system orchestration. The project in [2] gives an overarching
details on the subject of network slicing while presenting a
comprehensive architecture of an E2E network slicing frame-
work leveraging both the concepts of NFV and SDN. It also
considers network slicing from the transport network point
of view for the backbone network utilizing specifically the
concept of SDN. All the presented works have collectively
considered different aspects of network slicing from the point
of view of orchestrating and connecting virtual network func-
tions (VNFs) in an E2E architectural approach, by considering
slice requirements across the entire mobile network segments.
However, none of them have presented a system simulation of
their orchestration system and how effective they handle net-
work slice orchestration requests under increased workload. In
particular, we have not come across any work on multi-domain
network slicing that presents an auto-scaling mechanism that
manages the autonomous scaling of the orchestration system.

B. Queuing based Dynamic Auto Scaling Algorithms

The DRP problem has been previously addressed in the
context of multi-tier Internet applications [25]. The already
proposed solutions are broadly classified into rule-based and
model-based approaches. The rule-based approaches are based
on reinforcement learning, statistical machine learning, and
fuzzy control. On the other hand, the model-based approaches
are based on control theory and queuing theory. In contrast
to rule-based approaches, model-based approaches require
more domain knowledge, but can provide QoS guarantees,
while ensuring the system stability [25]. Here we will focus

on existing model-based solutions that leverage the queuing
theory in enabling auto scaling systems.

There are several works that have tackled the DRP and
resource dimensioning problem in the context of the vEPC
[26], [27], [29]–[32]. In [31], the authors propose a DRP
algorithm for the vEPC considering the capacity of legacy
network equipment already deployed. To evaluate the perfor-
mance of their solution, they model each vEPC element as a
M/M/m/K queue and assume that the VNF instantiation time
is exponentially distributed. In [26], [30], the authors analyze
the performance of a virtualized MME (vMME) with a three-
tier design by using a Jacksons network, i.e., a network of
M/M/m queues. In those works, the authors use exhaustive
search approach to perform the sizing of the number of
vMME worker instances. In [32], the authors develop a bi-
class (e.g., machine-to-machine -M2M- and mobile broadband
-MBB- communications) queuing model for the vEPC. The
control plane (CP) and data plane (DP) of the vEPC are
respectively modeled as M/M/m/m and M/D/1 nodes. This
model constitutes the core of the vEPC-ORA method aimed
at optimizing resource assignment for the CP and DP of the
vEPC. The authors in [27], [29] propose a heuristic algorithm
to carry out the joint resource dimensioning of the vEPC
Control Plane (CP) entities. As in this work, that heuristic
method relies on a performance model to predict the vEPC
response time for a given setup. The authors validate their
solution for the planning [27] and DRP [29] of the vEPC.

There exist other works that have also tackled the resource
dimensioning problem for particular scenarios such as the
Cloud Radio Access Network [49] and the content distribution
networks [36]. However, all those aforementioned works are
not scenario-agnostic, thus they cannot be applied in the DRP
of the NSOS context. Covering this gap, the DRP solutions
presented in [10], [28], [35], [44] can be used in a wider range
of scenarios.

The authors in [10] propose a DRP solution for multi-
tier Internet applications. As in this work, the authors em-
ploy a combination of predictive and reactive methods that
respectively determine when to provision the resources at large
and small time scales. To estimate the performance of the
system, each tier instance is modeled as an isolated G/G/1
queue. For each tier, a target response time is set manually
and its sizing is carried out regardless of the rest of tiers.
In [28], the authors formulate and propose a heuristic to
solve the joint optimization problem for the Service Function
Chain (SFC) routing and VNF instance dimensioning. In that
work, the main objective considered is to minimize the request
rejection probability. Similarly, the work in [35] formulates
the resource dimensioning problem to minimize the expected
waiting time of service chains and proposes a heuristic method
to solve it. The authors employ a mixed multi-class BCMP
network to model a service chain and estimate its performance
metrics by using Mean Value Analysis (MVA) algorithm.
Finally, the authors in [44] propose a proactive solution for
the dynamic provisioning and flow rerouting of the network
services. In contrast to this work, that solution guarantees only
the throughput, but not a target mean response time.

The NSOS proposed in this work includes a considerable



number of system components (refer to Section III-B). Then,
contrary to [10], it is highly desirable that the DRP algorithm
driving its auto-scaling performs the resource dimensioning of
the different components jointly to guarantee a target response
time. In other words, given an overall delay budget, the DRP
algorithm should be able to automatically and optimally dis-
tribute the overall delay budget among the system components
in order to ensure an efficient resources allocation and increase
the likelihood of finding a feasible solution. In addition, the
execution time of the DRP algorithm should be keep as
minimum as possible to maximize the SORs acceptance ratio.
In this regard, DRP solutions that rely on MVA algorithm to
estimate the performance of the system such as [35] might
exhibit high computational complexity. That is because the
time complexity of the MVA is O(N ·K) [23], where, in the
NSOS context, N is the average number of circulating SORs
in the network and K is the total number of NSOS entity
instances. On the contrary, our DRP solution enables the use
of more lightweight performance evaluation techniques like
QNA which has time complexity O(K) [23].

III. AN OVERVIEW OF THE PROPOSED NSOS
ARCHITECTURE

A. Main Objectives

One of the main purposes of this work is to develop an
efficient global E2E mobile network slicing (including the
access, core and transport network parts) orchestration system
architecture that takes into account the orchestration of net-
work slices from federated resources. As presented in Fig. 1,
the orchestration system shall run seamlessly on virtualized
resources for easy adaptability and elasticity. In addition, We
also present a queuing model of the interactions between
the different building components of the NSOS architecture.
Particularly, we would like to build a flexible and scalable
orchestration system that strictly respects the service level
agreement (SLA) of network slices and most importantly can
elastically cope with a given slice orchestration time and
service requirements. For this reason, we then further propose
an auto scaling algorithm that enables the dynamic resource
provisioning for the system to scale autonomously.

