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SuperDCA for genome-wide epistasis analysis

Santeri Puranen,1,2,* Maiju Pesonen,1,2 Johan Pensar,2 Ying Ying Xu,1,2 John A. Lees,3 Stephen D. Bentley,3

Nicholas J. Croucher4† and Jukka Corander2,3,5,*†

Abstract

The potential for genome-wide modelling of epistasis has recently surfaced given the possibility of sequencing densely

sampled populations and the emerging families of statistical interaction models. Direct coupling analysis (DCA) has

previously been shown to yield valuable predictions for single protein structures, and has recently been extended to

genome-wide analysis of bacteria, identifying novel interactions in the co-evolution between resistance, virulence and core

genome elements. However, earlier computational DCA methods have not been scalable to enable model fitting

simultaneously to 104–105 polymorphisms, representing the amount of core genomic variation observed in analyses of many

bacterial species. Here, we introduce a novel inference method (SuperDCA) that employs a new scoring principle, efficient

parallelization, optimization and filtering on phylogenetic information to achieve scalability for up to 105 polymorphisms.

Using two large population samples of Streptococcus pneumoniae, we demonstrate the ability of SuperDCA to make

additional significant biological findings about this major human pathogen. We also show that our method can uncover

signals of selection that are not detectable by genome-wide association analysis, even though our analysis does not require

phenotypic measurements. SuperDCA, thus, holds considerable potential in building understanding about numerous

organisms at a systems biological level.

DATA SUMMARY

1. Sequencing reads for the Maela population have been

deposited in the National Center for Biotechnology Infor-

mation Sequencing Read Archive (SRA) under study num-

bers ERP000435, ERP000483, ERP000485, ERP000487,

ERP000598 and ERP000599.

2. Multiple sequence alignment for the Maela population is

available from the Dryad Digital Repository: http://dx.doi.

org/10.5061/dryad.gd14g.

3. Sequencing reads for the Massachusetts population have

been deposited in the European Nucleotide Archive (ENA)

under project number ERP000809, with accession numbers

ERR065287 – ERR129216 (url - https://www.ebi.ac.uk/ena/

data/view/PRJEB2632).

INTRODUCTION

Direct coupling analysis (DCA) emerged less than a decade
ago and has opened up a new direction of biological
research by demonstrating that large population-based pro-
tein sequence analysis can be leveraged to make accurate
predictions about protein structure [1–7]. DCA has been
successfully extended to predict secondary and tertiary
RNA structure [8], synergistic effects on fitness of muta-
tions in the Escherichia coli lactamase TEM-1 [9], the fitness
landscapes of human immunodeficiency virus proteins [10],
and mutation effects from sequence co-variation [11], and
to genome-wide epistasis analysis for bacterial population
genomics [12]. Our focus here is to significantly extend the
applicability of DCA methodology by enabling scalable
inference for two orders of magnitude larger than previously
modelled dimensionality of sequence positions.
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Direct calculation of probabilities for the Potts models
employed in DCA is intractable due to the form of the
normalizing constant of the model distribution. Albeit Mar-
kov chain Monte Carlo (MCMC) -based sampling methods
can be employed to obtain maximum-likelihood estimators,
various weaker criteria or approximations have often been
used to derive estimators of the model parameters. Notably,
maximum pseudolikelihood is a statistically consistent
inference method that has typically outperformed varia-
tional methods [13], such as the mean-field estimator [14].
The different software implementations based on regular-
ized maximum pseudolikelihood for DCA applications
(plmDCA) [3, 14–17] have been designed for protein
sequences with the maximum length of 1000–2000 amino
acids.

To enable use of plmDCA at the whole-genome level, with
the order of 105 polymorphisms in a bacterial genome,
Skwark et al. [12] stratified a genome into non-overlapping
windows and sampled randomly one single nucleotide
polymorphism (SNP) from each window to form haplo-
types of approximately 1500 sequence positions, on which
the plmDCA implementation by Ekeberg et al. [15] could
be directly applied. They then used a large number of
repeated random sampling of positions from the stratified
genome to aggregate information about interactions
between polymorphisms across the genome. While this
approach was demonstrated to successfully capture both
known and novel interactions, it remains very computa-
tionally intensive and may still leave important interactions
undiscovered, as only a fraction of all possible combina-
tions of interactions will be covered even when using large
numbers of repeated samples. It is also a hybrid method
that does not fully implement global model learning, which
is a conceptually central point of DCA. To avoid these
problems, here, we introduce a method termed SuperDCA,
which can perform inference simultaneously for all SNP
positions in a much higher dimension. These advances are
based on a new computational architecture exploiting effi-
cient parallelization and optimization to achieve scalability
for up to 105 polymorphisms. In addition to being signifi-
cantly faster with more modest computational resources,
we also show that the global inference with SuperDCA
allows the discovery of previously undetected epistatic
interactions that inform our understanding of bacterial
biology related to survival of the pneumococcus at lower
temperatures. SuperDCA is freely available from https://
github.com/santeripuranen/SuperDCA.

METHODS

Data pre-processing

Bi- or tri-allelic loci with a minor-allele frequency (MAF)
greater than 1% were included in the analysis, provided that
gap frequency was less than 15%. Gaps were not counted as
alleles in the frequency calculations. To facilitate direct
comparison with previous results [12], a separate dataset
was prepared from the Maela input alignment using

otherwise the same filtering rules, but for bi-allelic loci only.
Filtering of 305 245 SNPs in total resulted in two Maela
input datasets for SuperDCA containing 94 028 SNPs and
3042 samples using the former rules, and 81 045 SNPs and
3145 samples using the latter rules. A subset of 103 samples
containing mostly low-quality reads were included in the
data in the previous study, but here were removed from the
source alignment prior to locus pre-selection for our 94 028
SNP set. For the Massachusetts population, the first set of
filtering criteria resulted in 78 733 SNPs and 670 samples.

Hardware and inference details

Parameter inference was performed using a single 20-core
HP SL230s G8 compute node with dual Xeon E5 2680 v2
CPUs and 256GB of DDR3-1667 RAM. Total wall clock
run times were 186 h (Maela with 94 028 SNPs), 167 h
(Maela with 81 045 SNPs) and 39 h (Massachusetts with
78 733 SNPs), including file I/O, pre-filtering and parameter
inference. Weights correcting for the population structure,
regularization and choice of hyper-parameters were calcu-
lated exactly as in the genomeDCA method [12]. Coupling
estimates for the three data sets that exceeded the cut-off
described below are provided as Tables S1–S3 (available
with the online version of this article) at https://github.com/
santeripuranen/SuperDCA/MGen_2018_Tables_S1-S3/.

Prediction cut-off

The Potts models inferred in DCA are heavily over-parame-
trized. In protein contact applications, the benchmark num-
ber of parameters is typically in the millions (number of
residue pairs times q2, where q=21), while the number of
samples varies typically from thousands to hundreds
of thousands. Therefore, only a small fraction of largest pre-
dictions is retained, commonly in the order of hundreds.
For the present and future applications to whole-genome
data, it is of more relevance to deliver a set of predictions at
a pre-determined level of deviance from zero. An earlier
approach using deviations from an extreme value theory
distribution (Gumbel distributions) [12] was not applicable
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in the present set-up, since we are not only sampling the tail
of the coupling coefficients but estimate couplings for all
possible pairs of SNPs. As shown in Fig. 1, a semi-logarith-
mic cumulative distribution plot provides a computationally
straightforward way to assess whether a particular coupling
represents only random fluctuation near zero. The null dis-
tribution theory developed in Xu et al. provides a strong
motivation for using the linear part of the distribution near
the origin as representation of the noise level signals [18].
To obtain a threshold, we first performed a systematic scan
over the histogram bins to fit a two-component linear spline
function to the cumulative distribution. The standard devia-
tion of the null couplings was then estimated using the part
of the distribution between zero and the breakpoint. Similar
to the Gumbel fit deviance level used by Skwark et al. [12],
we then excluded all couplings that were less than six stan-
dard deviations away from the linear trend from further
analysis. Fig. 1 illustrates that this procedure effectively fil-
ters out the vast majority of all possible couplings as noise,
and allows the downstream analysis to focus on the relevant
signals.

Phylogenetic ranking of estimated couplings

By default, SuperDCA includes gaps as a state in the Potts
model if they are found in the alignment at sites fulfilling
the SNP pre-filtering criteria. Some gaps can be considered
informative, representing indels, while some simply relate to
sites that are difficult to sequence. Hence, some strong gap-
induced couplings can represent lower-quality sequence
data instead of true between-site interactions, and they
should be automatically de-emphasized to better enable
assessment of the biological meaning of the inferred cou-
plings. Additionally, from a biological perspective, strong
couplings that are signals of convergent evolution are the
most interesting candidates for closer examination. To

highlight the couplings where co-selection pressure has

more likely repeatedly affected several minor allele combi-

nations across the population, the SuperDCA coupling esti-

mates are by default re-ranked using a combination of the

three criteria described below, in addition to the actual value

of the coupling.