When serving slice orchestration requests based on a given
Slice Information Graph (SIG) a.k.a slice blueprint/template,
which defines the slice requirements such as: 1) the type of
virtualization technology, 2) the size of the requested E2E mo-
bile network slice, 3) the amount of system resources available
for processing the slice requests, 4) the VNF types from which
the slice should be orchestrated 5) the slice orchestration
domain (for those that should be orchestrated across multiple
domains [16], [42]) etc, the system shall scale dynamically
in order to provision the slice request within a specified time
duration. This implies that when a slice orchestration request
reaches the system orchestrator at a given point in time while
initially running on certain system resources, depending on the
information provided in the SIG, the orchestration system shall
dynamically expand if needed in a way that the slice requests
will be served efficiently and within a specified processing
time. On completion of the request and after some amount of

time have elapsed based on the system design, the dynamically
added system orchestration resources shall then be released
such that only the needed amount of system resources will be
running at any given point in time.

Basically, our model is centered around the NSOS compo-
nents and all the resources needed to operate them efficiently
and not on the resources utilized in orchestrating the E2E
mobile network slices, thereby making our model a system-
centric one. For the sake of simplicity, we would assume
that such a global orchestration system would have all of the
system resources needed to support the aforementioned slice
orchestration requirements as defined in the SIG. Therefore,
with this assumption, we would focus on the main system-
imposed overhead, which is the slice orchestration latency.
Another assumption is that, even though our orchestration
framework has all the system resources needed to support any
slice requests, for the sake of efficient system resource utiliza-
tion, they are not always running. Thus, they are instantiated
only when needed to ameliorate the slice processing procedure
and reduce the orchestration latency in order to ensure the SLA
of the requested slice.

B. Definition of the System Components

As shown in Fig. 1, in our global NSOS architecture, we
have considered and introduced a total of nine system entities
that will seamlessly operate in a hierarchical order as the
fundamental building blocks. Names are carefully selected for
each building blocks of the system in order to reflect the parts
of the mobile network they are directly handling. Below, we
present a high-level description of each of the building blocks.

1) Global Orchestrator (GO): is the component which is
responsible for receiving network slice orchestration re-
quests from slice providers and orchestrating the slices in
the specified cloud domain in the case of a single domain
slice or multiple domains in the case of a federated slice
using the optimal Domain-Specific Orchestrator (DSO)
or (DSOs), respectively.

2) System Awareness Engine (SAE): is the system compo-
nent which is responsible for keeping the state, context
and the running resources of the entire global orches-
tration system’s entities. It also functions as a global
system monitor, which helps keep track of the system’s
performance.

3) Resource Awareness Engine (RAE): is a system entity
which keeps the record of the total resources available on
the underlying infrastructure of the orchestration system
as well as their respective locations.

4) Domain-Specific Orchestrators (DSOs): is the system
component which is basically responsible for orchestrat-
ing network slices from a particular administrative do-
main whose operation spans across a particular network
region. Every DSO operating in a particular region has
at least one of the following system components needed
to actualize a complete E2E network slice orchestration.

5) Domain-Specific Network Function Virtualization Or-
chestrator (DSNFVO) e.g., the Open Source MANO
(OSM): is responsible for communicating directly with
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Fig. 1: Simplified practical federated network slice orchestration system deployment architecture.

the region’s DSVIM e.g., Openstack which is in charge
of providing virtual resources for the instantiation of
virtual network functions.

6) Domain-Specific Radio Resource Orchestrator
(DSRRO): is the system component which is solely
responsible for orchestrating and allocating radio
resources available on already deployed eNBs for the
utilization of network slices e.g., the FlexRAN [45].

7) Domain-Specific Software-Defined Networking Con-
troller (DSSDN-C): is the entity responsible for con-
necting the various orchestrated sub-slices making up a
network slice including that of the radio access network
[46].

8) Domain-Specific Virtualized Infrastructure Manager
(DSVIM) e.g., Openstack: is the system component
responsible for the provisioning of virtualized resources
to the orchestrated network functions that make up the
different sub-slices of a complete mobile network slice.

9) Domain-Specific eNBs (DSeNBs): are the already de-
ployed set of eNBs running in a particular region admin-
istered by a DSRRO, running under a particular DSO.

To determine the average rate at which a global slice
orchestration system consisting of multiple domain-specific
orchestrators would orchestrate federated E2E mobile network
slices, we model the system as a queuing system. In the
system, there is a GO under whose control is a number of DSO
instances and two other system’s components dubbed the SAE
and RAE. The DSO(s) in turn utilizes the functionalities of
three other major components to carry out orchestration tasks.
They are the DSNFVO, DSRRO and DSSDN-C as depicted
in Fig. 3. The federated slice orchestration procedure follows
the activity and sequence diagram shown in Fig. 2 from the
perspective of the global orchestrator and from the point of
view of each DSO.

Fig. 3 represents a high-level abstraction of the overall
orchestration system modeled as a queuing system. In this
system, the main point of entry for any slice orchestration
request is through the GO. The GO receives the slice request
from its North Bound Interface (NBI) as an SIG consisting
of all the slice requirements,which the system can support.
So, developing our theoretical model around this assumption
will help in determining the average time a slice request can
be served. In this way, we will be able to develop a system
policy that will enable the NSOS to proactively determine the
total number of additional instances of the system components
needed to orchestrate a slice of a particular set of requirements
within a set time duration.

As a result, we see the problem as a job queuing one,
in which jobs (federated network slice requests) of certain
requirements (therein treated as a black box) arrives at the
orchestration system and leaves the system after certain service
time had elapsed. However, this job requires the service of
multiple servers mostly running in parallel at different stages
of the orchestration procedure. Knowing the average service
time each part of the job spends in each server (orchestration
component) is of utmost importance to us.