Let C be a set of estimated couplings and ci ¼ ci1; ci2½ � 2 C a
pair of SNP loci represented by their genome position

indices. Let yb ¼ s
bð Þ
1 ; � � � ; s

bð Þ
N

h i

be a haplotype over the N

SNP loci. Further, Si;1 is a set of haplotypes carrying a minor

allele at locus ci1 and Si;2 a set of haplotypes with a minor
allele at locus ci2. The first phylogenetic ranking criterion is
the minimum of the mean genome-wide Hamming distan-
ces of all pairs of isolates yk; yl 2 Si;o; o ¼ 1; 2f g; k, i.e.

di ¼ minoð�dSi ;oðyk; ylÞÞ; i ¼ 1; :::; Cj j where

d
�

Si;o yk; ylð Þ ¼ 1
jSi;o j

P

N

n¼1

s kð Þ
n 6¼ s lð Þ

n

� �

:

Our second criterion is the normalized number of hierBAPS
[19] clusters including isolates carrying the minor alleles at

the two coupled loci, i.e. ai ¼ bbjb 2 Si;1 \ Si;2
� �� 	�

�

�

�;

where bb is the designated hierBAPS cluster for haplotype
b. Finally, the third criterion is the percentage of isolates
where both SNP loci involved in a coupling had the minor

allele, i.e. mi ¼
1
2

Si;1\Si;2j j
Si;1j j

þ
Si;1\Si;2j j
Si;2j j

� �

.

The above three criteria are normalized by

dnormi ¼ di
maxiðdiÞ

; i ¼ 1; :::; Cj j; anormi ¼ ai=maxiðaiÞ and

mnorm
i ¼ mi=maxiðmiÞ after which they are combined to a

single ranking criterion ri ¼ dnormi þ anormi þmnorm
i having a

maximum value of three and a minimum equal to zero.
Large values emphasize cases where both minor alleles at

Fig. 1. log histograms of the cumulative distributions of estimated between-site couplings for Maela (left) and Massachusetts (right)

populations. The thresholds indicate the learned boundary between negligible and moderate to strong couplings.
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coupled loci are simultaneously widely distributed across
the population. In cases where gaps at any two loci are phy-
logenetically spread in the population and would have led to
a large estimated coupling values, they are still de-empha-
sized since they are not counted as minor alleles. The above
criteria are derived by normalizing the individual coupling
re-ranking measures developed by Skwark et al. [12]. The
hierBAPS clusterings were obtained from the original publi-
cations introducing genome sequences for the Maela and
Massachusetts populations [20, 21].

Mutual information (MI) calculations

MI is an information theoretic measure of pairwise depen-
dence between two variables calculated from the joint distri-
bution over the variables. In the standard approach, the
joint probabilities are estimated by the relative frequencies
corresponding to maximum-likelihood estimates. Previous
research has shown that a Bayesian estimator is more stable
than the standard approach in terms of estimating the
closely related concept of Shannon entropy from small sam-
ples [22]. Since we are dealing with relatively small efficient
sample sizes, we used a corresponding Bayesian MI estima-
tor in which a Dirichlet prior is put on the joint distribution
and the estimator is defined as the expected value of the
posterior density over MI given the data [23]. We defined
the Dirichlet hyperparameters a by setting a=1/K, where K
is the number of joint outcomes (Perks’ prior). To adjust for
the population structure in the sample, we use the same re-
weighting scheme as was applied in our SuperDCA infer-
ence with a similarity threshold of 0.90. Finally, to remove
the influence of gap–gap interactions, we did not include
sequences for which either of the two considered loci had a
gap value.

Genome-wide association study (GWAS) for the
seasonality phenotype

We coded season as a binary variable based on whether iso-
lates were acquired during the winter or the summer. We
then tested 123 791 SNPs passing simple frequency filtering
(>1%MAF) for association with this variable using SEER
[24], which performs a logistic regression at every SNP. We
used the first three multi-dimensional scaling components
of the pairwise distance matrix as fixed effects to control for
population structure [24].

Structural analyses

Crystal structures of Streptococcus pneumoniae penicillin-

binding proteins (PBPs) with the following IDs, 2WAF

(Pbp2b), 1QMF and 1RP5 (Pbp2x), were retrieved from the

Protein Data Bank [25] (www.rcsb.org; accession date Janu-

ary 8 2016) and visualized in the PyMOL Molecular

Graphics System, version 1.8.4.0 (Schrödinger). A chimera

of 1QMF (chain A residues 257–618) and 1RP5 (chain A

residues 64–256 and 619–750; missing sidechain atoms of

E721 were reconstructed) was used for visualizing Pbp2x.

RESULTS

Results of SuperDCA and comparison with
genomeDCA

The Potts model for genome-wide epistasis analysis was fit-
ted to two largest existing pneumococcal population data
sets using the SuperDCA method: the Maela [12, 20] and
Massachusetts populations [21]. Two variants of the Maela
population data were considered: one with only bi-allelic
SNPs (81 045 loci), filtered as in Skwark et al. [12] in order
to maintain compatibility for comparison of the results, and
the second with no restriction to bi-allelic SNP sites (94 028
loci; Methods). For Massachusetts, 78 731 SNP loci were
analysed (Methods). Fig. 1 shows the cumulative distribu-
tions of the estimated coupling strengths between SNP sites
for the Maela and Massachusetts populations. In both cases,
a vast majority of the couplings were of negligible magni-
tude and could be discarded from further detailed investiga-
tion using the thresholds shown in Fig. 1 (Methods).

Fig. S1 shows the overlap between the predicted
genomeDCA and SuperDCA links on a gene level for the
Maela population. SuperDCA replicated the previously
identified links between PBP gene pairs, as well as the net-
work containing the smc gene. In contrast, SuperDCA did
not identify significant links between pspA, divIVA and the
triplet upstream of ply, SPN23F19480–19500. In the simul-
taneous analysis, which is not affected by chromosome
stratification and random sampling of positions, the respec-
tive couplings no longer clearly deviated from the back-
ground dependence distribution, which is considerably
wider for SuperDCA than for genomeDCA. This was illus-
trated by a closer examination of the pairwise MI values (for
further details see Methods) between the SNP loci in pspA,
divIVA and SPN23F19480–19500. The few stronger pair-
wise dependencies between the three genes disappear when
all SNP loci are considered simultaneously. However, we
wish to emphasize that these differences should not be over-
interpreted and that further general examination of the pros
and cons of simultaneous versus pairwise analyses will be a
fruitful topic for future research.

Epistasis in the PBPs

Since the bulk of the biological signal of between-site varia-
tion dependence presented in Fig. 1 is due to linkage dis-
equilibrium (LD) between sites in close proximity (Fig. S2),
we used a refined version of the phylogenetic ranking of the
couplings (Tables S1–S3; Methods) to focus on the strongest
candidates of co-selected loci. Fig. 2 shows two sets of SNP
loci that are involved in the top-ranking couplings in the
Maela population, alongside with the phylogenetic distribu-
tion of the alleles. The very top-ranking couplings are
between sites in the three PBPs, as discovered in the earlier
epistasis analysis that stratified the genome into non-over-
lapping windows and used the Potts model for sampled sub-
sets of loci to reduce dimensionality [12].

Fig. 2 reveals a particular pattern of dependence between
PBP mutations that adds significant biological information

Puranen et al., Microbial Genomics 2018;4
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to the earlier findings [12]. The SNP positions marked by
red rectangles in Fig. 2 have an approximately reversed dis-
tribution of minor/major alleles in the population, which
may reflect fitness differences regarding co-evolution of
emerging mutations. In Pbp2x, the first marked position
(codon position 359) corresponds to a synonymous muta-
tion encoding amino acid phenylalanine, part of a conserved
cluster of hydrophobic residues (Fig. 3a, c) consisting of
F353, P354, F393, L402, L403 and the E357 to K406 charge
interaction located at the upper part of the transpeptidase
domain near the active site. This cluster of residues likely
has a role in maintaining structural integrity in this region
(marked with cyan), as it is positioned next to the more
mobile loop (marked with red) at residue positions 362–383
that partially covers the active site. Selection pressure seems
to act in favour of the phenylalanine phenotype, since the
genotype space clearly is explored here, and switching the
phenotype to the similarly sized and hydrophobic (but in
contrast to phenylalanine non-aromatic) residues leucine or
isoleucine would only require a single non-synonymous
mutation.