C. Interactions Between the System Components

As presented in Fig. 3, when a slice orchestration request
arrives at the GO, the request is evaluated based on its
requirements and against the running instances of the system
components. in order to match the slice’s requirements against
the running system components instances, the GO consults
the SAE through the link A and the SAE replies through
the link AR. Based on the reply from the SAE, the GO
then consults the RAE on link B to request for the system-
wide available resources, in order to determine the available
system resources and their locations. Based on the replies from



Fig. 2: Activity diagram of the Global Orchestrator.

Fig. 3: Queuing model of the Network Slicing Orchestration
System.

both the SAE and RAE, the request is then forwarded to the
concerned DSO(s) via link C. Each DSO then processes its
own quota of the federated slice request by further splitting
the received SIG into three parts and forwarding each part to
the system component responsible for processing each. For
example, the part concerning the DSNFVO is sent via link
D and similarly through links E and F, both the DSSDN-C
and DSRRO receive their quota of the request. Finally, the
DSVIM and DSeNBs will process the slice request and reply
their DSNFVO and DSRRO via link GR and HR respectively,
and forward the reply to their DSO(s) on link CR after which

it will be aggregated and forwarded to the GO via link BR.
This procedure describes the entire sojourn of processing a
federated network slice request.

In line with the architecture, an analytical model of the
system is made and results derived from the analysis is fed
into our system simulation model in order to determine the
adequate number of additional system components that will be
instantiated in order to process an E2E network slice within a
given duration of time while taking into account the different
combinations of slice requirement’s SIG compositions. Deduc-
ing such figures accurately will be of enormous importance
in designing a real efficient E2E federated network slicing
orchestration platform that can dynamically scale in order
to cope with the slice orchestration requests. In addition to
scaling the orchestration resources, this work also takes a
progressive approach by not only presenting a comprehensive
understanding of the concept of network slicing from an E2E
orchestration perspective but also incorporates the idea of the
resource affinity paradigm as discussed in[18] in order to
develop a system model for an elastic orchestration platform
and also include other interesting aspects.

IV. PROBLEM STATEMENT

In this section we will describe our system model and
problem statement. From a higher abstraction point of view,
the NSOS detailed in the previous section can be regarded as a



set of entities E = { GO, SAE, RAE, DSOd, DSNFV Od,
DSV IMd, DSSDNCd, DSRROd, DSeNBsd } interacting
among them. Please note that the subindex d ∈ [1, 2, .., D] is
included to specify the domain, which may be associated with
a specific geographical region, the entity belongs to. There
might be several instances per entity e ∈ E. Each entity
instance is deployed on an individual Virtural Machine (VM).
To serve the different slice orchestration requests (SORs),
these entities interact with each other by exchanging signaling
messages. In general, an instance i of a given entity e ∈ E
will execute a task, which consume computational resources
(e.g., CPU time, RAM, disk, network bandwidth), to process
every incoming packet. Here, we assume that the CPU is the
resource acting as bottleneck of the different entities. Once
the packet has been processed, the entity instance generates
and sends the corresponding reply message according to the
specific SOR call flow.

DRP refers broadly to enabling the automation of the
resources scaling of a given system depending on the current
or foreseen workload in the near future so that a set of
performance requirements are met. One of the main objectives
of this work is to propose a DRP solution for our NSOS.
Specifically, the aim is to provide a solution that allows the
NSOS to aunomously adapt its own computational and virtual
resources to handle workload fluctuations, while keeping the
desired performance to serve the SORs. Here, we will consider
as performance requirement that the mean response time of
the NSOS T to serve a SOR has to be kept under a threshold
Tmax.

One of the main components of a DRP solution is the re-
sources dimensioning module, which is in charge to determine
how much to provision for a given workload [10]. The resource
dimensioning problem for the NSOS might be formulated as
follows:

minimize

(
F (m) =

∑
e∈E

∑
i

m
(e)
i

)
(1a)

Constraints :

C1 : T (m) ≤ Tmax, (1b)

C2 : m
(e)
i ≤ m

(e)
max ∀ k ∈ [1,K] ∩ N (1c)

The decision variables of the optimization problem are the
number of physical CPU cores m(e)

i allocated to each instance
i of a given entity e ∈ E. Objective (1a) aims to minimize
the amount of computational resources (expressed in number
of CPU cores) to be allocated to the NSOS. This objective
is relevant because it is equivalent to minimize the energy
consumption and operational costs of the NSOS. Constraint
(1b) guarantees that the actual mean response time of the
NSOS to serve the slice orchestration requests is below a mean
delay threshold Tmax. Constraint (1c) limits the maximum
number of physical cores allocated to a single entity instance.
To have a single instance would be optimal for minimizing
the amount of required resources (statistical multiplexing).
However, each physical machine has a maximum number
of physical cores and they are shared among several VMs.

Constraint (1c) facilitates the bin packing problem in the
context of network embedding.

Noteworthy, the resource dimensioning problem formulated
above can be solved by means of a exhaustive method search
as follows. The brute force algorithm could determine the
initial processing instances allocation to each entity using the
condition for the system stability, i.e., me = dλe � µee,
where me, λe, and µe are vectors containing respectively
the number of processing instances allocated, the aggregated
arrival rate, and the packet processing rate per processing
instance for each entity. Then, assuming there are Ne dif-
ferent entities in the system, M0 =

∑Ne

i=1me(i) processing
instances are allocated in the initial assignment to fulfill the
stability condition. Then the brute force algorithm iterates until
the mean response time of the NSOS is below the maximum
delay threshold, i.e., T < Tmax. At each iteration it increments
by one the total number of processing instances allocated to
the whole system, M . It will then check every combination to
allocate the M −M0 processing instances among the entities
of the system. After performing the check, It will choose the
allocation that achieves the minimum mean response time of
the system. Despite the simplicity of the exhaustive search
method, it requires

Nchecks =
M∗∑

M=M0

·
((

Ne
M −M0

))
=

M∗∑
M=M0

(Ne +M −M0 − 1)!

(M −M0)!(Ne − 1)!

evaluations of the NSOS mean response time, which is im-
practical.