The second and third mutations (codon position 576, N/S/
H amino acid changes; codon position 598, I/V amino acid
changes) are conservative changes (Fig. 3d) that may
remotely affect the active site geometry or substrate associa-
tion/dissociation kinetics, possibly as a compensatory mech-
anism for changes elsewhere. Active-site reshaping is an
established cause of b-lactam resistance in S. pneumoniae,
where the involved polymorphisms can appear quite subtle

at first sight. Our LD adjusted coupling scores indicate a
very strong coupling between genome positions 294 028/
293 661 in pbp2x and 1 613 045/1 613 098 in pbp2b. The
fourth and fifth mutations (codon position 714, conserved L
amino acid; codon position 721, E/Q amino acid change)
are located in the PASTA-2 domain (Fig. 3b; marked with
green). The Q721 variant is prevalent in b-lactam suscepti-
ble and E721 in non-susceptible isolates. PASTA (PBP and
serine/threonine kinase associated) domains typically bind
b-lactams; however, a direct mechanistic role for 721 in b-
lactam resistance seems unlikely due to the structural posi-
tion facing away from the protein core region. Rather, 721 is
more likely to be involved in divisome complex formation
and functions in a way that supports bacterial resilience in
the presence of antibiotics; Pbp2x and the PASTA domains
therein are essential for bacterial division [26, 27]. The char-
acteristics and placement of L714 and the fact that all poly-
morphisms at this site are synonymous, point to a role in
assuring structural integrity rather than in direct b-lactam
interaction.

In Pbp2b, the second marked position (codon position 458,
D/N amino acid change) is located such that it may affect
the active site in a mechanistic way via two distinct routes,
either by indirectly modifying stability of the loop region
(marked with red) proximal to the active site or by slightly
affecting the geometry of active site residues through the
helix from 445 to 456 (marked with orange) directly con-
nected to active site residues N445 and S443. The first
marked position in Pbp2b (codon position 476, G/E amino

Fig. 2. Maela population distribution of alleles at top ranked coupled SNP sites. The estimated genome-wide maximum-likelihood phy-

logeny is shown on the left. Each column is labelled by the genome position, gene name and a corresponding functional categorization.

Columns marked by red rectangles indicate coupled sites in pbp2x and pbp2b that have a reversed minor/major allele distribution

compared with the remaining displayed SNPs in the same genes.
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acid change) is spatially separated from 458. Although
glycine at this site is more prevalent in b-lactam non-
susceptible- and glutamic acid in susceptible isolates, the
potential role of the residue at this position in resistance
remains unclear and would be a target for further
experimental work.

Fig. 4 shows a clear overlap between the Maela and Massa-
chusetts populations in terms of identified links between
genes involved in antibiotic resistance. For the two PBP-
encoding gene pairs pbp2x-pbp2b and pbp2x-pbp1a, the
numbers of strong links between SNPs are large in both
populations. For the pair pbp1a-pbp2b, there is a pro-
nounced asymmetry in this respect, such that the Massachu-
setts population harbours a large number of links, whereas
there are only very few in Maela. The latter observation is in
line with the findings by Skwark et al. [12], which indicated

that most interactions found between the PBP-encoding
genes were between pbp2x-pbp2b and pbp2x-pbp1a. The fact
that the Massachusetts population clearly deviates from this
suggests that the co-evolution of PBPs may follow a non-

congruent route in different populations. In the case of
Massachusetts versus Maela, this may be a consequence of
markedly different serotype distribution in the two popula-
tions, or other ecological constraints such as the varying

selection pressure from different b-lactam antibiotic usage.
In the Maela population, b-lactam prescriptions were
almost exclusively amoxicillin, whereas in the Massachusetts
population the paediatric prescription practice is likely to
have been considerably more varied. Similar to the asymme-

try of the extent of pbp1a-pbp2b couplings, the reverse allele
distribution pattern discussed previously for Maela was not
observed in the Massachusetts population. Given these

Fig. 3. Structural mapping of the Pbp2x (a–c) and Pbp2b (d) positions marked in Fig. 2. The panels show the transpeptidase domains

of each PBP with active site residues shown in cyan and positions marked in Fig. 2 as sticks in orange or green. (a) depicts a struc-

ture-stabilizing cluster of conserved hydrophobic residues (light grey sticks) and charge interaction (dark grey) in a region proximal to

(cyan cartoon) the Pbp2x active site (with bound inhibitory antibiotic as pink space-filling volume) and a mobile loop (red cartoon) cov-

ering the active site. (b) depicts the PASTA-2 domain essential for divisome complex function (green cartoon) with the bulk of the pro-

tein to the right (grey cartoon). (c) shows an overview of the Pbp2x transpeptidase domain coloured as in the detail views in (a) and (b).

(d) depicts the Pbp2b transpeptidase domain region proximal to the active site with a helix (orange cartoon) mechanically connecting

the active site to the ’top’ of the protein. An adjacent mobile loop covering the active site is shown in red.
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differences, our results suggest that the co-selective pressure
on PBP-encoding gene polymorphisms acts differently
depending on the type of the b-lactams used in the popula-
tion, warranting further experimental work to elucidate the
mechanistic role of the coupled variations.

Epistasis in cold tolerance and transmission
potential

The current analysis additionally highlights several
important between-site dependencies not identified by
genomeDCA, showing greater sensitivity for identifying
putative epistatic interactions. Firstly, the highest ranked
SuperDCA couplings included 20 links between cold-resis-
tance-related genes exoribonuclease R (rnr), glyceroporin
(glpF1) and lytic amidase C (lytC) (Fig. 2), the strongest of
which was ranked 668. In total, among the 5000 highest
ranked couplings, there were 2 links between glpF1 and rnr,
and 18 links between glpF1 and lytC. GlpF1 is a transporter
than imports glycerol and is involved in maintaining mem-
brane fluidity with temperature changes [28]. The glpF1
gene is at the 3¢ end of its operon, with a tightly-folding
BOX repeat at its distal end [29]. This would make the cor-
responding mRNA a potential target for Rnr, a cold shock
response 3¢fi5¢ exonuclease that degrades tightly-folded
RNAs that might be misfolded at lowered temperatures.
Hence, these interactions may be involved in tuning the

expression of glpF1 at lowered temperatures. Like GlpF1,
LytC is involved in maintaining the cell surface at lower
temperatures, as it is the cellular amidase specialized at
degrading peptidoglycan at lower temperatures (30

�
C,

rather than 35–37
�
C) [30].

Previous work has demonstrated a significant seasonality in
the transmission dynamics for the Maela population, while
carefully controlling for viral epidemics; the probability of
the transmission being higher during the cold and dry win-
ter months in comparison to warmer and more humid
spring and summer months [31]. To examine whether the
observed epistatic links related to survival at lower tempera-
tures are connected with the seasonal transmission phe-
nomenon, we examined the major allele frequencies and
MAFs at the strongly linked cold-resistance loci according
to months, averaged over the 3 years, 2007–2010, during
which the data were sampled. Fig. 5 shows clear temporal
signals in terms of when the isolates carrying the linked
minor/major alleles were sampled. The temporal changes in
allele frequencies for the strongest cold-resistance-related
link between glpF1 (position 2 162 687) and rnr (position
871 912), and also for the most strongly coupled sites
between lytC (position 1 533 938) and glpF1 (position
2 162 676), display a repetitive pattern of synchrony across
years. In the first case, the proportion of major alleles in
glpF1 increases towards the end of the year, while in rnr the

Fig. 4. Overlap of estimated SNP interactions between the Maela and Massachusetts populations. Each dot represents an estimated

link (interaction) between two coding sequences (CDSs), the blue CDSs are involved in antibiotic resistance, and the red CDSs are in

close proximity to antibiotic resistance loci. Grey dots represent other functional categories not displayed here explicitly for visual

clarity. Both axes are on a log scale and the values represent numbers of links in each CDS pair.
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proportion of the minor alleles varies, being the dominant
allele in January, April and December. In the second case,
the pattern in glpF1 remains the same, but the proportion of
minor alleles in lytC increases towards the winter months.

These findings, combined with the earlier results on Maela

hosts being more susceptible for transmission during the

cold and dry winter months [31], suggest that the recurrent

selective advantage related to increased cold tolerance to

facilitate survival outside hosts has been sufficient to shape

the variation in population allele frequencies. To investigate

whether the selection pressure on cold-resistance genes

could be discovered using a GWAS approach, we coded the

phenotype of each sample as winter or summer depending

on the sampling date (Methods). We then applied the SEER

GWAS method to identify polymorphisms that explain the

variation in the phenotype [24]. Fig. S3 shows the Manhat-

tan plot of the SEER analysis based on the annotated refer-

ence genome. No clear association signal can be seen and

the SNP loci within the cold-resistance genes are not

associated with any markedly smaller P values than the level
of background variation of the association signal.

No cold-resistance-related couplings were found among the
top 5000 couplings in the Massachusetts population, which
may represent the less variable environmental conditions to
which children are exposed, and the sampling of isolates
only during winter, rather than year round. In contrast, the
Maela refugee camp conditions are such that the changes in
selection exposure are more directly influential.