V. NSOS’S MEAN RESPONSE TIME ESTIMATION USING
QUEUING THEORY

The proposed model to estimate the performance of our
slices orchestration system consists of an open network of
G/G/m queues, where each queue represents an instance of
a given entity of the system like the GO or a DSO (see
Fig. 3). Each instance of a given entity runs on a separated
virtualization container or virtual machine (VM). For the sake
of simplicity, only one instance per entity is depicted in Fig. 3.
In Kendall’s notation, a G/G/m queue is a queuing node
with m servers, arbitrary arrival and service processes, FCFS
(First-Come, First-Served) discipline, and infinite capacity and
calling population. The system is modeled by imagining a
3GPP-like service-based architecture where each components
of the 5G core is considered an instantiated service and more
instances of the same service can be launched as at when
needed based on the system load.

This modeling approach has been previously proposed
and validated for virtualized network entities in [23]. Please
observe that the proposed model is intended to carry out
the computational resources dimensioning of the system. A
model targeted to accurately assess the performance of the
system should take into account additional elements such as
the communication links between the system entities.

As stated earlier, each queue stands for an instance
i of the entity of the set E ∈ { GO, SAE, RAE,



TABLE I: Model parameters.

Notation Description
K number of G/G/m queues
P steady state transition probability matrix
k, i network nodes indexes
pki probability of a packet leaving a node k to node i
p0k probability that a packet leaves the network
λ0k mean arrival rate of the external arrival process at queue k
c20k squared coefficient of variation of the external arrival pro-

cess at queue k
µk mean service rate of each server at queue k
c2sk squared coefficient of variation of service processes at queue

k
c2ak squared coefficient of variation of the aggregated arrival

process at queue k
ak , bik Coefficients of the set of linear equations to estimate the

SCVs of the aggregated arrival process at each queue k.
ωk , xi,
γk

Auxiliary variables when ak and bik are computed.

q0k the proportion of arrivals to node k from its external arrival
process

qik the proportion of arrivals to node k from node i
mi number of servers of node i
c2si squared coefficient of variation of service processes at queue

i
ρk the utilization of the node k
Tk Mean system response time of node k
Wk Mean waiting time of node k
β The Kraemer and Langebach-Belz approximation
W

M/M/m
k the mean waiting time for an M/M/m queue

C(m, ρ) the Erlang’s C formula
T the overall mean response time
Vk the average number of visits to node Qk

DSOd, DSNFV Od, DSV IMd, DSSDNCd, DSRROd,
DSeNBsd }, where the subindex d ∈ [1, 2, .., D] is included
to specify the domain, which may be associated with a specific
geographical region, the entity belongs to. Please note that the
three solid circles in Fig. 3 stand for domains with indexes
from 2 to D − 1. As described in Section III, the GO or-
chestrates the slices of different domains. Each domain has its
own dedicated DSO, DSNFVO, DSVIM, DSSDNC, DSRRO,
and DSeNBs entities, which are in charge of orchestrating
and managing the slices of a given geographical region. In
our model, entities belonging to different domains are treated
separately, though they may have the same functionality.

A queue may have m(e)
i servers that represent processing

instances allocated to the corresponding instance i of the
entity e ∈ E. These processing instances (i.e., virtual CPUs
running on physical CPU cores) process messages from the
same queue. Please note that each entity has to process one or
several messages to serve every incoming slice orchestration
request as shown in Fig. 2. We assume there is a sentry
per entity that distributes the workload (messages) among the
entity instances according to their processing capacity.

A. System Response Time Estimation

The performance metric considered in this work that drives
the auto-scaling process of the slices orchestration system is
the mean response time. That is, when possible, the system
will scale up or down its computational resources depending
on the foreseen workloads peaks in the near future so that
a given mean response time to serve the slice orchestration

requests is guaranteed. Consequently, based on the aforemen-
tioned proposed queuing model, we need to derive the mean
response time of the system.

To that end, we use the approximated technique proposed in
[22] for the Queuing Network Analyzer, hereinafter referred to
as QNA method. This methodology was applied and validated
to estimate the mean response time of a VNF with several
components in [23] proving it outperforms the standard queu-
ing techniques of analysis in terms of estimation error.

It shall be noted that to capture some particularities in
the operation of our system we need to include some con-
siderations in the analysis that differs from the originally
proposed QNA method. For instance, the DSO entity sends
requests in parallel to the DSNFVO and DSRRO entities
for the reservation/allocation of resources for a given slice
orchestration request (see Fig. 2). This blocks the call flow
at the DSO for this slice orchestration request until both
the DSNFVO and DSRRO answer the request. This behavior
is captured by modeling the subnetwork composed of the
DSNFVO, DSVIM, DSRRO, and DSeNBs for a given domain
d as a fork/join subnetwork with two parallel branches (e.g.,
DSNFVO/DSVIM and DSRRO/DSeNBs). Then, the branch
with the highest response time will determine the response
time of the fork/join subnetwork.

In order to estimate the mean response time in a systematic
manner, let Ke denote the number of instances for each entity
e of the set E. Then, we have K =

∑
e∈E Ke instances in the

system and, thus, K queues in the queuing model. To simplify
the notation in this analysis, we map each entity instance to an
integer index k ∈ [1,K]. The specific assignment of index to
each entity instance does not affect the subsequent analysis.
The following input parameters are required to estimate the
mean response time of the system: i) the steady state tran-
sition probabilities matrix P = [pki], where pki denotes the
probability of a packet leaving the node k to the next node
i or leaves the network with probability p0k = 1 −

∑
i pki;

ii) the mean and squared coefficient of variation (SCV) of the
external arrival processes at queue k, λ0k and c20k; and iii) the
mean and SCV of the service processes at queue k, µk and
c2sk.