Filtering on phylogenetic information

Inferred couplings from DCA typically have to be filtered to
remove those that refer to trivial or non-informative depen-
dencies. In the protein-structure applications, very strong
couplings are inferred among close neighbours along the
peptide backbone, and are usually removed after model fit-
ting by a simple distance-based cut-off. A related issue is
sampling bias, which for protein-structure applications has
been handled by a reweighting applied to each sequence [1].
In bacterial sequence data produced from a sample taken

Fig. 5. Seasonal variation of the allele frequencies for the two top cold-resistance couplings between glpF1-rnr and glpF1-lytC aver-

aged over 3 years, 2007–2010. The shaded areas indicate 95% confidence intervals.
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from a small area over a limited period of time, a further
issue is clonal inheritance; the meta-population is in a state
of flux, and for a short window of time may not fully relax
to the postulated Potts model of DCA. To compensate for
this problem, we used a refined version (Methods) of the
phylogenetic re-ranking of the coupling estimates intro-
duced in Skwark et al. [12] To visualize its effect, we con-
sider MI to characterize the strength of pairwise
dependencies between SNP loci. MI is a widely used infor-
mation theoretical measure of dependence between dis-
crete-valued variables, and it has been a popular tool as part
of bioinformatics methods for DNA sequence analysis [32–
34]. Here, we use MI to characterize the strength of pairwise
dependence between SNP loci as a function of their ranked
estimated couplings alone, and a ranking based jointly on
couplings and phylogenetic criteria. Fig. 6 shows the distri-
bution of inferred MI values (Methods) for the two rankings
in both the Maela and the Massachusetts population. The
PBP-related couplings are nearly universally associated with
higher MI values, indicating their tighter co-evolution
despite the negligible level of background LD between the
three PBP segments. The distributions of large MI values
have a clear shift towards a higher rank for both Maela and
Massachusetts populations, which succinctly demonstrates
the usefulness of using a phylogenetic ranking of coupling
estimates to highlight co-selected sites above the

background LD. A comparison of MI distributions for PBP-
related SNPs for the two populations revealed that Maela
displays stronger dependencies between the PBP mutations
than Massachusetts (Fig. S4).

Performance improvements in SuperDCA

Overall, SuperDCA achieved an 18-fold effective perfor-

mance increase over the earlier reference plmDCA imple-

mentation [15] on a single 20-core dual-socket compute

node, enabling inference of 1.4�1011 parameters for a

94 028 SNP genome dataset in less than 8 days, instead of

an estimated 170 days. This was achieved through multiple

alterations to the central algorithm explained below. Let

s1; s2 . . . ; sNð Þ be a haplotype over N SNP loci, where each si
can take values from an alphabet with cardinality q. Typi-

cally, this cardinality varies between three (allelic states:

minor/major/gap) and five (allelic states: A,C,G,T, gap). A

Potts model assigns a probability distribution on such hap-

lotypes defined by the following formula

P s1; s2; . . . ; sNð Þ ¼
1

Z
eE s1 ;s2 ;...;sNð Þ

where the normalizing constant Z is known as the partition
function and the expression in the exponent is

Fig. 6. Estimated MI for 60 749 pairs of SNPs (Maela) and 125 469 pairs of SNPs (Massachusetts).
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E s1; s2; . . . ; sNð Þ ¼
X

N

i¼1

X

q

a¼1

hi að Þdsi ;a þ
X

N

i;j¼1

X

q

a;b¼1

Jij a;bð Þdsi ;adsj ;b

In above dx:y represents the Kronecker delta function, which

takes the value one if the arguments x and y are equal, and
is otherwise zero. The linear terms are hi að Þdsi ;a for different
SNP loci and their alleles. The coefficients hi að Þ parametrize
a deviation from the uniform allele distribution for each
SNP, independently of the values of all the other variables.
The quadratic terms are the matrix elements Jij a;bð Þdsi ;adsj ;b
for different combinations of values of i and j, and a and b.
The coefficients Jij a;bð Þ, which are the couplings or interac-

tions of pairs of SNPs, are defined as zero when the two
indices i and j are equal. A coupling matrix with all elements
equal to zero for non-identical locus index pairs implies that
the alleles at these two loci are distributed independently in
the population. Small positive values of the coupling matrix
elements correspond to weak dependence between the SNP
loci. In this paper, we have addressed the issues of gauge
invariance and gauge fixing in the Potts model [1], as
described previously [12, 15].