1) Internal flows parameters estimation: The mean arrival
rate to each queue k, λk, can be computed by solving the flow
balance equations:

λk = λ0k +
K∑
i=1

λi · pik (2)

The most interesting aspect of the QNA method is that it
estimates the SCV of the aggregated arrival process to each
queue c2ak from a set of linear equations. Then, it is only
required to monitor the external arrival processes to the system,
which is the arrivals of new slices’ orchestration requests to
the GO in our case, to estimate the second order moment
of the arrival process at each entity instance. Specifically, we
can estimate the SCV of the aggregated arrival process to each
entity instance solving the following set of linear equations:

c2ak = ak +
K∑
i=1

c2aibik, 1 ≤ k ≤ K (3)



ak = 1 + ωk

{
(q0kc

2
0k − 1)

+
K∑
i=1

qik[(1− pik) + pikρ
2
ixi]

}
(4)

bik = ωkqikpik(1− ρ2i ) (5)

xi = 1 +m−0.5i (max{c2si, 0.2} − 1) (6)

ωk =
(
1 + 4(1− ρk)2(γk − 1)

)−1
(7)

γk =

(
K∑
i=0

q2ik

)−1
(8)

To simplify the computation of the c2ak, the QNA method
employs approximations. Specifically, it uses a convex com-
bination of the asymptotic value of the SCV (c2ak)A and
the SCV of an exponential distribution (c2exp = 1), i.e.,
c2ak = αk(c2ak)A + (1 − αk). The asymptotic value can be
found as (c2ak)A =

∑K
i=1 qikc

2
ik, where qik is the proportion of

arrivals to Qk that came from Qi. That is, qik = λiνipik
λk

. And
αk is a function of the queuing node utilization ρk = λk

µkmk

and the arrival rates. This approximation yields the above set
of linear equations, which may be solved to get c2ak, ∀ {k ∈
N|1 ≤ k ≤ K}. Last, in the above equations q0k = λ0k/λk.

2) Mean response time computation per node: Once the λk
and c2ak for the aggregated arrival process to each node k are
estimated, we can compute the mean queuing waiting time for
each node k, Wk.

If the node k has only one server (or one processing instance
allocated, m(e)

i = mk = 1), Wk can be estimated as:

Wk =
ρk · (c2ak + c2sk) · β

2 · µk(1− ρk)
(9)

with

β =

{
exp(− 2·(1−ρk)·(1−c2ak)

2

3·ρk·(c2ak+c
2
sk)

) c2ak < 1

β = 1 c2ak ≥ 1
(10)

If, by contrast, the node k is a GI/G/m queue (m(e)
i = mk =

m), Wk can be estimated as:

Wk = 0.5 ·
(
c2ai + c2si

)
·WM/M/m

k (11)

where WM/M/m
k is the mean waiting time for a M/M/m queue,

which can be computed as:

W
M/M/m
k =

C(mk,
λk

µk
)

mkµk − λk
(12)

and C(m, ρ) represents the Erlang’s C formula which has the
following expression:

C(m, ρ) =

(
(m·ρ)m
m!

)
·
(

1
1−ρ

)
∑m−1
k=0

(m·ρ)k
k! +

(
(m·ρ)m
m!

)
·
(

1
1−ρ

) (13)

3) Global Response Time Computation: Let Vk denote the
visit ratio for the node k (Qk) which is defined as the average
number of visits to node Qk by a packet during its lifetime
in the network. That is, Vk = λk/(

∑K
k=1 λ0k). And let Ke ⊂

{1, ...,K} with |Ke| = Ke be the subset of indexes associated
with the instances of the entity e. Then, we can compute the
mean response time for each entity, Te, as:

Te =
∑
k∈Ke

(Wk +
1

µk
) · Vk (14)

As stated earlier, the DSNFV Od, DSV IMd, DSRROd,
and DSeNBsd entities of the domain d are modeled as a
fork/join subnetwork of queues with two parallel branches.
The mean response time of the fork/join subnetwork of the
domain d, T (FJS)

d will be given by:

T
(FJS)
d = max(TDSNFV Od

+ TDSV IMd
,

TDSRROd
+ TDSeNBsd)

(15)

Finally, the overall mean response time T can be estimated
as:

T = TGO + TSAE + TRAE +
D∑
d=1

(
TDSOd

+ T
(FJS)
d

)
(16)

B. Transtion Probabilities for the Slices Orchestration System

As stated earlier, the steady-state transition probabilities
are input parameters to estimate the mean response time of
the system. They can be derived directly from the system
operation.

Let Ve denote the visit ratio of the entity e ∈ E which is
defined as the average number of visits to entity e by a SOR
during its lifetime in the NSOS. That is,

Ve = λe/
∑
e

λ0e = λe/(λ0GO) (17)

The visit ratios and the transition probabilities are related
through (2) (flow balance equations):

Ve =
λ0e∑
e∈E λ0e

+
∑
es∈E

Ves · pese (18)

where pese denotes the transition probability from entity es ∈
E to entity e ∈ E. The visit ratios of the GO, RAE, and SAE
entities are given by the number of messages they have to
process for every slice orchestration request. Then, VGO = 3,
VSAE = 1, and VRAE = 0 (see Fig. 2). Let αd denote the
percentage of the total incoming slices orchestration requests
to the system which are addressed to the domain d. Then, the
visit ratios of the entities DSOd, DSSDNCd DSNFV Od,
DSV IMd, DSRROd, and DSeNBsd will be αd times the
number of messages these entities have to process for every
incoming slice orchestration request, i.e., VDSOd

= alphad ·3,
VDSNFV Od

= alphad · 2, VDSV IMd
= alphad, VDSRROd

=
alphad · 2, VDSeNBsd = alphad, and VDSSDNC = αd.

Additionally, the sum of the transition probabilities for a
given entity e are normalized to unity:

p0e +
∑
ed∈E

peed = 1 (19)



Fig. 4: Dynamic Auto-Scaling Solution for the NSOS.

In our case, we can compute the transition probabilities
between entities for the slices orchestration system model
using (18) and (19). Specifically, we get

pGOSAE =
1

3
; pGORAE = 0; pGODSOd

= αd ·
1

3
; (20)

pSAEGO = 1; pRAEGO = 1; (21)

pDSOd

DSNFV Od
=

1

3
; pDSOd

DSSDNCd
=

1

3
; pDSOd

GO =
1

3
; (22)

pDSNFV Od

DSOd
= 0.5; pDSNFV Od

DSV IMd
= 0.5; (23)

pDSV IMd

DSNFV Od
= 1; pDSSDNCd

DSOd
= 1; (24)

Finally, assuming that the workload is distributed among
the instances of a given entity e according to its processing
capacity, the transition probability pe1ie2j

from the instances i of
the entity e1 ∈ E to the instance j of the entity e2 ∈ E can
be simply computed as

pe1ie2j
=

m
(e2)
j∑

lm
(e2)
l

· pe1e2 (25)

VI. DYNAMIC AUTO-SCALING SOLUTION OF
NSOS

The section describes a novel Dynamic Resource Provi-
sioning solution for the NSOS. The proposed DRP solution
(see Fig. 4) enables the NSOS to adapt its own resources
depending on the near future foreseen workload so that its
mean response time T is kept under the delay threshold Tmax
(i.e., T ≤ Tmax). Figure 4 shows the main blocks of the DRP
solution for the NSOS, which are explained in the following
subsections.

A. Workload predictor

This block is responsible for estimating the peak demand
for the NSOS until the next decision to provision is taken. The
workload predictor is executed synchronously every ∆t units
of time. The value of ∆t could be established from statistics
of the workload arrival process in order to find a balance
between the rate of scaling requests issued by the DRP mod-
ule and resources savings. The workload predictor might be
implemented by using Artificial Intelligence (AI) techniques,

as used in [42], such as machine learning. This block receives
as input the statistics of the peak traffic workload arriving at
the NSOS (e.g., mean arrival rate λ0GO,prev and SCV of the
packet inter-arrival times c20GO,prev) during the last period ∆t.
These statistics are measured by a workload monitoring agent
and reported to the DRP module every ∆t units of time. As
output, this block provides the predicted values of the mean
arrival rate λ0GO and the SCV of the packet inter-arrival times
c20GO of the peak traffic demand for the next period of length
∆t.

B. Dimensioning algorithm

This block is in charge of the sizing of the computational,
network, and the number of virtualization containers (VM and
or OS-level containers) from λ0GO and c20GO so that T ≤
Tmax during the next period of length ∆t.

To solve the resources dimensioning problem formulated
in Section IV, we employ a heuristic method that relies on
the analytical model previously described in Section V (see
Algorithm 1). As input, the algorithm requires the target
mean response time Tmax, the maximum number of available
physical CPU cores Mmax, the mean and SCV of the external
arrival process provided by the predictor (i.e., λ0GO and
c20GO), and the mean and SCV µ, and c2s . The inputs µ and c2s
are column vectors containing respectively the mean service
rate and the SCV of the service times for all the entities in
the set E. The mean service rate µe and the SCV of the
service times c2es per entity can be measured offline for a given
processing instance type.

Algorithm 1 Dimensioning Algorithm

Input: Tmax, Mmax, λ0GO, c20GO, µe, c2es.
Output: Required number of instances (or virtualization con-

tainers) I per entity and the processing instances to be
allocated to each entity m.

1: Initialization Compute λe using (17); m← dλe � µee;
M0 ←

∑
e∈Em(e); M ← min {M0, Mmax}; K ←

dm�mmaxe; Compose the network of queues and
compute P using (20)-(25); Compute internal flows pa-
rameters λ and c2a using (2)-(8); T estimation given the
initial stability conditions using (9)-(16);

2: while T > Tmax or M < Mmax do
3: maux ←m+ 1N×1; Kaux ← dm�mmaxe;
4: Recompose the network of queues for maux and Iaux;

and compute P using (20)-(25).
5: Recompute λ and c2a using (2)-(8);
6: Estimate the queuing waiting times vector Waux using

(9)-(13) and considering the above input parameters;
7: e∗ ← argmax

k∈[1,K]∩N
(W (e)−Wprev(e));

8: m(e∗)←m(e∗) + 1; K(e∗)←
⌈
m(e∗)/m

(e)
max

⌉
;

9: T ← T −Wprev(e∗) +W (e∗); M ←M + 1;
10: end while

The Algorithm 1 searches for the minimum number of
processing instances to be allocated to the network service so
that T < Tmax. The algorithm iterates until either T ≤ Tmax



or M ≥Mmax. At each iteration it seeks for the entity e∗ ∈ E
that most contributes in the reduction of T when one additional
processing instance is allocated to such entity e∗. Then, the
algorithm actually assigns one additional processing instance
to entity e∗.

In contrast to the brute force algorithm described in Section
IV, Algorithm 1 requires only (M∗ −M0) evaluations of the
performance model to find the solution. Where M∗ is the
total number of required physical CPU cores estimated by
the algorithm, and M0 denotes the initial allocation of CPU
cores to fulfill the stability condition. Let Mmax denote the
maximum number of available CPU cores. Considering that
QNA method takes linear time O(K) with the size of the
network K (i.e., number of queuing nodes) as reported in
[23]. Then, the time complexity of Algorithm 1 in the worst-
case scenario is O((Mmax −M0) · K∗), where in our case
K∗ is the required number of instances for all the entities,
which is estimated by the algorithm. It is difficult to determine
how the algorithm complexity depends on its input parameters.
That is because the complexity is a function of the algorithm
output. To overcome this obstacle, we provide an experimental
evaluation of the algorithm time complexity in Section VII-B
showing that it is O

(
λ20GO · log

(
T−1max

))
when M∗ < Mmax.

We also provide an analytical derivation of the algorithm time
complexity in Appendix ?? for a hypothetical case where
Ne = 1 which provide useful insights on how it depends on
the different input parameters.

Observe that although we have particularized the proposed
resources dimensioning heuristic for the performance model
developed in Section V, it could be used a different per-
formance model or even a distinct approach to estimate the
response time of the NSOS. Accordingly, the input parameters,
except Tmax and Mmax, could change.