One of the major obstacles for using earlier plmDCA algo-
rithms simultaneously on large numbers of SNPs without
locus subset sampling is their large runtime memory
requirements. plmDCA memory use is dominated by the
storage of q2-dimensional parameter matrices Jij , where q is

the cardinality of the SNP state space (the maximum value
being q = 5 when a gap/indel is included). Jij and Jji are

needed simultaneously for calculating the pairwise coupling
value, and since the elements are inferred row- or column-
wise for all i (or j) at a time, a straightforward implementa-
tion of the algorithm necessitates simultaneous storage of all
couplings in an N-by-N matrix J; therefore, storage is
needed for q2(N2-N) scalar elements. The scoring of the esti-
mated coupling matrices would then be calculated accord-
ing to

Jij ¼ Jji ¼ Jijþ Jji
� �

=2








F

where F indicates the Frobenius norm. As an example, if a
105 SNP genome alignment was characterized by 5-state
alphabet and parameters stored in 64-bit floating point for-
mat, then the full interaction matrix J would require
approximately 1.8 TB of memory, which is typically beyond
the RAM available in state-of-the-art HPC (high-perfor-
mance computing) cluster nodes. However, if the scoring of
coupling values is instead calculated as

Jij ¼ Jji ¼ Jij








F
þ Jji








F

� �

=2

then runtime storage requirements are reduced by a sub-
stantial factor and the intermediate storage requirements
for our example would shrink to 74GB, which is well in the
feasible range for current HPC nodes. Fig. S5 illustrates
numerically that the above two scoring approaches lead to

insignificant numerical differences in practice. SuperDCA
uses this finding as one of its key improvements of
plmDCA.

Performance profiling analysis identified high memory
requirements and poor cache utilization as a major bottle-
neck for the performance in earlier plmDCA implementa-
tions when applied to higher-dimensional data. Parallel
execution scaling also suffered due to memory bandwidth
starvation. The maximization step was performed by Eke-
berg et al. [15] using L-BFGS gradient-based optimization.
However, the objective function required repeated traversal
through all input data and the full parameter vector, empha-
sizing the need for an efficient data structure. To remedy
these issues, a space-efficient, block-wise ordered data struc-
ture with simple state-pattern dictionary and run-length
encoded indexing strategy for the genome data and a cache-
friendly blocked memory layout for parameters were devel-
oped for SuperDCA and implemented in C++ (Fig. S6). A
particular design choice was made to restrict the maximum
value of q to 4. The resulting data structure reduced runtime
memory use for nucleotide alignments by more than four-
fold compared with a typical dense data matrix representa-
tion. It also helped to reduce computing effort, improved
processor cache utilization and enabled efficient utilization
of SIMD vector instructions. The aggregate effect of these
changes was an eightfold improvement in single-threaded
performance. The reduced main memory bandwidth use
also helped improve node-level scaling as we measure a
strong scaling factor of >0.7 up to 20 cores. Figs S7–S9 illus-
trate the computational scalability aspects for SuperDCA
compared with genomeDCA.

DISCUSSION

Production of natural population genomic sequence data is
currently still exponentially accelerating, highlighting the
need for statistical methods that can generate detailed
hypotheses for further experimental work regarding loci
likely to be important in shaping bacterial evolution.
Genome-wide association analysis has for a decade been the
major general tool for such purposes, and more recently, its
applicability to bacteria has been also demonstrated [24,
35–37]. Skwark et al. [12] showed for the first time that sta-
tistical genome-wide modelling of joint SNP variation using
DCA can uncover valuable information about co-evolution-
ary pressures on a large scale. This was done without relying
on any phenotypic measurements, and using a hybrid
scheme that does not fully employ the global model learning
aspect of DCA. Here, we built upon this initial observation
to develop DCA into a powerful tool that is applicable to a
majority of the existing bacterial population genome data
sets in a computationally scalable manner. The biological
insights on the differential evolution of PBPs, and the cold-
tolerance mechanisms, derived from the results of applying
SuperDCA to two of the largest available pneumococcal
genome data sets illustrate succinctly how such an approach
could provide vital clues to the evolutionary processes under
different ecological conditions in natural populations.
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As the size of genome sequence data sets keeps growing,
even our optimized parallel inference algorithm will eventu-
ally become too inefficient for practical purposes. Currently,
the chosen data and algorithmic architecture work
extremely effectively for up to around 105 polymorphisms.
As bacterial whole-genome alignments are typically of the
order of 106 sites, this should be sufficient for most popula-
tion genomic studies. After this, the runtime will start to
increase so rapidly that different computational strategies
will be required for data sets including significantly more
SNPs. Thus, an important topic for future research is to
investigate how the Potts model inference can be performed
in a reliable manner without resorting to a quadratic
increase in the computational complexity as a function of
the number of polymorphisms.
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