Please note that � denotes the Hadamard division, which
is defined as the element wise division, of two vectors in
Algorithm 1. In the same way, the operator d·e refers to the
element wise ceiling operation for a vector.

Finally, the output of the dimensioning algorithm is used by
the scaling subsystem, which will be in charge of allocate or
release the corresponding resources.

C. Scaling of the network service

This block is in charge of initiating the required procedures
for allocating or releasing the network service resources. As
input, it uses the required processing instances per entity m
provided by either the dimensioning algorithm or the reactive
provisioning block whose functionality is described in the next
bullet point. It keeps track of the resources currently allocated
to the network services. Then, it can determine how much
resources have to be reserved or freed given the output of the
dimensioning algorithm or the reactive provisioning block.

D. Reactive provisioning

This block receives frequently the current statistics of the
traffic demand (λcur and c2a,cur) measured by the workload
monitoring agent. Its mission is to trigger asynchronous
resources scaling requests when it detects an unexpected

workload surge that has not been foreseen by the workload
predictor.

E. Request policing

It is worthy to note that the DRP module interacts with
the admission control procedure of the NSOS. The admission
control procedure enables the NSOS to decline excess SORs
during temporary overloads. To that end, the admission control
procedure might use the current statistics of the traffic demand
(λcur and c2a,cur) provided by the workload monitoring agent
and the information of current capacity of the network service
to serve requests. Although the reactive provisioning block
will react before unexpected workload surges, the reaction
time might be non-negligible (execution time of the reactive
provisioning algorithm, time to carry out the procedures of
resources reservation, execution time of the resources embed-
ding algorithm, time to instantiate new VM, etc.). Then, it is
required an admission control mechanism to guarantee that the
performance requirements for the network service are met all
the time.

VII. RESULTS

In this section, we assess the performance of our DRP
solution based on simulations. First, we present an evaluation
of our resources dimensioning algorithm. Second, we show the
proper operation of our DRP solution in a typical scenario.

A. Experimental setup

To validate the proposed queuing model and operation of
our DRP algorithm solution, we employed a queuing simula-
tor of the slices orchestration system, which was developed
in the Matlab Simulink environment. Table II includes the
configuration of the main parameters for all the simulations
carried out in the subsequent experimental evaluation. Except
where otherwise noted, we assume that the workload is equally
distributed among the different DSOs.

This simulator implements the call flows triggered by each
slice orchestration request (see Fig. 2). Each entity instance
is simulated as a FCFS queue with one or several generic
servers. The specific number of servers for any entity instance
depends on the processing instances allocated to it for the
given simulation. For all the processing instances, no matter
which entity they were allocated to, we assumed the same
service time distribution. The shape of this distribution was
derived from real measurements of the service times for a
VNF that have a similar operation to the entities of the slices
orchestration system. The service time distribution for each
processing instance has a mean of 100 µs (or, equivalently,
a service rate equal to 10000 packets/second) and a SCV
equal to 0.65.

To the best of the authors’ knowledge, there is no work
in the literature addressing the characterization of the slice
orchestration requests generation process. Then, in our sim-
ulations, we supposed that the slice orchestration requests
arrive at the GO entity according to a Poisson distribution.
The aggregated arrival rate was modulated according to the
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Fig. 5: The temporal distribution of the workload profile
(expressed in slices orchestration resquests -SORs- per second)
and the prediction error of the workload predictor.

TABLE II: Parameters Configuration

External arrival process at the GO & Workload Predictor
External arrival process at the GO Modulated Poisson process whose

arrival rate versus time is given in
Fig. 5

Workload predictor Focused time delay neural
network with 10 neurons

Root mean squared error (RMSE)
of the workload predictor

361.5 SORs per second

Service processes
Service rate of each processing
instance

10000 packets per second

SCV of the processing instance
service time

0.65

QoS requirements

Tmax 2 ms

temporal distribution measured in [24] for the aggregated
mobile traffic. Specifically, the temporal distribution of the
workload profile considered is depicted in Fig. 5.

The simulator also includes an implementation of our DRP
algorithm. As workload predictor, we used the focused time
delay neural network model with a tapped delay line with a
maximum delay of 2 and ten neurons in the hidden layer. To
train the neural network, we used the temporal distribution of
the workload for a four weeks period included in [24] (see [24,
Fig.1]). We chose Levenberg-Marquardt as training algorithm.
Figure 5 shows the relative error of the workload predictor.
The decisions to provision are taken periodically every ten
minutes. A single token bucket was used as request policer
at the input of the GO. The tokens generation rate depends
on the resources allocated to the NSOS. More precisely, it is
computed as the maximum mean external arrival rate λ0GO
given the current capacity of the NSOS using the model
presented in Section V. The reactive provisioning mechanism
is triggered either when (λ0GO − λ0GO,pred)/λ0GO ≥ 0.05
or (λ0GO − λ0GO,pred)/λ0GO ≤ −0.5. The VM instantiation
time was set to 82 seconds [47]. The target mean response
time of the system to serve a slice orchestration request was
set to 2 ms, i.e., Tmax = 2ms.

B. Dimensioning Algorithm Time Complexity and Optimality

In order to gauge the performance of the proposed resources
dimensioning algorithm for the NSOS (i.e., the Algorithm
1), we considered three metrics: i) the difference between
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Fig. 6: Comparison of the required computational resources
estimated by our proposed dimensioning algorithm and the
optimal solution.
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Fig. 7: Comparison of the overall mean response time of the
system achieved by our algorithm and the optimal solution.

the resources estimated by the algorithm and the optimal
solution, ii) the difference between the mean response time
achieved by the algorithm and the optimal solution, and iii) the
time complexity of the algorithm. We computed the optimal
solution of the problem using the exhaustive search method
described in Section IV.

Figures 6 and 7 depict respectively the comparison between
our algorithm and the optimal solution to estimate the amount
of required computational resources and the mean response
time achieved with each estimation. Since finding the optimal
solution is very computationally intensive, the scenario con-
sidered in this evaluation had only one DSO entity and the
evaluation was carried out only for the first twelve hours of
the day. As it is observed, our solution achieves the optimality
goals for the scenario considered. Moreover, the same test was
conducted trying different combinations for the setup of the
input parameters. Specifically the following ranges of values
were sampled for the input parameters: 0 ≤ ca02 ≤ 10,
0 ≤ cse

2 ≤ 10,
∑
e∈E Ve · 1/µe < Tmax ≤ 10ms, and

0 ≤ cse
2 ≤ 10, and 1 ≤ mmax ≤ 15. The algorithm found

the optimal solution in all cases tested.
This result can be explained if the performance model de-

scribed in Section V is a convex and non-increasing sequence
with the number of CPU cores allocated to each entity. In such
case, the strategy followed by Algorithm 1 will find a solution
where T ≤ Tmax with the least number of iterations possible
or, equivalently, minimizing the total number of allocated CPU
cores (which is the objective). For non-convex performance
models, it is not assured that Algorithm 1 will find the optimal
solution.

Finally, we studied the dependence of the execution time of
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Fig. 8: Time complexity study for the resources dimensioning algorithm (Algorithm 1): a) Execution time versus the workload
and number of NSOS components. b) Execution time versus the overall target mean response time.

our algorithm on its input parameters (see Figs. 8a and 8b).
Each point in Figs. 8a and 8b represents the average of the
measurements obtained for ten independent runs.

Figure 8a shows the algorithm execution time versus the
workload for different number of DSOs NDSO. Observe
that each additional DSO included in the scenario accounts
for six additional network entities in the system (i.e., DSO,
DSSDNC, DSNFVO, DSVIM, DSRRO, DSeNBs). Then, for
NDSO = 2 the slices orchestration system is composed of
fifteen different entities (Ne = 15). As shown in Fig. 8a the
algorithm has quadratic time complexity with the workload
λ0GO. Specifically, the shape of the function

f(λGO0
) = 8.9 · 10−10 · λ20GO + 10−4 · λ0GO + 6.3 · 10−3

fits the experimental curve for NDSO = 1 with an R-squared
of 97.5%. The rationale behind this result is that our algorithm
requires M∗ − M0 evaluations of the performance model
which, in turn, has a time complexity O(M). The result is also
obtained analytically in Appendix ?? for the case Ne = 1.

It is also shown in Fig. 8a that the execution time of the
Algorithm 1 does not depend on the number of entities Ne. As
pointed out, the NSOS performance model detailed in Section
V has a linear time complexity with the number of queuing
nodes K each of which represents an instance of a given
NSOS entity. Although for low workloads the total number
of instances is given by the number of entities (at least we
will have one instance per entity), for high workloads the
number of queues are dominated by the workload. Figure
8b depicts impact of the target mean response time Tmax
on the algorithm execution time. In contrast to the analysis
provided in Appendix ??, the experimental results show that
the algorithm has a logarithmic time complexity with the
inverse of Tmax, i.e., O(log

(
T−1amx

)
). The model

f(Tmax) = a · log

(Tmax −∑
e∈E

Ve ·
1

µe

)−1+ b (26)

fits the experimental curve with an R-squared of 95.5% when
a = 3.2 and b = −17.

In summary, the experimental results suggest that Algorithm
1 has time complexity O

(
λ20GO · log

(
T−1max

))
when M∗ <

Mmax.

C. Dynamic Provisioning

Finally, we checked that our solution works properly by
means of simulations. In this assessment, we considered
NDSO = 3. The simulations were repeated ten times.

Fig. 9 depicts the total required number of processing
instances over time predicted by our DRP algorithm. In the
same way, Fig. 10 shows the number of processing instances
allocated to each entity over time according to our DRP
solution. As the GO has to process the highest number
of messages per control procedure, it presents the greatest
demand of resources. As shown in Fig. 11, for the resources
allocation performed by our DRP solution the maximum delay
threshold is always met, thus validating the proper operation
of it. Please note that Fig. 11 includes the average (solid line
in blue) and the 95% confidence interval (shaded area in red)
of the simulation results.

Figure 12 shows the rejection rate of the NSOS request
policing mechanism, i.e., the percentage of the slice orches-
tration requests discarded per unit time. The maximum 95%
confidence interval obtained for this curve was 0.21%. Inter-
estingly, the rejection rate is greater than 5% at some points,
even though we used (λ0GO − λ0GO,pred)/λ0GO ≥ 0.05 as
a condition to trigger the reactive provisioning mechanism.
This can be explained by the fact that we considered a high
VM instantiation time (82 s). We observed that a maximum
rejection rate of 5% is only attained considering no VM
instantiation time. Please note that the highest values of the
rejection rate are between 6 and 10 hours. During this period,
the workload predictor exhibits the highest prediction error
underestimating the foreseen workload.

In summary, the above results suggest that it is not feasible
to guarantee an instantaneous maximum rejection rate below
a given threshold. Instead, we can only guarantee a maximum
rejection time during a time interval of a given duration. This
performance metric will be determined by the reaction time of
the reactive provisioning mechanism which, in turn, strongly
depends on the VM instantiation time.

VIII. CONCLUSION

In this work, we introduce a hierarchical architecture that
could be used to practically design and deploy a scalable E2E
multi-domain mobile network slicing orchestration system in
an efficient manner. We model the interactions between the
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components that make up the NSOS using queuing theory
and validated our model with a viable system simulation.
In addition, we showcase a dynamic auto-scaling algorithm
that could be used to enable the autonomous operation of
the system. Our auto-scaling algorithm efficiently scales the
resources of the multi-domain orchestration system while
maintaining a system-wide stability and consistently achieving
the E2E multi-domain network slice creation requests based
on defined requirements. Ultimately, the system maximizes
the orchestration of E2E global network slices based on the
available system resources and set orchestration time policy.
In subsequent works, we plan to include further detailed con-
ditions that could influence the functionality and performance
of the orchestration system.
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